UV Star Formation Rates in the Local Universe
- Creators
- Salim, Samir
- Rich, R. Michael
- Charlot, Stéphane
- Brinchmann, Jarle
- Johnson, Benjamin D.
- Schiminovich, David
- Seibert, Mark
- Mallery, Ryan
- Heckman, Timothy M.
- Forster, Karl
- Friedman, Peter G.
- Martin, D. Christopher
- Morrissey, Patrick
- Neff, Susan G.
- Small, Todd
- Wyder, Ted K.
- Bianchi, Luciana
- Donas, José
- Lee, Young-Wook
- Madore, Barry F.
- Milliard, Bruno
- Szalay, Alex S.
- Welsh, Barry Y.
- Yi, Sukyoung K.
Abstract
We measure star formation rates (SFRs) of ≈50,000 optically selected galaxies in the local universe (z ≈ 0.1)—from gas-rich dwarfs to massive ellipticals. We obtain dust-corrected SFRs by fitting the GALEX (ultraviolet) and SDSS photometry to a library of dust-attenuated population synthesis models. For star-forming galaxies, our UV-based SFRs compare remarkably well with those from SDSS-measured emission lines (Hα). Deviations from perfect agreement are shown to be due to differences in the dust attenuation estimates. In contrast to Hα measurements, UV provides reliable SFRs for galaxies with weak Hα, and where Hα is contaminated with AGN emission (1/2 of the sample). Using full-SED SFRs, we calibrate a simple prescription that uses GALEX far- and near-UV magnitudes to produce dust-corrected SFRs for normal star-forming galaxies. The specific SFR is considered as a function of stellar mass for (1) star-forming galaxies with no AGNs, (2) those hosting an AGN, and (3) galaxies without Hα emission. We find that the three have distinct star formation histories, with AGNs lying intermediate between the star-forming and the quiescent galaxies. Star-forming galaxies without an AGN lie on a relatively narrow linear sequence. Remarkably, galaxies hosting a strong AGN appear to represent the massive continuation of this sequence. On the other hand, weak AGNs, while also massive, have lower SFRs, sometimes extending to the realm of quiescent galaxies. We propose an evolutionary sequence for massive galaxies that smoothly connects normal star-forming galaxies to quiescent galaxies via strong and weak AGNs. We confirm that some galaxies with no Hα show signs of star formation in the UV. We derive a cosmic star formation density at z = 0.1 with significantly smaller total error than previous measurements.
Additional Information
© 2007 American Astronomical Society. Print publication: Issue 2 (2007 December); received 2006 December 22; accepted for publication 2007 April 25. We thank Janice C. Lee for insightful comments and helpful discussions. We thank the referee for numerous valuable suggestions. We also thank Alessandro Boselli and Michael Blanton. GALEX (Galaxy Evolution Explorer) is a NASA Small Explorer, launched in 2003 April. We gratefully acknowledge NASA's support for construction, operation, and science analysis for the GALEX mission, developed in cooperation with the Centre National d'Etudes Spatiales of France and the Korean Ministry of Science and Technology. Funding for the Sloan Digital Sky Survey (SDSS) and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, and theMax Planck Society, and the Higher Education Funding Council for England. This research has made use of NASA's Astrophysics Data System. Facilities: GALEX, SloanAttached Files
Published - SALapjss07.pdf
Files
Name | Size | Download all |
---|---|---|
md5:30776a1ccb8358dc60cd0f45983326be
|
1.4 MB | Preview Download |
Additional details
- Eprint ID
- 17716
- Resolver ID
- CaltechAUTHORS:20100310-103408116
- Created
-
2010-03-10Created from EPrint's datestamp field
- Updated
-
2021-11-08Created from EPrint's last_modified field
- Caltech groups
- Space Radiation Laboratory, Space Astrophysics Laboratory, Infrared Processing and Analysis Center (IPAC)