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A lattice Boltzmann �LB� method based on the linearized Boltzmann Bhatnagar-Gross-Krook equation for
numerical simulation of oscillatory �unsteady� Stokes flow is proposed. Unlike the conventional �nonlinear� LB
method that utilizes the time domain exclusively, the proposed method is formulated in the frequency domain
to allow for direct access to the complex-valued stress, force, and velocity field—these parameters are of direct
interest in characterizing microelectromechanical systems �MEMS� and nanoelectromechanical systems
�NEMS�. The proposed method circumvents the requirement for time-dependent boundary velocities, as is
needed in the conventional LB method, and convergence of the two methods is compared. Validity of the
proposed method is assessed using three classical �unsteady� flows: �1� one-dimensional oscillatory Couette
flow between two plates; �2� two-dimensional flow generated by an oscillating circular cylinder; �3� three-
dimensional flow generated by an oscillating sphere. The observed excellent numerical performance in all three
cases demonstrates that this linear lattice Boltzmann method can be used to study the dynamics of micro- and
nanoscale devices of any dimensionality. This is particularly relevant to MEMS and NEMS, where the reso-
nance properties of individual nanomechanical components immersed in fluid can underpin overall device
performance.
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I. INTRODUCTION

The lattice Boltzmann �LB� method is an established ap-
proach for computational fluid dynamics, which has shown
increasing utility in recent years �1–4�. In contrast to conven-
tional numerical methods that simulate flows based on �mac-
roscopic� conservation laws, the LB method numerically
solves the kinetic equation for the �mesoscopic� particle dis-
tribution function �5–7�. Such a kinetic basis leads to a num-
ber of distinct advantages in comparison to conventional nu-
merical methods, which include a natural capacity to
incorporate microscopic physical laws �6,8,9�, intrinsic ac-
commodation of complex-shaped boundaries �10–12�, a fully
parallel computational structure �13,14�, and all while utiliz-
ing a simple numerical algorithm �4�. The lattice Boltzmann
method, as an alternative and reliable numerical scheme, is
now being used to simulate a wide range of fluid transport
phenomena, such as turbulent flow �15,16�, flow through po-
rous media �17,18�, multiphase flows �19,20�, magnetohy-
drodynamics �21�, suspension flows �22,23�, and biofluid
flows �24,25�. Moreover, in very recent years, it has been
further developed as a multifunctional numerical tool for
modeling of multiphysical transport process far beyond fluid
dynamics �4,26–28�.

The LB method was originally developed from the lattice-
gas cellular automata �LGCA�, which mimics real particle
dynamics at the microscale as a simplified streaming-
collision procedure of virtual representative particles on a
regular lattice �29�. As early as 1986, the LGCA method was
demonstrated to numerically simulate fluid flow at Navier-
Stokes order in two dimensions, provided a triangular lattice

with hexagonal symmetry and a well-designed collision pro-
cedure were used �30�. However, the method was found to
always suffer from statistical noise. This was overcome by
McNamara and Zanetti �31� who proposed that the Boolean
occupation number in the LGCA method should be replaced
by a floating-digital distribution function and use be made of
the ensemble average. This improvement gave birth to the
first generation of LB models �31–33�. The LB method
gained wide acceptance as an alternative and accurate nu-
merical approach following the work of Chen et al. �21� and
Qian et al. �34�, who simplified local particle collisions using
the Bhatnagar-Gross-Krook �BGK� relaxation approximation
and hence derived a BGK model of the LB method. In com-
parison to the original LGCA model, this BGK LB model
exhibits a simplified formulation and successfully removes
many intrinsic drawbacks of the LGCA method, including
violation of Galilean invariance and pressure dependence on
the velocity �29�.

It should also be noted that the LB method has a direct
link to the kinetic theory of gases. He and Luo �5� demon-
strated that many commonly used LB models can be con-
structed by �i� directly discretizing the Boltzmann BGK
equation using conventional finite difference techniques, �ii�
expanding the Maxwellian distribution in its Taylor series up
to second order in Mach number, and �iii� evaluating the
corresponding moments with Gaussian-Hermite quadrature
in the continuum limit. Importantly, it can be shown that the
LB method exactly recovers the complete Navier-Stokes
equations through the Chapman-Enskog procedure. There-
fore, while the Boltzmann BGK equation is used widely in
rarefied gas dynamics calculations, the corresponding dis-
crete LB BGK method provides a robust numerical scheme
for directly solving continuum flows, regardless of the nature
of the fluid �gas or liquid�.

In very recent years, burgeoning development in micro-
fabrication technologies and nanoscience has triggered new
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interest in the LB method. A wide variety of studies �35–37�
have applied the LB method to investigate micro- and nano-
scale fluid dynamics, since fluid transport in small structures
often has a significant impact on device performance and
efficiency. Generally, for most liquid flows and some gas
flows �38,39� at small length scales, the classical Navier-
Stokes equations with the no-slip boundary condition are a
valid mathematical description. We thus focus on continuum
flows throughout and ignore any higher-order effects due to
finite molecular size. On the other hand, micro- and nano-
scale flow dynamics also present many features distinct from
that at the macroscale. For example, fluid flows �both liquid
and gas� in small structures have an almost negligible Rey-
nolds number, Re=uL /�, with u, L, and � being the charac-
teristic velocity scale, characteristic flow length scale, and
kinematic viscosity of the fluid, respectively. This immedi-
ately indicates that the nonlinear advective inertial force is
negligibly small in the Navier-Stokes equations and therefore
micro- and nanoscale flow dynamics can be well described
by the linearized Navier-Stokes equations; also commonly
referred to as the “unsteady Stokes equations.”

While flows generated by oscillating micro- and nano-
structures are in general linear, their numerical computation
presents a challenging task nonetheless. Such structures of-
ten exhibit complicated geometries and involve periodically
deforming components, e.g., accelerometers, cantilever de-
vices, resonant sensors, and microengines �39–42�. Several
limitations are thus found when the conventional time-
dependent LB method is applied:

�1� The conventional LB method is constructed based on
the nonlinear Boltzmann BGK equation �5�. Macroscopi-
cally, this is equivalent to solving the full Navier-Stokes
equations, complete with the usual nonlinear advective iner-
tial term. This inherent nonlinearity is insignificant in many
small-scale flows and adds a level of complexity that is nor-
mally not required.

�2� As an explicit time-marching scheme, the conven-
tional LB method numerically solves the distribution func-
tion in the time domain. A very small time step in compari-
son to the characteristic time of flows is thus adopted to
ensure sufficient accuracy. Such a treatment inevitably re-
sults in computationally inefficiencies for some unsteady
flows, e.g., oscillatory flows, where many periods of oscilla-
tion must be simulated to extract information on the steady-
state behavior of a single period at “long time.”

�3� Due to oscillatory motion, the conventional LB
method must update and reset boundary conditions at the
interface between the fluid and the solid oscillating bodies at
every time step. This can be computationally expensive and
necessitates significant extra coding, particularly when the
oscillating bodies have complex geometries.

Importantly, the response of an oscillating mechanical
structure in contact with fluid is most commonly measured in
the frequency domain rather than in the time domain. While
these two treatments are equivalent and complementary,
measurement of the frequency response yields a more natural
and accurate result and is used widely in characterizing de-
vice performance. This is particularly significant in applica-
tions and development in microelectromechanical systems
�MEMS� and nanoelectromechanical systems �NEMS�,

where resonating structures in fluid often appear �43–45�.
This motivates development of a linear lattice Boltzmann

method in the frequency domain for oscillatory flows, whose
output can be directly compared to experimental data and
used in device development. The complete oscillatory flow is
then solved on a fixed boundary in the frequency domain,
thus dramatically simplifying implementation. We also note
that a transient time response can always be obtained from
calculation in the frequency domain using the inverse
Fourier transform.

Unlike previous lattice Boltzmann methods, the proposed
linear frequency-domain LB method is formulated by �i�
derivation of a complex relaxation time �� and �ii� introduc-
tion of a virtual time �. The latter feature ensures that the
proposed method retains the time-marching algorithmic
structure of the conventional lattice Boltzmann method. As
such, this enables trivial implementation of the proposed LB
method into many existing lattice Boltzmann programs,
without major modification. We again emphasize that the
proposed LB method is developed for general continuum
flows and holds for both gases and liquids, the reasons of
which are discussed above.

The paper is organized as follows. The linearized Boltz-
mann BGK equation is first reviewed in Sec. II. Formulation
of the LB method in the frequency domain is then derived in
Sec. III. In Sec. IV, the proposed method is validated using
three classical oscillatory flow problems, ranging from one
dimensional to three dimensional in nature. Computational
convergence of the proposed LB method in comparison to
the conventional time-dependent lattice Boltzmann method
is also examined. Additional theoretical discussion of the
macroscopic equations derived from the proposed LB
method is relegated to Appendixes A and B, along with exact
solutions to the three classical flow problems studied in Sec.
IV.

II. LINEARIZED BOLTZMANN BGK EQUATION

The Boltzmann BGK equation �46� can be directly used
to simulate continuum flows

� f

�t
+ c ·

� f

�r
= −

1

�
�f − feq� , �1�

where f is the distribution function, whereas t, r, c, and � are
the time, particle position, particle velocity, and relaxation
time, respectively. The local equilibrium distribution func-
tion, feq, is given by

feq =
��r,t�

�2�RT0�D/2exp�−
�c − u�r,t��2

2RT0
� , �2�

where D is the dimensionality of the flow, R is the gas con-
stant, T0 is the absolute temperature at equilibrium, and �
and u are the fluid density and velocity, respectively, which
are defined as

� =� fdc, �u =� fcdc , �3�

where �. . .dc denotes volume integration over all velocity
space �47�. In this paper, we only study isothermal flows so
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that the fluid temperature is constant, i.e., T=T0. Importantly,
using the Chapman-Enskog procedure �47�, the Boltzmann
BGK equation, Eq. �1�, can be shown to exactly recover the
Navier-Stokes equations with the nonlinear advective inertial
force in the continuum limit. It is our aim to develop a
frequency-domain LB method for linear flows and thus re-
quire that this nonlinearity be eliminated.

The inherent nonlinearity in the Boltzmann BGK equa-
tion, Eq. �1�, can be removed through appropriate lineariza-
tion. Suppose that the fluid system is perturbed from its glo-
bal equilibrium at constant density �0 and zero velocity, i.e.,
u0=0. Such a perturbation is assumed to be infinitesimally
small and quantified by

h =
f

f̄ eq
− 1, �4�

where f̄ eq is the global equilibrium given by

f̄ eq =
�0

�2�RT0�D/2exp	−
c2

2RT0

 . �5�

Perturbations to the fluid density and velocity, i.e., �� and
�u, are then given by the moments of h, which are

�� =� f̄ eqhdc �6�

and

�0�u = �0u =� f̄ eqhcdc . �7�

Next, we expand the local equilibrium distribution, feq,

using its Taylor series about the global equilibrium, f̄ eq. Ne-
glecting all the high-order nonlinear terms in the expansion,
we obtain the linearized form

fL
eq = f̄ eq	1 +

��

�0
+

c · u

RT0

 . �8�

Moreover, the equilibrium of h can also be derived, yielding

heq =
fL

eq

f̄eq
− 1 =

��

�0
+

c · u

RT0
. �9�

With the help of Eqs. �4�–�8�, we readily derive a linear
kinetic equation for h from Eq. �1� �48�

�h

�t
+ c ·

�h

�r
= −

h

�
+

1

��D/2� exp	−
c2

2RT0

hdc

+
1

��D/2
c

RT0
·� exp	−

c2

2RT0

hcdc ,

�10�

where �=2�RT0. Using Eqs. �6� and �7�, Eq. �10� then
becomes

�h

�t
+ c ·

�h

�r
= −

h

�
+

1

�

��

�0
+

1

�

c · u

RT0
. �11�

Equation �10� �or Eq. �11�� is the well-known linearized
Boltzmann BGK equation. It is valid for flows in the entire
range of the Knudsen number �defined as the ratio of the
molecular dimension to the macroscopic length scale� pro-
vided that the flow perturbation from the global equilibrium
is very small. Furthermore, using the Chapman-Enskog pro-
cedure, it can be proved that the linearized Navier-Stokes
equations are recovered from Eq. �10� in the continuum limit
�see Appendix A�. Analytical solution of Eq. �10� presents a
formidable challenge, except for the simplest of flows �48�.
In the next section, we develop a robust and tractable lattice
Boltzmann algorithm based on Eq. �10�.

III. LINEAR LATTICE BOLTZMANN METHOD

A. Discrete-velocity linearized Boltzmann BGK equation

The first step in constructing a linear LB method is to
discretize the particle velocity space of Eq. �10�. It should be
emphasized that our aim is to develop a linear LB method for
unsteady Stokes flow, i.e., in the continuum limit. Therefore,
all relevant moments over continuous particle velocity space
must be exactly evaluated by quadratures based on the pro-
posed finite discrete particle velocities in order to recover the
linearized Navier-Stokes equations from Eq. �10�. As shown
in Appendix A, we need to exactly compute the following
moments weighed by exp�−c2 / �2RT0��:

conservation of mass:

1, c	, c	c
, c	c
c�, �12�

conservation of momentum:

c	, c	c
, c	c
c�, c	c
c�c�, �13�

where c	 is the 	 component of the particle velocity c in the
Cartesian frame. The moments in Eqs. �12� and �13� are at
most fourth order, establishing that the discrete-velocity sets
for the conventional nonlinear lattice Boltzmann method �34�
are also valid for the present linear version. For two-
dimensional flows, we have the 9-bit set

c j = ��0,0� , j = 0

c�cos��j − 1��/2�, sin��j − 1��/2�� , j = 1,2,3,4

�2c �cos��2j − 9��/4�, sin��2j − 9��/4�� , j = 5,6,7,8,
 �14�
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while the 15-bit set for three-dimensional flows is

c j = ��0,0,0� , j = 0

c�1,0,0�,c�0,  1,0�,c�0,0,  1� , j = 1,2, . . . ,6

c�1,  1,  1� , j = 7,8, . . . ,14,


�15�

where the speed c=�3RT0. With the discrete velocities given
in Eq. �14� and �15�, the linearized Boltzmann BGK equa-
tion, Eq. �10�, can be rewritten in its discrete-velocity form

�hj

�t
+ c j ·

�hj

�r
= −

1

�
�hj − hj

eq� , �16�

where hj is the deviation of the distribution function defined
in Eq. �4�, in terms of the velocity c j, and hj

eq is its equilib-
rium distribution given by

hj
eq =

��

�0
+

c j · u

RT0
, �17�

with

�� = �0�
j

wjhj , �18�

u = �
j

wjhjc j , �19�

and wj is the weight corresponding to the jth discrete particle
velocity. For the two-dimensional 9-bit set, we have

wj = �4/9, j = 0

1/9, j = 1,2,3,4

1/36, j = 5,6,7,8,
 �20�

while for the three-dimensional 15-bit set,

wj = �2/9, j = 0

1/9, j = 1,2, . . . ,6

1/72, j = 7,8, . . . ,14.
 �21�

B. Linear frequency-domain lattice Boltzmann model

Conventionally, the next step in constructing a lattice
Boltzmann model is to further discretize physical space and
time in Eq. �16�. However, here we shall construct an alter-
native linear lattice Boltzmann method for oscillatory flows
in the frequency domain rather than the time domain. To this
end, we first re-express all dependent variables �denoted ��
in terms of the explicit time dependence ei�t, such that

��r,c,t� = �̂�r,c���ei�t, �22�

where � and i are the radial frequency and the usual imagi-
nary unit, respectively. With Eq. �22�, we derive a new Bolt-
zmann BGK equation in the frequency domain from the
discrete-velocity linearized Boltzmann BGK equation, Eq.
�16�, which is

c j ·
� ĥj

�r
= −

ĥj

��
+

ĥj
eq

�
, �23�

where ��=� / �1+ i��� and the equilibrium distribution is

ĥj
eq =

��̂

�0
+

c j · û

RT0
, �24�

with

��̂ = �0�
j

wjĥj , �25�

û = �
j

wjĥjc j . �26�

Note that Eq. �23� is independent of time t and the original
time derivative of hj in Eq. �16� has been transformed into

the product of ĥj and i�, which is absorbed into the complex
relaxation time ��.

Mathematically, Eq. �23� can be regarded as a steady-state
Boltzmann BGK equation with a newly defined complex re-
laxation time ��. As such, the left-hand side of Eq. �23� can

be formally identified as the material derivative of ĥj for a
time-independent problem. Introducing a “virtual time,” �,
into the left-hand side of Eq. �23� then leads to a �virtual�
time-dependent discrete-velocity Boltzmann BGK equation
in the frequency domain

Dĥj

D�
�

� ĥj

��
+ c j ·

� ĥj

�r
= −

ĥj

��
+

ĥj
eq

�
, �27�

where Dĥj /D� is the material derivative of ĥj with respect to
virtual time �. Clearly, the steady-state solution to Eq. �27� is
the solution to Eq. �23�. Introduction of the material deriva-
tive in Eq. �27� is important since it establishes that the origi-
nal explicit time-marching lattice Boltzmann algorithm for
the transient Boltzmann BGK equation can be used to solve
Eq. �23� in the frequency domain. Consequently, all existing
lattice Boltzmann programs can be readily modified to ac-
commodate linear frequency-domain calculations, requiring
only slight modifications to the relaxation time and equilib-
rium distribution.

Based on this formulation, we discretize virtual time and
physical space in Eq. �27�. The linear lattice Boltzmann
equation in the frequency domain is then obtained

ĥj�r + c j��,� + ��� − ĥj�r,��

= − ��ĥj�r,�� + �ĥj
eq�r,�� −

��2

2
�2ĥj

eq�r,�� ,

�28�

where �� is the virtual time step, the dimensionless complex
relaxation frequency is ��=�� /��, and the dimensionless
relaxation frequency is �=�� /�. Using the Chapman-
Enskog procedure, it can be proved that the linearized
Navier-Stokes equations in the frequency domain are recov-
ered in the steady-state limit of Eq. �28� �see Appendix B�. It
should be also pointed out that the above proposed LB
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method is strictly valid in the incompressible limit, even
though it uses compressible state variables; this feature is
true for all LB models. The proposed LB model is thus a
weakly compressible scheme for linear incompressible flows
and the incompressible limit is implicitly used throughout
this paper. Furthermore, in comparison to Eq. �27�, Eq. �28�
includes an addition term of order of ��2 on the right side.
This is a discrete correction, which ensures that the proposed
lattice Boltzmann method achieves second-order accuracy
for unsteady Stokes flows, i.e., in the continuum limit.

In summary, we have developed a linear lattice Boltz-
mann method in the frequency domain, which consists of �i�
an evolution equation, Eq. �28�, �ii� the local equilibrium,
Eq. �24�, �iii� discrete-velocity sets for two-dimensional
flows in Eq. �14� and three-dimensional flows in Eq. �15�,
and �iv� commensurate quadratures for the macroscopic flow
variables in Eqs. �25� and �26�, respectively. As with the
conventional LB method, this proposed LB method can be
numerically implemented as an explicit time-marching
scheme. The “steady-state” results obtained by Eq. �28� then
give the unsteady Stokes flow solution in the frequency
domain.

IV. NUMERICAL SIMULATIONS AND DISCUSSION

In this section, we first validate the proposed linear lattice
Boltzmann method using a series of classical flows, which
range from one to three dimensional in nature. These are �i�
oscillatory Couette flow between two planar walls �see Fig.
1�a��, �ii� two-dimensional flow around an oscillating circu-
lar cylinder �see Fig. 1�b��, and �iii� three-dimensional flow
around an oscillating sphere �see Fig. 1�c��. We then compare
the numerical convergence of the proposed method to the
conventional LB method based on simulations of the two-
dimensional flow generated by an oscillating flat blade �see
Fig. 1�d��.

We emphasize that the proposed LB method is imple-
mented on fixed spatial domains, eliminating any need for
time-dependent boundary reconstruction. This is in direct

contrast to the requirements for conventional LB solutions of
oscillatory flows generated by moving boundaries, as
discussed above.

A. Validations

1. One-dimensional oscillatory Couette flow

We first apply the proposed LB method to simulate one-
dimensional oscillatory Couette flow. Consider a viscous
fluid of density � and kinematic viscosity � that is confined
between two parallel plates, which are separated by a dis-
tance L. Here, the top plate is stationary while the bottom
plate oscillates in its own plane with a velocity u=u0ei�t,
where u0 is a constant and � is the radial frequency. The
no-slip boundary condition is applied to the fluid in contact
with the two plates and the Stokes parameter characterizing
flow behavior is defined 
=L2� /�.

Equation �14�, together with Eq. �20�, was chosen as the
underlying discrete-velocity set and corresponding weights
for the lattice Boltzmann simulation. Periodic boundary con-
ditions were applied to the inlet and outlet and the nonequi-
librium extrapolation method �11� was used to prescribe the
distribution functions on the solid plates based on the corre-
sponding macroscopic no-slip boundary condition. To nondi-
mensionalize the simulation, we set the distance of the plates
L=1 and the reference density �0=1; this is equivalent to
scaling the original LB method. To obtain the shear stress on
the oscillating plate, we evaluated the velocity gradient at the
wall using the second-order upwind finite-difference scheme.

Numerical simulations were performed using a 200
�200 mesh; finer meshes did not reveal any significant im-
provement in accuracy. Figure 2 presents the resulting di-

mensionless streamwise velocities Û �i.e., velocity compo-
nents parallel to the plates� for a range of Stokes parameters

=5, 25, 50, and 75. Note that the fluid velocity is a
complex-valued function in the frequency domain and as
such, consists of a real and imaginary component �see Fig.
2�. Our results demonstrate that for flows with a small Stokes
parameter, 
, the entire fluid region is affected by motion of
the bottom plate. This is expected since the distance between
the plates is much smaller than the characteristic viscous
penetration depth. For flows with large 
, however, the flow
exhibits different behavior. Two distinct flow regions are
clearly observed in the domain between the plates: a thin
region near the moving plate, where significant fluid motion
is observed, and an outer region where the fluid is not sig-
nificantly perturbed. This is in line with expectation, since
the viscous penetration depth in this case is very small and
the flow closely resembles that of Stokes second problem for
the oscillation of a single plate in an unbounded fluid. Most
significantly, in all flow regimes, we find that the simulation
results closely follow the exact analytical solution, which is
presented in Appendix C, Sec. C 1.

Another important flow parameter is the shear stress ex-
erted by the fluid on the oscillating plate. Table I lists shear
stresses obtained by the proposed LB method and the exact
analytical solution for flows with different Stokes param-
eters, 
. As was found for the fluid velocity, numerical re-
sults for the shear stress agree very well with the analytical

(a) Couette Flow (b) Circular cylinder

(c) Sphere (d) Flat blade

FIG. 1. Four linear oscillatory flows. �a� One-dimensional oscil-
latory Couette flow. �b� Two-dimensional flow around an oscillating
circular cylinder. �c� Three-dimensional flow around an oscillating
sphere. �d� Two-dimensional flow generated by an oscillating �infi-
nitely thin� flat blade.
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solution. This demonstrates that the proposed frequency-
domain linear lattice Boltzmann method can capture all flow
characteristics of this classical problem.

2. Two-dimensional flow around an oscillating circular cylinder

Next, we apply the proposed LB method to study the flow
generated by an oscillating circular cylinder in an unbounded
fluid. This classical two-dimensional flow problem was origi-
nally solved by Stokes in 1851, the exact solution of which is
given in Appendix C. Sec. C 2 �49,50�. We consider a circu-
lar cylinder immersed in a viscous fluid that is oscillating
perpendicular to its axis with a velocity u=u0ei�t. The fluid
in contact with the surface of the cylinder satisfies the no-slip
condition. We consider that the spatial amplitude of oscilla-
tion is much smaller than the cylinder radius, so that the flow
is accurately described by the linearized Navier-Stokes equa-
tions; this assumption is implicitly assumed in this paper.

Since the flow is two dimensional, Eq. �14� is used as the
discrete-velocity set for the lattice Boltzmann simulation of
this flow. Further, to nondimensionalize the problem, we nu-

merically set the radius of the cylinder a=1, the reference
density �0=1, and define the Stokes parameter 
=a2� /�.
The computational domain was varied up to a size of 100a
�100a to ensure the fluid velocity at the domain boundaries
had decayed sufficiently and did not influence the simulation.
As for the boundary conditions, the nonequilibrium extrapo-
lation method �11� was applied to the outer boundaries of the
computational domain while the bounce back-based interpo-
lation method �BBIM� �12� was applied to the curved cylin-
der surface to ensure satisfaction of the no-slip condition. To
evaluate the force exerted by the fluid on the cylinder, we
employed the momentum exchange method �12�. This ap-
proach is used here since the force evaluation method in Sec.
IV A 1 is computationally expensive and complicated for
two-dimensional flows with curved boundaries; it is gener-
ally inapplicable to three-dimensional flows �51�.

The computational domain of 100a�100a was dis-
cretized using a 700�700 mesh for the following Stokes
parameters 
=1, 5, and 10. Second-order interpolation was
used in the BBIM for the flow with 
=10 while first-order
interpolation was adopted for all other cases �with smaller
Stokes parameters�. Figure 3 shows the resulting streamwise
velocities �i.e., velocity components parallel to oscillation
direction of the cylinder� as a function of r at �=0 and � /2,
for flows with 
=1 and 10; r and � are the radial and azi-
muth coordinates of the polar coordinate system. We do not
show numerical results for 
=5 since this exhibits similar
features to the other values of 
. For clarity, data in Fig. 3
are plotted on a logarithmic scale and results beyond a dis-
tance of 30a are not shown because they are negligibly
small. As expected, fluid velocities decay as r increases and
tend to zero at large distances from the cylinder. It is also
observed that fluid velocities at different azimuthal coordi-
nates have an identical decay rate with respect to the Stokes
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FIG. 2. Dimensionless streamwise velocities in one-dimensional oscillatory Couette flow. Open circles: numerical results; solid lines:
analytical solution.

TABLE I. Dimensionless shear stress on the oscillating plate in
one-dimensional oscillatory Couette flow.


=�L2 /�

Re�F̂� Im�F̂�

Numerical Analytical Numerical Analytical

5 −0.2901 −0.2900 −0.2926 −0.2911

25 −0.1418 −0.1418 −0.1408 −0.1414

50 −0.1000 −0.1000 −0.1001 −0.1000

75 −0.0816 −0.0817 −0.0805 −0.0817
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parameter, 
. Namely, flows with larger Stokes parameter 

always exhibit faster decay rates. This is expected, since the
Stokes parameter 
 is proportional to the squared ratio of the
characteristic dimensions of the cylinder �radius a� to the
viscous penetration depth over which vorticity diffuses
�52,53�. Superimposed on these viscous effects, however, is
an inviscid component due to the cylinder exhibiting a ve-
locity component normal to its surface. This feature results in
a finite decay length as the Stokes parameter approaches in-
finity, in contrast to the oscillatory Couette flow problem
whose decay length approaches zero.

Figure 3 also presents a comparison to the exact analytical
solution for this problem, i.e., Eqs. �C5�–�C8�. Again, we
note that the numerical results obtained by the proposed lin-
ear lattice Boltzmann method are in excellent agreement
with these analytical solutions. Table II provides further veri-
fication for the accuracy of the proposed LB method, where
hydrodynamic forces are compared to those given by the
exact solution in Eq. �C9�. It is found that the relative nu-
merical error in the force is less than 1.1%. Taken together
with the results of the previous section, this comparison
demonstrates that �i� the proposed LB method can accurately

simulate flows in both one and two dimensions and �ii� it
easily accommodates flows with either simple or complex
boundaries �as in the circular interface on a rectangular grid
here�.

3. Three-dimensional flow around an oscillating sphere

Finally, we examine the applicability of the proposed LB
method to a three-dimensional flow. Specifically, we con-
sider the flow generated by an oscillating sphere of radius a
immersed in an unbounded viscous fluid. The sphere oscil-
lates horizontally with velocity u=u0ei�t, thus driving the
surrounding fluid. In the linear limit of infinitesimal oscilla-
tion amplitude, i.e., when the oscillation amplitude is much
smaller than the sphere radius a, the flow problem can be
solved exactly subject to the no-slip boundary condition at
the sphere surface �49�. The corresponding exact analytical
solution is given in Appendix C, Sec. C 3.

Rather than invoke axisymmetry, we simulate this flow
problem in three dimensions on a cubic grid. As such, we use
the 15-bit set defined in Eq. �15� for the discrete velocities,
together with the corresponding weights in Eq. �21�. To non-
dimensionalize the simulation, we set the sphere radius a
=1, the reference density �0=1, and defined the Stokes pa-
rameter as 
=a2� /�. The computational domain was sys-
tematically increased in size and grid spacing refined to en-
sure convergence of solution. A domain 20a�20a�20a was
found to be sufficiently large, ensuring that the fluid velocity
at its outer boundary is negligible small and could be safely
set to zero. Simulations were performed on a 100�100
�100 mesh and employed the same boundary treatment and
force evaluation method as for flow around the oscillating
circular cylinder, but in three dimensions.

We performed numerical simulations for flows with 

=5, 7.5, and 10. Figure 4 shows the streamwise velocities as
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FIG. 3. Dimensionless streamwise velocities in two-dimensional flow around an oscillating circular cylinder. Open circles: numerical
results; solid lines: analytical solution.

TABLE II. Dimensionless force per unit length in two-
dimensional flow around an oscillating circular cylinder.


=�a2 /�

Re�F̂� Im�F̂�

Numerical Analytical Numerical Analytical

1 −14.1903 −14.3463 −12.3305 −12.4659

5 −5.0956 −5.1423 −7.1416 −7.1750

10 −3.4030 −3.4056 −5.9765 −5.9754
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a function of r at ��=� /2, �=0� and ��=� /2, �=� /2�
when 
=5 and 10; r, �, and � are the usual radial distance
and polar and azimuthal angles in spherical coordinate sys-
tem �see Appendix C, Sec. C 3�. Similar to the two-
dimensional flow around a circular cylinder in Sec IV A 2,
fluid velocities decay as r increases and flows with larger 

always decay at a faster rate. Note that we do not present
numerical results for 
=7.5, since they exhibit similar be-
havior and agreement with the exact solution.

Figure 4 shows a direct comparison to the exact analytical
solution for the velocity field given in Appendix C, whereas
Table III provides a comparison of the forces for 
=5, 7.5,
and 10. Note the good agreement throughout, despite the
relative coarse grid used �see Fig. 4�. The weaker agreement
observed here in comparison to the above cases is due to use
of a coarser grid. Accuracy can be further improved by use of
a finer mesh in the flow region near the sphere surface. How-
ever, with the available computing power �Dell OptiPlex 960
Desktop with Intel Core™2 Quad Processors� without paral-
lelization, this would result in an unacceptable computational
time for this three-dimensional flow. Use of a nonuniform
grid based LB model could also allow for improved compu-
tational performance and accuracy.

The excellent agreement in Fig. 4 and Table III validates
the proposed LB method for three-dimensional flows. It also
demonstrates the applicability of the proposed LB method to
general unsteady Stokes flows with complex geometries in
three dimensions. This method can also be used to simulate
steady Stokes flows in three dimensions, since the Stokes
paradox manifests itself only in dimensions less than three
�53�.

B. Comparison of computational convergence

In Sec. IV A, numerical validations using three classical
flow problems were presented, demonstrating the accuracy
and applicability of the proposed LB method for oscillatory
�unsteady� Stokes flows. Next, we assess its numerical con-
vergence by direct comparison to the conventional time-
dependent LB method. Specifically, we consider the two-
dimensional unsteady Stokes flow generated around an
oscillating infinitely thin blade. This problem finds numerous
applications in MEMS and NEMS devices �54–60� and thus
its investigation is of intrinsic interest to modern device tech-
nologies. Note that this limiting case of an infinitely thin
blade can accurately model the practical case of a blade with
finite thickness. For a discussion of this pertinent point, see
Ref. �54�.

Consider an infinitely thin blade of width L immersed in
an unbounded viscous fluid with kinematic viscosity �. The
blade oscillates in the direction normal to its plane with a
velocity u=u0ei�t. The no-slip boundary condition is again
applied to the fluid in contact with the blade surface. Since
the flow is two dimensional, Eq. �14� was used together with
Eq. �20� as the underlying discrete particle velocities and
weights in simulations. Nondimensionalization was achieved
in the simulation by setting L=1, u0=0.1, �=1, the reference
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FIG. 4. Dimensionless streamwise velocities in three-dimensional flow around an oscillating sphere. Open circles: numerical results; solid
lines: analytical solution.

TABLE III. Dimensionless force generated by three-
dimensional flow around an oscillating sphere.


=�a2 /�

Re�F̂� Im�F̂�

Numerical Analytical Numerical Analytical

5 −9.7590 −9.7307 −8.1883 −8.0551

7.5 −7.4340 −7.3802 −7.1411 −6.9613

10 −6.1691 −6.0998 −6.5060 −6.3093
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density �0=1 and the time step �t=��=1.571�10−4, and
the Stokes parameter was defined 
=L2� /�. The computa-
tion domain was again systematically increased to ensure
that the fluid velocity far from the oscillating blade had de-
cayed to zero; a domain of 55L�55.1L was found to be
sufficient and used in simulations. The grid spacing was also
systematically varied to ensure convergence: a 550�551
mesh was used for flows with small Stokes parameters, while
a 660�661 mesh was used for flows with large values
�
=10�. The boundary treatment and force evaluation are
identical to those used for a circular cylinder �see Sec.
IV A 2�. Note that a 550�551 �660�661� mesh, rather than
550�550 �660�660�, was used in the frequency-domain
calculations so that the infinitely thin blade could be placed
halfway between two neighboring mesh rows. This ensured
the corresponding bounce-back based boundary treatment
was accurate to second order �61�.

Figures 5�a�–5�c� give the force exerted by the fluid on
the blade �as a function of computational time� obtained us-
ing the proposed frequency-domain linear LB method for

=0.1, 1, and 10. In contrast to numerical results presented
in Sec. IV A, we now provide the simulation history by pre-
senting numerical results at regular intervals of 1000 itera-
tions in the LB scheme. We remind the reader that the time-
marching algorithm is also used in our proposed LB method,
but in virtual time �. It is evident that in all three cases, the
resulting complex forces �both real and imaginary parts� ex-
hibit an initial transient response that decays rapidly toward
the final converged result. Figures 5�a�–5�c� also present a
direct comparison to the exact analytical solutions �62�. The
converged complex-valued forces obtained in the simulations
are in good agreement with the analytical solutions for all

small Stokes parameters 
. A small, while still acceptable
deviation is observed in Fig. 5�c� when 
 is increased to 10.
This is mainly caused by numerical issues in handling the
expected square-root stress singularity at the edge of flat
blade, while calculating the force; the importance of this sin-
gularity grows as the Stokes parameter increases.

In Figs. 5�d�–5�f�, we present complementary results us-
ing the conventional time-dependent nonlinear LB method;
numerical settings are identical to those used in Figs.
5�a�–5�c� �see above for details�. In contrast to the results in
Figs. 5�a�–5�c�, however, the forces here oscillate periodi-
cally with time, consistent with the applied periodic oscilla-
tory motion of the blade. Note that the converged results
obtained using two LB methods yield identical results for the
forces, i.e., the force magnitude and phase. However,
frequency-domain information is often required in applica-
tions, necessitating additional numerical processing of the
time-dependent force. As such, the direct frequency-domain
LB method presents a distinct advantage.

Furthermore, convergence of the �complex-valued� force
in the frequency domain is easily recognized, since the result
asymptotes to a constant value. This facilitates the minimi-
zation of computational time. In contrast, convergence of the
conventional time-dependent lattice Boltzmann method ne-
cessitates comparison to a �time-varying� sinusoidal function
at “large time.” As such, convergence cannot be established
until several cycles of oscillation have been computed. This
increases the computational time in comparison to the direct
frequency-domain calculation.

To illustrate this pertinent point, we divided every period
in the time-domain simulation into 40 discrete intervals, each
of which corresponds to 1000 iterations of the LB method.
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This discretization is necessary to ensure that the periodic
nature of the force is accurately captured. Importantly, only
when all iterations at these 40 discrete intervals have fully
converged can one period be compared to another to deter-
mine the �long-time� steady-state solution. This requirement
contrasts to the simple convergence criterion of the proposed
frequency-domain LB method. Importantly, it is the
frequency-domain performance that is often required in de-
velopment and application of MEMS and NEMS.

Finally, we examine the stability of the proposed LB
method in comparison to the conventional method. For the
flow with 
=10, we performed simulations using the con-
ventional time-domain LB method on the 550�551 mesh
discussed above. It was found that the conventional LB
method suffered from severe instability and diverged after
several thousands iterations. However, by refining the grid
further to 660�661, a stable steady state was reached. The
reason for this instability is that the dimensionless relaxation
frequency, �, in the simulation equals 1.981 and is thus very
close to the singular limit of �=2 �63�. Importantly, such
numerical instability did not occur while using the proposed
frequency-domain linear LB method with identical � and the
coarser 550�551 mesh. Simulations demonstrate that the
proposed linear LB method converged to its stable steady-
state result after only a few initial fluctuations at early itera-
tion. It is known that the inherent nonlinearity in the conven-
tional equilibrium distribution function is the primary factor
behind numerical instability when � approaches 2 �63�. We
therefore attribute this improvement in numerical stability in
the proposed LB method to use of the linearized equilibrium
distribution function.

C. Discussion

Numerical simulation of the four �linear� unsteady Stokes
flows, together with the theoretical analysis in Sec. III,
clearly demonstrates that the proposed LB method has a rig-
orous mathematical basis and exhibits accurate and efficient
numerical performance. Specifically, the proposed method
improves upon the conventional time-dependent LB method
in the following respects:

�1� The proposed LB method is derived directly from the
linearized Boltzmann BGK equation and has been proved to
be macroscopically equivalent to the linearized Navier-
Stokes equations. Compared to the conventional LB method,
the proposed linear method exhibits a much simpler equilib-
rium distribution function and intrinsically excludes the re-
dundant macroscopic nonlinear advection term from
simulations—this is the practical case in many small-scale
flows.

�2� The proposed LB method is formulated in the
frequency-domain, enabling direct access to the frequency
response of the fluid flow, which is of fundamental interest in
many practical applications involving MEMS and NEMS
technologies. A direct consequence is that the proposed LB
method directly outputs time-independent variables for oscil-
latory flows, instead of periodically varying time-dependent
solutions. This enables rapid convergence recognition and
improved numerical efficiency, in comparison to the conven-
tional LB method.

�3� Unlike the conventional LB method, the proposed LB
method obviates the need for tracking the movement of solid
boundaries at every time step since the original time-varying
boundaries are transformed into fixed boundaries in the fre-
quency domain. The proposed LB method thus employs
identical boundary treatments to the conventional LB method
with fixed boundaries. This facilitates compact coding and
improves computational efficiency.

�4� Due to its inherent linearity, the proposed LB method
can also employ direct computational solvers based on estab-
lished linear algebra techniques. This would eliminate the
need for time-consuming iterative algorithms, such as the
conventional time-marching scheme that has been employed
here. Such a solver has the potential to greatly improve com-
putational efficiency and speed. Even so, it must be noted
that such an improvement comes at the cost of not allowing
for compatibility with existing LB programs and hence has
not been explored here. This algorithmic improvement will
be discussed in future work.

V. CONCLUSIONS

In this paper, we proposed a lattice Boltzmann method for
linear oscillatory Stokes flows. In comparison to the conven-
tional lattice Boltzmann method, the proposed method pre-
sents a number of distinct improvements. First, the method is
based on the linearized Boltzmann BGK equation so that the
nonlinear advective inertial effect is explicitly removed. This
makes it directly applicable to micro- and nanoscale flows
and circumvents stability issues inherent in the conventional
nonlinear method. Moreover, the proposed LB method is de-
rived in the frequency domain, rather than in the conven-
tional time domain, enabling direct computation of the more
practically relevant frequency response. From a numerical
and computational perspective, the proposed LB method re-
tains the original time-marching structure through introduc-
tion of a “virtual time.” This makes it completely compatible
with all existing time-dependent lattice Boltzmann programs.

Validity and accuracy of the proposed method were as-
sessed by comparison to three classical flow problems stud-
ied by Stokes �1901�. The excellent quantitative agreement
in all cases demonstrates that the proposed method is an
accurate and effective numerical approach for oscillatory
Stokes flows of any dimensionality. As with conventional LB
method, it can also easily handle geometries of complex
shape. Consequently, the proposed LB method provides a
robust and effective computational tool for future develop-
ments in MEMS and NEMS technologies.
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APPENDIX A: RECOVERING THE LINEARIZED
NAVIER-STOKES EQUATIONS THROUGH THE

CHAPMAN-ENSKOG PROCEDURE

In this appendix, we derive the linearized Navier-Stokes
equations based on the linearized Boltzmann BGK equation,

YONG SHI AND JOHN E. SADER PHYSICAL REVIEW E 81, 036706 �2010�

036706-10



Eq. �11�, through the Chapman-Enskog procedure. We first
present the following multiscale expansion:

h = �− 1� + M�0� + Kn M�1� + Kn2 M�2� + ¯ , �A1�

�

�t
= Kn

�1

�t
+ Kn2�2

�t
, �A2�

�

�r
= Kn

�1

�r
, �A3�

where M�i�= f �i� / f̄ eq and f �i� is the ith order term in the mul-
tiscale expansion of f , Kn is Knudsen number defined as a
ratio of the molecular dimension to the macroscopic length
scale, and �1 /�t and �2 /�t are derivatives at the convection
and diffusion time scales, respectively. Substituting the ex-
pansions in Eqs. �A1�–�A3� into Eq. �11�, we obtain the fol-
lowing set of equations in different orders of Knudsen
number:

Kn0: M�0� =
fL

eq

f̄eq
, �A4�

Kn1:
�1

�t
M��0� + c ·

�1

�r
M��0� = −

1

�
M�1�, �A5�

Kn2:
�1

�t
M�1� +

�2

�t
M��0� + c ·

�1

�r
M�1� = −

1

�
M�2�, �A6�

where M��0�=M�0�−1. Furthermore, with the help of Eqs. �6�
and �7� and the definitions of fL

eq and f̄ eq, we obtain the
moments

� f̄ eqM��0�dc = ��, � f̄ eqM�r�dc = 0 for r = 1,2, . . . ,

�A7�

� f̄ eqM��0�cdc = �0u, � f̄ eqM�r�cdc = 0 ,

for

r = 1,2, . . . , �A8�

� f̄ eqM��0�ccdc = �pI , �A9�

where �p=��RT0 and I is the unity tensor of second rank.

Multiplying both the sides of Eq. �A5� by � f̄ eq , f̄ eqc�, in-
tegrating over the entire particle velocity space, and using
Eqs. �A7�–�A9�, we obtain the macroscopic mass and mo-
mentum conservation equations to linear order in Kn, respec-
tively,

�1

�t
�� +

�1

�r
· ��0u� = 0, �A10�

�1

�t
��0u� +

�1

�r
�p = 0. �A11�

From Eqs. �A5� and �A10�, we also have

� f̄ eqM�1�ccdc = − ��0RT0� �1

�r
u + 	 �1

�r
u
T� , �A12�

where the superscript T denotes the transpose.
Similarly, we derive the macroscopic mass and momen-

tum conservation equations to second order in Kn, based on
Eq. �A6�. Using Eq. �A12�, we obtain

�2

�t
�� = 0, �A13�

�2

�t
��0u� =

�1

�r
· ��� �1

�r
u + 	 �1

�r
u
T�� , �A14�

where the viscosity �=��0RT0.
Finally, combining Eqs. �A10� and �A11� with Eqs. �A13�

and �A14�, respectively, we obtain

�

�t
�� +

�

�r
· ��0u� = 0, �A15�

�

�t
��0u� = −

�

�r
�p +

�

�r
· ��� �

�r
u + 	 �

�r
u
T�� .

�A16�

Equations �A15� and �A16� clearly reduce to the incom-
pressible linearized Navier-Stokes equations in the incom-
pressible limit.

APPENDIX B: RECOVERING THE LINEARIZED NAVIER-
STOKES EQUATIONS IN THE FREQUENCY DOMAIN

FROM THE LINEARIZED LATTICE
BOLTZMANN BGK METHOD

Here, we derive the macroscopic governing equations
from the linear lattice Boltzmann BGK method using the

Chapman-Enskog procedure. We first expand ĥj�r+c j�� ,�
+��� in its Taylor series about r and �. Substituting the
resulting expansion into Eq. �28� gives

� ĥj

��
+ c j ·

� ĥj

�r
+

��

2
� �2ĥj

��2 + 2c j ·
�

�r
	 � ĥj

��

 + c jc j:

�

�r
	 � ĥj

�r

�

= −
ĥj

��
+

ĥj
eq

�
−

��

2
�2ĥj

eq. �B1�

Next, we present the multiscale expansions

ĥj = ĥj
�0� + Kn ĥj

�1� + Kn2 ĥj
�2� + ¯ , �B2�

�

��
= Kn

�1

��
+ Kn2 �2

��
, �B3�

� = Kn �1 + Kn2 �2, �B4�

and
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�

�r
= Kn

�1

�r
. �B5�

Using Eqs. �B2�–�B5�, we rewrite Eq. �B1� as a series of
equations at different orders in Kn,

Kn0: ĥj
�0� = ĥj

eq, �B6�

Kn1:
�1

��
ĥj

�0� + c j ·
�1

�r
ĥj

�0� = −
1

�
ĥj

�1� − i�1ĥj
�0�, �B7�

Kn2:
�2

��
ĥj

�0� +
�1

��
ĥj

�1� + c j ·
�1ĥj

�1�

�r

+
��

2
� �1

2ĥj
�0�

��2 + 2c j ·
�1

�r
	 �1ĥj

�0�

��

 + c jc j:

�1

�r
	 �1ĥj

�0�

�r

�

= −
1

�
ĥj

�2� − i�1ĥj
�1� − i�2ĥj

�0� −
��

2
�1

2ĥj
�eq�. �B8�

Note that based on Eqs. �B6� and �B7�, Eq. �B8� can be
further reduced to

Kn2:
�2

��
ĥj

�0� + 	1 −
��

2�

	 �1

��
ĥj

�1� + c j ·
�1ĥj

�1�

�r



−
��

2
i�1	 �1

��
ĥj

�0� + c j ·
�1ĥj

�0�

�r



= −
1

�
ĥj

�2� − i�1ĥj
�1� − i�2ĥj

�0� −
��

2
�1

2ĥj
�0�. �B9�

On the other hand, based on Eqs. �B6�, �25�, and �26�, we

have the following quadratures for different orders of ĥj
�n�:

�
j

�0wjĥj
�0� = ��̂, �

j

�0wjĥj
�n� = 0, for �n � 0� ,

�B10�

�
j

wjĥj
�0�c j = û, �

j

wjĥj
�n�c j = 0, for �n � 0� ,

�B11�

�
j

�0wjĥj
�0�c jc j = �p̂I . �B12�

By multiplying both the sides of Eq. �B7� by �wj�0 , �0wjc j�
and summing over all discrete particle velocity space, we
obtain the mass and momentum equations to linear order in
Kn,

�1

��
���̂� +

�1

�r
· ��0û� = − i�1��̂ , �B13�

�1��0û�
��

= −
�1

�r
�p̂ − i�1�0û . �B14�

Further, we also have

�
j

�0wjĥj
�1�c jc j = �− ���0cs

2� �1

�r
û + 	 �1

�r
û
T� . �B15�

Similarly, we multiply both the sides of Eq. �B9� by
�wj�0 , �0wjc j� and sum over all discrete particle velocity
spaces. Using Eqs. �B10�–�B15�, we obtain the mass and
momentum equations to order Kn2,

�2

��
���̂� = − i�2��̂ , �B16�

�2

��
��0û� = − i�2�0û + �	 �1

�r
· � �1

�r
û + 	 �1

�r
û
T�
 ,

�B17�

with viscosity �=���0cs
2�1 /�−1 /2�.

Combining Eqs. �B13� and �B14� with Eqs. �B16� and
�B17�, respectively, we obtain

�

��
���̂� +

�

�r
· ��0û� = − i���̂ , �B18�

���0û�
��

= −
�

�r
�p̂ + �	 �

�r
· � �

�r
û + 	 �

�r
û
T�
 − i��0û .

�B19�

Clearly, in the steady-state case, Eqs. �B18� and �B19�
reduce to the linearized Navier-Stokes equations in the fre-
quency domain

i���̂ +
�

�r
· ��0û� = 0, �B20�

i��0û = −
�

�r
�p̂ + �	 �

�r
· � �

�r
û + 	 �

�r
û
T�
 . �B21�

This is the required result and establishes that the pro-
posed LB method is formally equivalent to the linearized
Navier-Stokes equations.

APPENDIX C: ANALYTICAL SOLUTIONS OF CLASSICAL
OSCILLATORY FLOW PROBLEMS

We now present analytical solutions to the classical flow
problems studied in Sec. IV A. Since we are primarily inter-
ested in the frequency response of flows to the applied oscil-
latory motion, analytical solutions are given in the frequency
domain.

1. One-dimensional oscillatory Couette flow

We first consider one-dimensional oscillatory Couette
flow �Fig. 1�a��, where the bottom plate is oscillating and the
top plate is stationary. As presented in Sec. IV A 1, such a
flow is driven by the bottom oscillatory plate and described
by the linearized Navier-Stokes equations. The fluid velocity
can be solved analytically to obtain

YONG SHI AND JOHN E. SADER PHYSICAL REVIEW E 81, 036706 �2010�

036706-12



Û = a1e�i
Y + a2e−�i
Y , �C1�

where Y is the dimensionless coordinate in the direction nor-

mal to the plate, scaled by L, and Û is the scaled streamwise
velocity �parallel to the plate� in the frequency domain,
scaled by u0, The coefficients in Eq. �C1� are

a1 = − e−�i
/�2 sinh��i
�� , �C2�

a2 = e�i
/�2 sinh��i
�� , �C3�

where the Stokes parameter 
=�L2 /�. The scaled shear
stress on the bottom oscillating plate can also be evaluated

F̂ = −
�i
 coth��i
�



, �C4�

where it is scaled by �u0L�.

2. Two-dimensional flow around an oscillating cylinder

The flow generated by an oscillating circular cylinder
�Fig. 1�b�� can be described by the linearized Navier-Stokes
equations in cylindrical coordinates when the spatial ampli-
tude of the oscillation is be much smaller than the character-
istic length of flow �the radius of the cylinder a�. The corre-
sponding analytical solutions are �50�

v̂r =
A cos �

r2 +
B cos �

r
K1�r�i
� , �C5�

v̂� =
A sin �

r2 − B sin ��i
K1��r�i
� , �C6�

where � is the azimuthal coordinate, r is the radial distance
scaled by a, the Stokes parameter 
=�a2 /�, and v̂r and v̂�

are the dimensionless velocity components in the radial and
circumferential directions in the frequency domain, respec-
tively. Both of these velocities are scaled by u0. In Eqs. �C5�
and �C6�, the coefficients A and B are

A = 1 + 2K1��i
�/��i
K0��i
�� , �C7�

B = − 2/��i
K0��i
�� , �C8�

where K0�z� and K1�z� are modified Bessel functions of the
third kind �64�. In this flow, the scaled force exerted by the
fluid on the surface of the cylinder is

F̂ = − �i�1 − 4K1��i
�/�K1��i
� + �i
K1���i
��� ,

�C9�

where F̂ is the force on per unit length of the cylinder de-
fined in the frequency domain, scaled by �a2u0�.

3. Three-dimensional flow around an oscillating sphere

Three-dimensional flow around a sphere of radius a oscil-
lating horizontally with a velocity u=u0ei�t is now analyzed
�see Fig. 1�c��. When the spatial amplitude of the oscillation
is very small in comparison to a, the analytical solution for
the fluid velocity is

v̂r =
f� cos � cos � cot �

r
−

f� cos � sin �

r
−

f� cos �

r sin �
,

�C10�

v̂� = −
f� cos � cos �

r
− f� cos � cos� , �C11�

v̂� =
f� sin �

r
+ f� sin � , �C12�

where r, �, and � denote the radial distance and polar and
azimuthal angles in the spherical coordinates, respectively,
v̂r, v̂�, and v̂� are the corresponding velocity components in
these directions defined in the frequency domain. Note that
in Eqs. �C10�–�C12�, r is scaled by a, while �v̂r, v̂�, v̂�� are
scaled by u0. The functions f��r� and f��r� are given by

f��r� =
Ae−r�i
�r + 1/�i
� + B

r2 , �C13�

f��r� = −
A�i
e−r�i
 + 2f��r�

r
, �C14�

where 
=�a2 /� and

A = 3e�i
/�2�i
� , �C15�

B = −
1

2
�1 + 3/�i
 + 3/�i
�� . �C16�

The scaled force on the sphere exerted by the fluid on the
sphere is �50�

F̂ = −
4�

3
i�k − ik�� , �C17�

which has been scaled by �a3u0�

k =
1

2
+

9

4
�2



, �C18�

k� =
9

4
��2



+

2



� . �C19�
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