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A GENERALIZED REFLECTION-TRANSMISSION COEFFICIENT 
MATRIX AND DISCRETE WAVENUMBER METHOD FOR SYNTHETIC 

SEISMOGRAMS 

BY Z. X. YAO AND D. G. HARKRIDER 

ABSTRACT 

Expressions for displacements on the surface of a layered half-space due to 
point force are given in terms of generalized reflection and transmission coeffi­
cient matrices (Kennett, 1980) and the discrete wavenumber summation method 
(Bouchon, 1981). The Bouchon method with complex frequencies yields accurate 
near-field dynamic and static solutions. 

The algorithm is extended to include simultaneous evaluation of multiple 
sources at different depths. This feature is the same as in Olson's finite element 
discrete Fourier Bessel code (DWFE) (Olson, 1982). 

As numerical examples, we calculate some layered half-space problems. The 
results agree with synthetics generated with the Cagniard-de Hoop technique, P· 
SV modes, and DWFE codes. For a 10-layered crust upper mantle model with a 
bandwidth of 0 to 10 Hz, this technique requires one-tenth the time of the DWFE 
calculation. In the presence of velocity gradients, where finer layering is required, 
the DWFE code is more efficient. 

INTRODUCTION 

Economic near-field solutions of a point source in a layered half-space are 
important in the fields of seismology and earthquake engineering. Recently, many 
approaches have been proposed to evaluate the layered half-space response. For 
example, there are generalized ray theory (Heimberger, 1968; Heimberger and 
Harkrider, 1978), reflectivity method (Fuchs and Muller, 1971), reflection and 
transmission coefficients matrix method (Kennett, 1974, 198Q; Apsel, 1979; Kennett 
and Kerry, 1980), discrete wavenumber method (Bouchon, 1981), and discrete 
wavenumbers-finite element method (DWFE) (Olson, 1982), among others. 

In this paper, a generalized reflection-transmission matrix and discrete wavenum­
ber method for near-field synthetic seismograms is proposed. This approach is based 
on Kennett's reflection and transmission matrix method for the wavenumber 
integrands (1974, 1981) and the discrete wavenumber summation method (Bouchon, 
1981) for the wavenumber integration. The reflection-transmission matrix is an 
effective procedure to evaluate the wavenumber integrand. Phase-delayed reflection 
and transmission coefficients are used which are slightly different than Kennett's 
expressions (1980). The algorithm includes simultaneous evaluation of the Green's 
functions of multiple sources at different depths. 

INTEGRAND EXPRESSIONS 

The displacement integrands on the free surface for buried source problems given 
by Kennett and Kerry (1979) in equation (5.22) are 

The notation used is that of Kennett and Kerry (1979). Slightly different relations 
are used for the reflection and transmission coefficients, which except for differences 
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in normalization, are given by their equation (4.26). The relations and additional 
definitions are found in the Appendix. 

R is the reflection coefficient matrix on the free surface, (Mu + MvR) is the 
receiver function matrix (Heimberger, 1974). 

where 

with 

and 

k = wavenumber, 

a = P-wave velocity, 

{3 = S-wave velocity, 

11 = rigidity, 

k., = w/a, 

kr1 = w/{3, 

a= ../k2 
- ka2

, Re a ~ 0, 

b = ../k2 
- kl, Re b ~ 0, 

(2) 

(3) 

(4) 

(5) 

Rv8
L is the generalized relection coefficient matrix for the P-SV waves between 

z = z/ and z = zL+ (Figure 1). Using the relations for reflection and transmission 
coefficients given by Kennett (1974, 1980), and Kennett and Kerry (1979), we can 
calculate Rv8

L from 

(6) 

with 

(7) 

where the submatrices correspond to the normalized reflection and transmission 
coefficients matrices given in the Appendix. RnRs and TuRs are the generalized 
reflection and transmission coefficient between z = o+ and z = z,-. RJ'8 is the 
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generalized reflection coefficient between z = 0 and z = z. + and is calculated by the 
relation 

(8) 

For SH waves, the displacement integrand on the free surface is as follows 

with the subscript denoting reflection and transmission coefficients appropriate for 
SHwaves. 

o<l> and ox represent the source's terms which have been given by Langston and 
Heimberger (1975). 

For many problems, a fault is treated as a summation of subfaults which can be 
considered point sources. Thus, there is need for rapid construction of Green's 
functions for several different source depths. Since the terms necessary for a given 
source depth calculations are obtained by the iterative relations of Kennett, we in 
effect calculate similar source depth terms for every interface above and below the 
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z2 3 
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L+l 

z 
FIG. 1. Source and structure geometry. 

source plane. The only additional effort for obtaining as many source depth Green's 
function as there are interfaces is in saving the intermediate values. This feature is 
similar to codes based on reciprocity, i.e., surface source and receiver at depth, such 
as DWFE (Olson, 1982) and PROSE (Apsel, 1979). 

INTEGRAL SOLUTIONS 

For a buried double couple, the free surface displacements are 

A1 d [ 2 ] w(t) = -4 ° --d D(t)* L Am(A, o, 'P)wm(t) 
1rp t m~o 

Mo d [. ~ ] q(t) = -
4 

--d D(t)* .f.. Am(;\, 0, 'P}qm(t) 
1rp t m~o 

Mo d [ · ~ ] v(t) = -
4 

--d D(t)* L.. Am+3(,\, o, w)vm(t) 
1rp t m~l 

(10) 
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AoC\, o, lf') = ~ sin A sin 2b 

A 1(A, o, lf') =cos lf' cos A coso - sin lf' sin A cos 2b 

A 2 (A, o, lf') = sin 2 lf' cos A sin o + ! cos 2 lf' sin A sin 2b 

A 4 (A, o, lf') = -cos lf' sin A cos 2 o - sin lf' cos A cos o 
A 5 (A, o, lf') = cos 2 lf' cos A sin o - ! sin 2 lf' sin A sin 2 b. (11) 

lf' = azimuth from the fault strike, 

A = rake angle, 

o = dip angle, 

Mo = seismic moment, 

D = far-field time history. 

p =density, and Wm(t), Um(t), and Vm(t) are step responses which correspond to 
the vertical, radical, and tangential displacements of three fundamental shear 
dislocations (m = 2, strike-slip fault; m = 1, dip-slip fault; m = 0, isotropic 
component of the 45 o dip-slip fault). In the frequency domain they are as follows 

Wm(w) = Joc WmJm(kr)k dk 
() 

qm(w) = loc [ UmJm'(kr)- Vm: Jm(kr)]k dk 

Vm(w) = loc [ Um: Jm(kr)- VmJm'(kr)]k dk (12) 

where 

Jm'(x) = ~; 

(~:) = ~4 (Mu + MnR)(I- RuR8Jl)- 1TuR8(l- Rn8 LRJ8
)-

1 

(13) 

from (1) 
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from (9), with 

Po = (2ka2 
- 3k2)/a SVo = -f3k SHo = 0 

P1 = f2k sv1 = (2k 2
- k/)/b SH1 = -fk//k (15) 

and 

P 2 = k 2/a SV2 = -fk SH2 = k//b 

f -1 for - superscript 
f = ·1 1 for + superscript. 

For an explosion type source, 

d • 
w(t) = dt ['lt(t)*w0(t)] 

d • 
q(t) = dt ['lt(t)*qo(t)] (16) 

where w0 and q0 are given as before from (12) and all the source coefficients are 
zero except 

and 4- ( t) is the reduced velocity potential of the explosion. 

WAVENUMBER INTEGRATION 

The Hankel transform-type integral representation of the displacements in the 
frequency domain involves quantities of the form 

lm = l"' F(k, w)Jm(kr)k dk m = 0, 1, 2. (17) 

The kernel F(k, w) depends upon wavenumber, frequency source depth, and layer 
properties which we evaluate with generalized reflection and transmission coeffi­
cient matrices. Now, it is important to look for an efficient numerical integration 
scheme to handle the wavenumber integration. 

Bouchon (1981) has demonstrated that the wavenumber integration (17) can be 
evaluated by a discrete wavenumber summation 

"' 7r 
lm = L j~O fjkjF(kj,w)Jm(kjr) (18) 

f _ {2 for j =F 0 
j- 1 for j = 0 

kj=21rj/L 

if relations r < L/2 and [(L- r)2 + z2 j112 > o:t are satisfied. To avoid the influence 
of the singularities of the integrand F (k, w ), and the discretization, he gave to the 
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frequency an imaginary part, the effect of which is later removed from the time 
domain solution. In the numerical examples, the imaginary part of the frequency is 
the same as that given in Bouchon (1979). A discussion of its dependence on the 
time window and of the removal of its effect on the solution after Fourier transfor­
mation can be found in that paper. 

TABLE 1 

LAYER PARAMETERS FOR THE HALF-SPACE MODEL 

h 
(km) 

00 

(km/sec) 

3.000 

/3 
(kmjsec) 

1.900 

p 

(gm/cm3
) 

1.900 

This discretization scheme is simpler than that used by the DWFE method 
(Olson, 1982). In the DWFE method, the discrete wavenumbers are determined by 
the roots of J 0 ( kL) and J 1 ( kL). An advantage of the Bouchon method over Kennett's 
wavenumber integration is that it is straightforward to obtain the near-field static 
solutions. The static contribution comes from zero frequency and is treated the 

Vertical 

Radical 

0 5 sec 
f---------1 

Bouchon 

Kennett- Bouchon ( K. B ) 

Bouch on 

K.B. 

FIG. 2. Vertical and radial velocity record comparisons between an analytic and a three layer 
reflection-transmission coefficient calculation of an explosion in an homogeneous half-space. 

same in Bouchon's technique as any other complex frequency. On the other hand, 
the slowness method requires special handling at zero frequency. The combination 
of Kennett's integrand algorithm with Bouchon's discrete wavenumber evaluation 
will be referred to as the Kennett-Bouchon (KB) algorithm. 

The k loop is controlled by a previously specified precision e. If the ratio of the 
terms 

is less than e, the k loop stops. This condition must be met for every calculation in 
the loop. Since, at least one of the calculations will involve a Bessel function of 
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order one different than the others, the loop will not be terminated by a zero of the 
Bessel functions. As one might expect, the higher the frequency the larger the 
number of k terms required for convergence. 

TABLE 2 

LAYER PARAMETERS FOR THE CRUST HALF-SPACE 

MODEL 

h 
(km) 

00 

(km/sec) 

6.200 

{3 

(km/sec) 

3.500 

NUMERICAL EXAMPLES 

p 

(gm/cm3
) 

2.700 

As a first numerical example, we calculate the vertical and radial velocity field at 
the free surface due to an explosion source in a homogeneous half-space (Table 1). 
Taking r = 10 km, h = 1.2 km, M = 0.05 sec, and L = 100 km, we obtain the 

m=O (45DS) m=l (OS) m=2 (SS) 

Vertical j 
~ I~ 

Cagniard- de Hoop 

K B 

Radial ~ *= Cagmard -de Hoop 

K B. 

Tangential -*= Cagniard-deHoop 

K.B 

0 5 sec 
>--------< 

FIG. 3. Vertical, radial, and tangential displacement comparisons between Cagniard-de Hoop and the 
KB techni.ques for a dislocation in an homogeneous half-spaces. The records are for the three fundamental 
fault orientations at a range of 16 km. 

velocities shown at the bottom of each pair in Figure 2. The calculation used the 
reflection and transmission coefficients generated by a three layer model of the 
homogeneous half-space. The upper trace for each velocity component of Figure 2 
is calculated from the explicit discrete wavenumber expressions of Bouchon (1981). 
The differences of amplitude are only in the third decimal place. 

In the second example, we calculate the displacements of a dislocation source in 
another half-space model (Table 2) and compare with ray theory using the Cagniard­
de Hoop technique. These are shown in Figures 3 and 4; the top traces of each pair 
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m=O (4505) m= I (OS) m = 2 (SS) 

Vertical 
Cagniard -de Hoop 

K. B. 

, 
Cagniard -de Hoop 

Radial K. B 

Tangential 
Cagniard- de Hoop 

K. B 

0 5sec 

FIG. 4. Same as Figure 3, except the range is 32 km. 

m=0(450S) m=l (OS) m=2(SS) 

Vertical ~ ~ ·~ 
OWFE 

K. B. 

* * k OWFE 

Radial K. B. 

Tangent1al 
~ ty *- OWFE 

~ K B. 

0 5sec 

FIG. 5. Vertical, radial, and tangential displacement comparisons between the DWFE and KB 
techniques for a dislocation in a one layer over a half-space model. The records are for the three 
fundamental fault orientations at a range of 10 km. The source is in the upper layer at a depth of 2.5 
km. 
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m =0(45 OS) m=l (DS) 

Vertical ~ ~ 
Radial -k-
Tangential 

0 5 sec 
>----------< 

m=2 (SS) 

lK-
~ 

DWFE 
K.B 

DWFE 

K.B. 

DWFE 

K. B. 

FIG. 6. Same as Figure 5, ~xcept the source is below the layer at a depth of 7 km. 
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is the displacement obtained with rays. The far-field source time function is a 
triangle with one second width, focal depth 8 km, the epicenter ranges are 16 km 
(Figure 3) and 32 km (Figure 4), respectively. The bottom traces are from the KB 
algorithm. The differences are very small and come mostly from the difference in 
time increments used in the two methods. In the generalized ray theory, we use t:J.t 
= 0.03 sec, in the other !::J.t = 0.1 sec. 

For the layered half-space problem, we use solutions obtained by the DWFE 
method to check the KB result. Dislocation source displacements for a one layer 
half-space, with the source in the layer, h = 2.5 km, r = 10 are shown in Figure 5. 

TABLE 3 

LAYER PARAMETERS FOR THE ONE LAYER MODEL 

h 
(km) 

5.0 

(km/sec) 

3.500 
5.500 

/3 
(km/sec) 

2.000 
3.300 

p 

(gm/cm3) 

2.400 
2.700 

In Figure 6, the source is in the underlying medium, h = 7.0 km, r = 10 km. The 
layer model parameters are given in Table 3. The results of the two methods again 
show good agreement. 

In Figure 7, we show a comparison between the KB and DWFE algorithms for 
an explosion at a depth of 1.2 km in an eight-layer model (Table 4) of the Amchitka 
crust over a mantle half-space. This structure was used to model the near-field 
records from the nuclear test event Milrow (Burdick, 1983). The synthetics are the 
free surface vertical particle velocities at ranges of 9.8 and 11.5 km. The nominal 
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Vertical Velocity 

D=9.8KM 

DWFE 

K. B. 

D= 11.5KM 

DWFE 

~KB 
0 5 sec 

FIG. 7. Vertical velocity record comparisons between the DWFE and KB techniques for an explosion 
in the layered Millrow model. The Nyquist frequency is 5Hz. 

TABLE 4 

LAYER PARAMETERS FOR THE MILROW MODEL 

h {j p 

(km) (km/sec) (km/sec) (gm/cm3) 

0.2 3.400 1.700 2.300 
0.6 3.700 1.900 2.400 
0.5 4.200 2.100 2.400 
0.5 4.600 2.300 2.500 
0.7 4.900 2.800 2.600 
0.5 5.100 2.900 2.700 
6.0 5.900 3.300 2.700 

28.0 6.900 4.000 2.800 
00 8.200 4.700 3.200 
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maximum frequency in each synthetic is 5 Hz although the DWFE record is 
Butterworth filtered down to 5 Hz and the KB spectral calculation is truncated or 
terminated at 5 Hz. Because of this, the frequency content is slightly greater in the 
KB calculation. This difference can be seen in the relative excitation between the 
body waves and the Rayleigh wave pulse at the end of each synthetic. Considering 
their differences at high frequency, the time domain agreement is excellent. 

For this model, 5 Hz is not sufficient to resolve pP from the direct P arrivals. 

RAYS PLUS RAYLEIGH MODE (R +M) 
VS. KENNETT- BOUCHON (K B ) 

VERTICAL 

~ 
D = 10 km 

R. +M 

* ·~ K.B +t-
D= Bkm D= 12 km 

* 
R+M. ff 

-Hv K B 

* 5sec 
f---------l 

FIG. 8. Vertical velocity record. comparisons between spliced ray-mode synthetics and the KB tech­
nique for an explosion in the layered Milrow model. The Nyquist frequency is 10Hz. 

Increasing the maximum frequency to 10 Hz, the pP arrival is seen in the double­
peaked overswing following the direct P arrival at distances of 10 and 12 km on the 
vertical velocity KB record (Figure 8) and the radial velocity KB record (Figure 9). 
This identification was verified with the spliced generalized ray and modal synthet­
ics appearing above the KB synthetics (Burdick, 1983) in Figures 8 and 9. The 
generalized ray sum (Heimberger, 1968) was restricted to direct and first multiple 
compressional waves. The only mode (Harkrider, 1964, 1970) used was the funda­
mental Rayleigh mode. With this structure, the 10-Hz DWFE calculation takes 10 
times longer than the KB calculation. 
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RAYS PLUS RAYLEIGH MODE (R+M) 
vs. KENNETT- BOUCHON (K B) 

RADIAL 

D=8km D= 12 km 

fv R+M. # 
fr K. B. -t+ 

5 sec 
1---------t 

FIG. 9. Same as Figure 8, except the velocity records are radial. 

CONCLUSIONS 

We have presented a generalized reflection-transmission coefficient matrix and 
discrete wavenumber method for synthetic seismograms. For a dislocation source, 
the displacements on the free surface are represented as a linear combination of 
three fundamental shear dislocations. The wavenumber integrands are calculated 
by reflection and transmission coefficients, and the wavenumbers integration by 
discrete wavenumber summation method with complex frequencies which can yield 
accurate near-field static solutions. 

Vertical integration schemes used in the near-field have been either spectral 
(Apsel, 1979; Bouchon, 1981) as in the regional techniques or finite-element (Olson, 
1982) and finite-difference (Alekseev and Mikhailenko, 1980) in the time domain. 
The finite element schemes have the disadvantage in that the vertical step size is 
determined by the desired maximum frequency content, which in turn determines 
the time step required for stability. This time step is usually many times smaller 
than the time increment associated with the maximum frequency. 

If portions of the vertical velocity and density profile are homogeneous, spectral 
techniques propagate across the region in one vertical step while the finite element­
difference methods require many. On the other hand, in the vicinity of moderate 
vertical gradients, the step size or layer thickness of the spectral techniques will be 
at least as small as the finite-element difference scheme, and the number of 
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numerical operations are considerably more. In this situation, spectral techniques, 
in particular the KB method, are not as efficient as the time domain techniques. 
Convergence as the number of wavenumbers is increased is more straightforward 
using the spectral schemes and, as one would expect, the number of wavenumbers 
for a given convergence depends on the frequency being evaluated with fewer 
wavenumbers at the lower frequencies. 

For the layered half-space problems presented, our results agree very well with 
synthetics generated by the Cagniard-de Hoop technique, P-S V modes, and the 
DWFE codes. For the 10-layered crust upper mantle model with a bandwidth of 0 
to 10 Hz, this technique required only one-tenth the time of the DWFE calculation. 
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APPENDIX 

The relations for phase normalized reflection and transmission coefficients are 
as follows 

e-adt~p 

e-bdt~p 

e-adt~s 

e-bdt~s 

e-adt}tp 
e-adt~p 

e-bdtY,s 
e-bdtfi., 

where 

R
- _ rpp rps (

-/) -IJ) 
n- -IJ -n rsp rss 

with similar matrix indexing for Ru, Tn, and Tn. 
For the interface reflection and transmission coefficients, say from layer 1 to 

layer 2, we have 

and 

d~P = [k 2a1b1a2b2(~2 - ~1) 2 - k 2(~1n1 - ~znz) 2 - a1b1(~znz- k 2~J) 2 

+ a2b2(~1n1- k 2~z) 2 - :i ~~~2k~,k~2(a1b2- b1az)l/.::l1 

rflP = -2kb1[(~znz- k 2~1)(~1n1- ~znz)- azbz(~z- ~1)(~1n1- k 2~z)]/.::l1 

dis= [k2a1b1a2bz(~2- ~1)2 - k2 (~1n1 - ~znz) 2 - a1b1(~znz- k2~1) 2 

+ azbA~1n1 - k 2~z) 2 + :i ~1~2k~,k~2(a1bz- b1az)]j.::l1 

t~l' = ~1k~,a1[(~znz- k2~db1 + (~1n1- k 2~z)bz]/.::l1 

tf/p = ~1k~,b1[(~z- ~1)a1b2 + (~1n1- ~znz)]/.::l1 

t~s = ~1k~,aJ[(~z- ~1)b1a2 + (~1n1- ~2n2)]j.::l1 

tf!s = ~1k~,b1[(~2n2- k 2~1)a1 + (~1n1- k 2~z)az]/.::l1 

.::l1 = [k 2a1b1a2bz(~z- ~1) 2 + k 2(~1n1 - ~zn2) 2 - a1b1(~2n2- k 2~J2 

- azb2(~1n1 - k 2~z)2 - :i ~1~2k~,k~2 (a1b2 + b1az)J 

where .::l; is the Stoneley wave equation for the interface between layers i and i + 1. 
For Ru and Tu we have 



TRANSMISSION COEFFICIENT MATRIX AND WAVENUMBER METHOD 1699 

r]fp = [k 2aibiazbz(~-tz- ~-ti) 2 - k 2 (~-tini - ~-tznz) 2 + aibi(IL2n2- k 2~-ti) 2 

-azbz(ILIQI- k 2~-tz) 2 + :l~-tiiLzk~,k~2(aibz- biaz)l/Lli 

r}fp = 2kbA(~-tini- k 2~-tzH~-tznz- ~-tin!)- a!b!(IL!- ~-t2H112nz- k 2~-tJ)]/Lll 

u az u rps =- rsp 
b2 

d/.., = [k 2aibiazbz(~-tz - ILI) 2 
- k 2(~-tini - ~-tznz) 2 + aibi(~-tznz - k 2~-td 2 

-azbz(ILIQI k 2~-tz) 2 - i ILIILzk~,k~2(aibz- biaz)l/Lli 

For SHwaves 

n IL!b! - ~-tzbz 
r.,H = 

. Ill b1 + 112b2 

D 2~-t!b! tsH = _ _.:___.:.____:___ 
~-tibi + ~-tzbz 

u ~-tzbz- IL!b! 
rsH = 

ILibi + ~-tzbz 

u 2~-t2b2 t <;H = _ _.:___ __ 
. IL!b! + 112b2 


