
Optimal Content Delivery with Network Coding

Derek Leong, Tracey Ho
Department of Electrical Engineering

California Institute of Technology

Pasadena, California 91125

Email: {derekleong, tho}@caltech.edu

Rebecca Cathey
Advanced Information Technologies

BAE Systems

Arlington, Virginia 22203

Email: rebecca.cathey@baesystems.com

Abstract—We present a unified linear program formulation for
optimal content delivery in content delivery networks (CDNs),
taking into account various costs and constraints associated with
content dissemination from the origin server to storage nodes,
data storage, and the eventual fetching of content from storage
nodes by end users. Our formulation can be used to achieve
a variety of performance goals and system behavior, including
the bounding of fetch delay, load balancing, and robustness
against node and arc failures. Simulation results suggest that
our formulation performs significantly better than the traditional
minimum k-median formulation for the delivery of multiple
content, even under modest circumstances (small network, few
objects, low storage budget, low dissemination costs).

Index Terms—content delivery network (CDN), network cod-
ing, subgraph selection, placement problem

I. INTRODUCTION

Content delivery networks (CDNs) are designed to improve

end user experience, which is commonly measured by the

availability of content and the cost incurred in accessing it.

Content replication is the de facto strategy, with much research

on related subproblems such as mirror or cache placement [1],

[2], [3], and the end user selection of mirror sites [4], [5],

[6]. In this work we investigate the application of network

coding in CDNs. By allowing content to be algebraically coded

and split, network coding can improve the cost-performance

tradeoffs. It also admits a unified linear program formulation

that can optimize performance for various costs and constraints

associated with content dissemination from the origin server

to storage nodes, data storage, and the eventual fetching of

content from storage nodes by end users. Our work extends

the formulation presented in [7] to address additional issues,

including bounding of fetch delay and robustness against

node/arc failures. We also investigate the multiple content

delivery problem, and compare the performance of our for-

mulation and the traditional minimum k-median formulation

through simulation experiments.

II. BACKGROUND AND RELATED WORK

CDNs have been around since the late 1990s [8]; today

they play an integral role in many businesses on the Internet.

Industry leader Akamai reports that it serves 75 of the top 100

This material is based upon work under a subcontract #069153 issued
by BAE Systems National Security Solutions, Inc. and supported by the
Defense Advanced Research Projects Agency (DARPA) and the Space and
Naval Warfare System Center (SPAWARSYSCEN), San Diego under Contract
No. N66001-08-C-2013. Approved for Public Release, Distribution Unlimited.

U.S. online retail companies, as well as leading media com-

panies globally [9]. Content replication has become the basis

of most work on CDNs. We distinguish between two forms

of content replication — caching and mirroring. Caching
involves the passive replication and storage of content flowing

through a node. Proxy caches and reverse proxy caches are

often deployed by end users (e.g. residential ISPs) and origin

servers (e.g. content providers), respectively, to reduce delay

and bandwidth usage. We do not address caching in this paper,

but note that it can be applied on top of our scheme to improve

performance. Mirroring involves the use of mirror sites, each

of which is a storage node that replicates the whole content at

the origin server. Such nodes are deployed across different

geographical locations to distribute the fetch load imposed

by end users. The origin server proactively disseminates or

“pushes” content to these nodes.

The placement problems in caching [3], [10], [11], [12], and

mirroring [1], [2], [13] are largely similar; they differ mainly

in the explicit consideration of content cacheability and cache

misses. Our work most closely resembles these problems,

whose variations have been studied in many fields [14], [15].

Past efforts were essentially based on complex combinatorial

optimization problems (e.g. minimum k-median problem [1])

which naturally motivated the development of heuristics to

approximate the optimal solution. The application of network

coding to CDNs alleviates the complexity issues in traditional

routing and content replication. For instance, a major problem

simplification arises from allowing storage nodes to store

partial network-coded content; they are not constrained to store

the whole content or object in its entirety as is the case in

[1], [2], [12], [13], etc. Moreover, our formulation handles

many important aspects of content delivery, including load

balancing, and robustness against node and arc failures. All

in all, network coding enables us to provide a simple yet

expressive practical formulation for optimal content delivery.

III. LINEAR PROGRAM FORMULATION

Consider a static network G(N, A) comprising nodes N and

lossless point-to-point arcs A. The formulation extends easily

to accommodate lossy hyperarcs as in [16]. For multicasting

from a source s ∈ N to a set of receivers T ⊆ N , the subgraph

selection problem for traditional network-coded multicasting

can be formulated as a linear program which is easily solved

in polynomial time. In the case of a CDN, we recast the

978-1-4244-2734-5/09/$25.00 ©2009 IEEE 414

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 12,2010 at 17:56:54 UTC from IEEE Xplore. Restrictions apply.

problem with two distinct stages in time — a dissemination

stage, and a fetch stage. Transmissions initiated or “pushed” by

the source (i.e. origin server, assumed to be collocated with a

node in the CDN) occur during the dissemination stage, while

transmissions requested or “pulled” by the receivers (i.e. end

users, assumed to be collocated with nodes in the CDN) occur

during the fetch stage. Fig. 1 illustrates this time-expanded

representation of the network. Storage in node memory is

modeled as a flow over time from the dissemination stage

to the fetch stage. We allow network coding during only

the dissemination stage; fetch flows for individual receivers

are unicast flows, and may occur independently and asyn-

chronously. As in [7], we can formulate this problem as a

linear program, with the objective of minimizing the expected

total cost of content delivery, which in general can include

dissemination, storage, and fetch costs.

Fig. 1. Time-expanded representation of the network G(N, A), over which
source s wishes to multicast to the set of receivers T = {t1, t2}. The dashed
arcs correspond to storage flows in the memory of the nodes.

A. Notation
s source node (i.e. origin server)
T set of receivers (i.e. end users)
R multicast rate

Ad set of arcs for the dissemination stage
As set of arcs for the storage flows in node memory

Af set of arcs for the fetch stage

Nd set of nodes for the dissemination stage

Nf set of nodes for the fetch stage

xa,t flow on arc a ∈ Ad ∪ As ∪ Af for receiver t ∈ T
xa shared flow on arc a ∈ Ad ∪ As, as a result of the flows

for all receivers t ∈ T
ca cost per unit flow on arc a ∈ Ad ∪ As

ca,t cost per unit flow on arc a ∈ Af for receiver t ∈ T
za capacity of arc a ∈ Ad ∪ As ∪ Af

αt expected number of requests for the content by
receiver t ∈ T

In a general setting, we may assume that all nodes in the

CDN are potential receivers, i.e. T = Nf . The costs per unit

flow should reflect the monetary costs of bandwidth usage

(ca, ca,t, a ∈ Ad ∪ Af) and data storage (ca, a ∈ As), taking

into account the relevant protocol overhead. We therefore

expect the cost per unit flow on an arc to be higher during the

fetch stage than the dissemination stage in practice, i.e. ca,t >
ca for the corresponding arcs in Af and Ad respectively. The

expected number of requests αt can be estimated for each

receiver t by considering usage patterns for the particular

content.

B. Basic Linear Program Formulation

minimize
∑

a∈Ad

xa ca +
∑
a∈As

xa ca +
∑

a∈Af

t∈T

αt xa,t ca,t (1)

subject to

xa ≥ xa,t , ∀ t ∈ T, a ∈ Ad ∪ As (2)

za ≥ xa,t ≥ 0 , ∀ t ∈ T, a ∈ Ad ∪ As ∪ Af (3)∑
{a|tail(a)=i}

xa,t −
∑

{a|head(a)=i}
xa,t =

{
R if i = s,

−R if i = t,

0 otherwise,

∀ t ∈ T, i ∈ Nd ∪ Nf (4)

The three summation terms in the objective function (1)

represent the expected total dissemination, storage, and fetch

costs, respectively. Although our formulation assumes inde-

pendent and asynchronous unicast flows during the fetch stage,

we note that in practice, simultaneous fetch flows on an arc

can be shared using network coding to reduce costs. Constraint

(2) ensures that the resultant shared flow on each arc is able

to support the required flow for each receiver on that arc,

(3) ensures that the flow on each arc is realizable within its

capacity, and (4) reflects the conservation of flow through each

node.

C. Modified Formulations

1) Potential Storage Nodes: To restrict the set of potential

storage nodes to some subset S ⊆ N , we can set za = 0 if

the node corresponding to a ∈ As is not in S. The problem

becomes analogous to that of constrained mirror placement in

[2].

2) Storage Budget Constraint: In addition to specifying the

storage capacity for individual nodes (i.e. za, a ∈ As), we

can also impose an aggregate storage budget over all nodes,

i.e.
∑

a∈As xa ≤ Zs, where Zs is the storage budget. This is

analogous to the constraint on the number of mirrors in [1],

[2], and the storage capacity budget in [13].

3) k-hop Fetch Constraint: For quality of service, we can

bound the delay incurred when accessing content by restricting

fetch flows to within the k-hop neighborhood of each receiver.

This can be done by adding the equality constraint xa,t = 0 for

each arc a ∈ Af outside the k-hop neighborhood of receiver

t. Other fetch constraints can also be applied, e.g. maximum

round-trip time.

4) Fetch Load Constraint: To bound the expected load on

nodes and arcs during the fetch stage, we can introduce the

constraint
∑

t∈T αt xa,t ≤ βa za, a ∈ As ∪ Af , where βa

is the load factor for arc a. This performs load balancing
by restricting the expected storage flow served by each node

(a ∈ As), and the expected fetch flow on each arc (a ∈ Af).

5) Dissemination Stage Receivers: To have a node receive

the content at the end of the dissemination stage without

having to fetch, we can add the corresponding node in Nd

to the set of receivers T . This is equivalent to forcing the

node to be a storage node for the whole content.

978-1-4244-2734-5/09/$25.00 ©2009 IEEE 415

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 12,2010 at 17:56:54 UTC from IEEE Xplore. Restrictions apply.

6) Delivery of Multiple Content: To accommodate the

delivery of multiple content from possibly different source

nodes, we introduce separate flows for individual content. The

problem becomes analogous to that of object placement in

[13], and can be described by the following linear program:

minimize
∑

a∈Ad

xa ca +
∑
a∈As

xa ca +
∑

a∈Af

t∈T

w∈W

α
(w)
t x

(w)
a,t ca,t (5)

subject to

x
(w)
a ≥ x

(w)
a,t , ∀ w ∈ W, t ∈ T, a ∈ Ad ∪ As (6)

za ≥ xa ≥
∑
w∈W

x
(w)
a , ∀ a ∈ Ad ∪ As (7)

za ≥ x
(w)
a,t , ∀ w ∈ W, t ∈ T, a ∈ Af (8)

x
(w)
a,t ≥ 0 , ∀ w ∈ W, t ∈ T, a ∈ Ad ∪ As ∪ Af (9)

∑
{a|tail(a)=i}

x
(w)
a,t −

∑
{a|head(a)=i}

x
(w)
a,t =

{
Rw if i = sw ,

−Rw if i = t,

0 otherwise,

∀ w ∈ W, t ∈ T, i ∈ Nd ∪ Nf (10)

We denote the set of content or objects by W , the source

node for content w by sw, the multicast rate for content w by

Rw, and the expected number of requests by receiver t ∈ T

for content w by α
(w)
t , where w ∈ W . Flows for individual

content are distinguished by their (w) superscript. Note that

we allow network coding during only the dissemination stage

and among flows for the same content.

D. Storage for Robustness Against Node or Arc Failures

Distributed storage can be used to improve robustness of

data availability in unreliable networks. Intuitively, in a net-

work where nodes or arcs fail probabilistically, the probability

of a receiver being able to fetch data successfully increases

with the amount of redundant storage and the proximity of

storage nodes.

Suppose we wish to ensure that each receiver can still

successfully access content in the event that some nodes or

arcs fail during the fetch stage. An exact but prohibitively

complex way to approach this is to consider the exhaustive set

of mutually exclusive failure events (including the zero-failure

event), each associated with a probability of occurrence, and

a set of nodes or arcs that fail. We then replace each receiver

t ∈ T with a set of virtual receivers, one for each failure

event that affects it, allowing fetch flows only on the unaffected

nodes and arcs, i.e. fetch flows on the failed nodes and arcs are

forced to be zero. The objective function would be modified

to include the fetch cost incurred by each virtual receiver,

weighted by the probability of the corresponding failure event,

so that it continues to express the expected total cost. The k-

hop fetch constraint (see Section III-C3) reduces the number

of virtual nodes required, for example, to protect against the

failure of up to any m arcs in the network, from
∑m

i=0

(|A|
i

)
virtual receivers per receiver if there were no hop constraint on

fetching, to
∑min{m,d−(t)}

i=0

(
d−(t)

i

)
virtual receivers for each

receiver t ∈ T if a 1-hop fetch constraint was applied, where

d−(t) is the indegree of node t. However, the number of virtual

receivers still grows exponentially with the number of hops k.

Fig. 2. Example demonstrating the use of virtual receivers to achieve a
minimum probability of successful content delivery. Virtual receiver v0 cor-
responds to the zero-failure event, while virtual receiver vi, i = 1, 2, . . . , d,
corresponds to the event where only the arcs on paths Pj , j �= i are allowed
to carry fetch flow for vi.

To allow flexibility in the number of hops k in the fetch

constraint while remaining tractable, we can consider the fol-

lowing approach whose fetch success probability can be lower

bounded as a function of k, the node (arc) failure probability,

and the number of disjoint paths in the k-hop neighborhood

of the receivers. Fig. 2 gives an illustration. Suppose each

node (arc) in the network fails independently with probability

p. If a receiver t has d node (arc)-disjoint paths in its k-

hop neighborhood, then by using the specified (d + 1) virtual

receivers, receiver t would achieve a success probability ≥
P(at most one path fails) = (1−p)k(d−1)(d−(d−1)(1−p)k).
For simplicity, the objective function includes the fetch costs

only for the zero-failure event.

E. Problem Size Reduction

In the interest of tractability, we can reduce the size of

the linear program by picking only a subset of nodes in the

CDN as receivers. One heuristic would be to choose a set of

receivers so that each node in the CDN is at most k hops

from some receiver. Such a set could be greedily constructed,

e.g. by adding nodes in descending order of degree, while

skipping over those that are already in the k-hop neighborhood

of a previously added node. A more general approach is to

organize the nodes in the CDN into an appropriate hierarchy

so that we need only consider a small number of nodes at

the top level and the arcs between them; other nodes at lower
levels will be assumed to be collocated with a top level node.

Such a hierarchical organization of nodes may follow naturally

from the geographical or administrative topology of the CDN,

e.g. national, regional, and institutional levels proposed in [17].

IV. PERFORMANCE EVALUATION

To demonstrate the benefits of our formulation, we eval-

uate its performance for delivering multiple content. This

is traditionally approached as an object placement problem,

which can be formulated as a multi-commodity generalization

of the NP-hard minimum k-median problem [13], [1]. We

describe this formulation with the following mixed integer

linear program (cf. Section III-C6):

978-1-4244-2734-5/09/$25.00 ©2009 IEEE 416

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 12,2010 at 17:56:54 UTC from IEEE Xplore. Restrictions apply.

minimize
∑

a∈Af

t∈T

w∈W

α
(w)
t x

(w)
a,t ca,t (11)

subject to

x
(w)
a ≥ x

(w)
a,t , ∀ w ∈ W, t ∈ T, a ∈ Ad ∪ As (12)

za ≥ xa ≥
∑
w∈W

x
(w)
a , ∀ a ∈ Ad ∪ As (13)

za ≥ x
(w)
a,t , ∀ w ∈ W, t ∈ T, a ∈ Af (14)

x
(w)
a,t ≥ 0 , ∀ w ∈ W, t ∈ T, a ∈ Ad ∪ As ∪ Af (15)

∑
{a|tail(a)=i}

x
(w)
a,t −

∑
{a|head(a)=i}

x
(w)
a,t =

{
Rw if i = sw ,

−Rw if i = t,

0 otherwise,

∀ w ∈ W, t ∈ T, i ∈ Nd ∪ Nf (16)∑
a∈As

xa ≤ k (17)

x
(w)
a ∈ {0, Rw} , ∀ w ∈ W, a ∈ As (18)

We note that the objective function (11) comprises only the

expected fetch cost. Also, the storage budget k is to be

allocated over the set of content or objects W (17), and objects

must be stored in their entirety (18). For brevity, we refer

to this multi-commodity version of the minimum k-median
formulation as KMF. For comparison, we use the linear

program in Section III-C6, with zero storage costs and the

storage budget constraint
∑

a∈As xa ≤ k. We refer to this

network coding formulation as NCF.

We also make the following simplifying assumptions: unit

dissemination costs ca = Cd, a ∈ Ad, unit fetch costs ca,t =
Cf , a ∈ Af , t ∈ T , and expected number of requests α

(w)
t =

α(w), t ∈ T, w ∈ W , where Cd ≥ 0, Cf > 0, and α(w) ≥
0, w ∈ W are constants. Following the analysis in [13], we

assume a Zipf-like request distribution over the set of objects

W , which gives α(wi) � 1
im

(∑|W |
j=1

1
jm

)−1

α, where wi ∈ W

is the ith most popular object, α > 0 is the expected total

number of requests by a receiver over all objects, and m is

the skewness parameter of the request distribution. It follows

that the objective functions in KMF and NCF can be replaced

respectively by

∑
a∈Af

t∈T

wi∈W

1

im
x
(wi)
a,t , and (19)

θ
∑

a∈Ad

xa+
∑

a∈Af

t∈T

wi∈W

1

im

(|W |∑
j=1

1

jm

)−1

x
(wi)
a,t , (20)

where θ � Cd

α Cf
, without changing the optimal solutions.

Using the expected total dissemination and fetch cost

Cd

∑
a∈Ad

xa + α Cf

∑
a∈Af

t∈T

wi∈W

1

im

(|W |∑
j=1

1

jm

)−1

x
(wi)
a,t

as the performance measure, we compute the relative perfor-

mance of NCF with respect to KMF:(
Cd

∑
a∈Ad

xa + α Cf

∑
a∈Af ,t∈T,wi∈W

1
im

(∑|W |
j=1

1
jm

)−1
x
(wi)
a,t

)
NCF(

Cd

∑
a∈Ad

xa + α Cf

∑
a∈Af ,t∈T,wi∈W

1
im

(∑|W |
j=1

1
jm

)−1
x
(wi)
a,t

)
KMF

=

(
θ

∑
a∈Ad

xa +
∑

a∈Af ,t∈T,wi∈W
1

im

(∑|W |
j=1

1
jm

)−1
x
(wi)
a,t

)
NCF(

θ
∑

a∈Ad
xa +

∑
a∈Af ,t∈T,wi∈W

1
im

(∑|W |
j=1

1
jm

)−1
x
(wi)
a,t

)
KMF

� Φθ

To obtain the dissemination costs in KMF, we solve a sep-

arate traditional network coded multicasting problem with

the selected storage nodes as receivers, with the objective of

minimizing the total dissemination cost.

For a given network, set of objects W , and choice of k,

m, and Rw, w ∈ W , the optimal solutions and the relative

performance Φθ can be parameterized by θ; therefore we

vary θ as the independent variable in our comparisons. We

apply both formulations on randomly generated networks

with symmetrical point-to-point arcs, all nodes as receivers,

multicast rates Rw = 1, w ∈ W , and arc capacities za =
1, a ∈ Ad ∪ As ∪ Af . A network is generated by starting

with the empty graph and adding symmetrical point-to-point

arcs selected uniformly at random until the graph becomes

connected. The source node sw for each object w ∈ W is

selected uniformly at random from the set of all nodes.

Fig. 3. Relative performance of NCF with respect to KMF (Φθ) for θ �
Cd

α Cf
= 0, for 1, 3, 5, 7 objects (|W |), and storage budgets k = |W | + {0,

1, 3, 5, 7}. Each data point represents the mean value and standard deviation
of Φθ over 50 random networks.

Figs. 3, 4, 5 summarize our results for the placement of 1,

3, 5, 7 objects with request distribution skewness parameter

m = 0.9 (as in [13]), for different storage budgets k and

values of θ � Cd

α Cf
, over 50 randomly generated 15-node

978-1-4244-2734-5/09/$25.00 ©2009 IEEE 417

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 12,2010 at 17:56:54 UTC from IEEE Xplore. Restrictions apply.

(a) Number of objects |W | = 1

(b) Number of objects |W | = 3

Fig. 4. Relative performance of NCF with respect to KMF (Φθ) against θ �
Cd

α Cf
, for (a) 1 and (b) 3 objects (|W |), and storage budgets k = |W |+ {0,

1, 3, 5, 7}. Each data point represents the mean value and standard deviation
of Φθ over 50 random networks.

networks. Fig. 3 shows that when θ = 0 (i.e. dissemination

is free), NCF performs only very slightly better than KMF.

This is to be expected since both formulations are using the

same objective function (19), (20), and differ only in that

NCF allows objects to be algebraically coded and split across

different nodes. This advantage would be more pronounced

when node storage capacities and arc capacities are severely

limited. Figs. 4, 5 suggest that NCF’s lead over KMF improves

as (i) θ increases (i.e. dissemination becomes relatively more

expensive), (ii) the number of objects |W | increases, and (iii)

the storage budget k increases. In particular, we note that even

at θ = 1 (which could correspond to Cd = 0.5, Cf = 1, α =
0.5, for example), we can already observe a cost reduction of

almost 20% for |W | = k = 7.

V. DISCUSSION

A. Implementation Considerations

Network coding in our formulation can be implemented

using random linear codes [18], [19]. The resulting optimal

(a) Number of objects |W | = 5

(b) Number of objects |W | = 7

Fig. 5. Relative performance of NCF with respect to KMF (Φθ) against θ �
Cd

α Cf
, for (a) 5 and (b) 7 objects (|W |), and storage budgets k = |W |+ {0,

1, 3, 5, 7}. Each data point represents the mean value and standard deviation
of Φθ over 50 random networks.

solution assumes a fluid model; how closely we approach this

in practice depends on how we translate fractional flows to

integral numbers of packets. If the generation size (i.e. number

of source packets being coded together) is large, then simple

rounding up may suffice. Other integral network coding strate-

gies are also possible [20].

We have assumed that the origin server and end users are

collocated with CDN nodes in our formulation. In practice, a

domain name system (DNS) could be used to direct the origin

server and end users to the nearest available CDN node, as is

used in Akamai [21].

Packet routing through the CDN could be accomplished

using source routing. The origin server solves the linear

program, and disseminates the content along fixed routes;

downstream nodes will perform network coding as determined

by the origin server. A robust routing protocol should be able

to work around node or arc failures that occur midstream. The

origin server also notifies all potential end users of the storage

nodes from which to fetch content, and the amount of content

978-1-4244-2734-5/09/$25.00 ©2009 IEEE 418

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 12,2010 at 17:56:54 UTC from IEEE Xplore. Restrictions apply.

to fetch from each of them. As this may be impractical for very

large networks, we could, alternatively, use a DNS to store this

information for each end user; the origin server would update

the relevant entries and leave the end users to resolve their

fetch queries. To fetch content, an end user would contact the

relevant storage nodes, which would then send the necessary

amount of content via the shortest paths.

Information about the network state should be collected as

often as needed to accurately compute the parameters of the

linear program (e.g. arc costs and capacities, expected number

of requests by end users). In a dedicated CDN, we expect such

information to be available through the network monitoring

system; otherwise, each node could just broadcast a status

report periodically. In very large networks where flooding

is prohibitively costly, we could collate the information at

predetermined nodes, e.g. the root nodes at each level of the

hierarchy.

Nodes in the CDN could also cache content flowing through

them during the fetch stage, so as to reduce bandwidth con-

sumption and delay in fetching. In particular, we expect better

caching performance with network coding because a coded

packet returned by a cache is more likely to be innovative

than an uncoded packet.

B. Augmenting with a Peer-to-Peer (P2P) Network

A hybrid CDN–P2P network achieves better scalability

than a pure CDN since end users help contribute bandwidth,

storage, and computation resources to deliver content [22],

[23]. End users can access content through one or more nearby

nodes in the CDN, or through other peers. In such a hybrid

network, the CDN provides a reliable backbone for content

delivery, and prevents severe service degradation in the face

of high churn rates among peers.

CDN nodes are also natural candidates for trackers which

help coordinate interactions between end users, as used in

BitTorrent [24]. Furthermore, we can modify our formulation

to support various content storage and lookup mechanisms in

P2P systems [25]. For instance, for fast lookups of storage

nodes in the CDN by end users, we may adopt a distributed

hash table (DHT) approach [26], [27] whereby we specify a set

of dissemination stage receivers (see Section III-C5) according

to the hash of the content.

VI. CONCLUSION AND FUTURE WORK

We presented a unified linear program formulation for

optimal content delivery in CDNs. Our simulation results

suggest that the formulation performs significantly better than

the traditional minimum k-median formulation for the delivery

of multiple content, even under modest circumstances (small

network, few objects, low storage budget, low dissemination

costs). We look forward to addressing the more challeng-

ing problem of content delivery in dynamic environments

(e.g. mobile ad hoc networks) which demand greater robust-

ness against topology changes, and node and arc failures.

REFERENCES

[1] L. Qiu, V. N. Padmanabhan, and G. M. Voelker, “On the placement of
Web server replicas,” in Proc. INFOCOM, Apr. 2001.

[2] E. Cronin, S. Jamin, C. Jin, A. R. Kurc, D. Raz, and Y. Shavitt,
“Constrained mirror placement on the Internet,” IEEE J. Sel. Areas
Commun., vol. 20, no. 7, pp. 1369–1382, Sep. 2002.

[3] P. Krishnan, D. Raz, and Y. Shavitt, “The cache location problem,”
IEEE/ACM Trans. Netw., vol. 8, no. 5, pp. 568–582, Oct. 2000.

[4] R. L. Carter and M. E. Crovella, “Server selection using dynamic path
characterization in wide-area networks,” in Proc. INFOCOM, Apr. 1997.

[5] S. Seshan, M. Stemm, and R. H. Katz, “SPAND: Shared passive network
performance discovery,” in Proc. USENIX Symp. Internet Technol. and
Syst., Dec. 1997.

[6] J. Pan, Y. T. Hou, and B. Li, “An overview of DNS-based server
selections in content distribution networks,” Comput. Netw., vol. 43, pp.
695–711, 2003.

[7] A. Jiang, “Network coding for joint storage and transmission with
minimum cost,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2006.

[8] F. Douglis and M. F. Kaashoek, “Scalable Internet services,” IEEE
Internet Comput., vol. 5, no. 4, pp. 36–37, Jul./Aug. 2001.

[9] Akamai Annual Report 2007, Akamai. [Online]. Available:
http://www.akamai.com/dl/investors/Akamai 07 Annual Report.pdf

[10] S. Guha, A. Meyerson, and K. Munagala, “Hierarchical placement and
network design problems,” in Proc. Symp. Found. Comput. Sci., Nov.
2000.

[11] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman, “Placement algo-
rithms for hierarchical cooperative caching,” in Proc. ACM–SIAM Symp.
Discrete Algorithms, 1999.

[12] T. Kelly and D. Reeves, “Optimal Web cache sizing: scalable methods
for exact solutions,” Comput. Commun., vol. 24, pp. 163–173, 2001.

[13] N. Laoutaris, V. Zissimopoulos, and I. Stavrakakis, “On the optimization
of storage capacity allocation for content distribution,” Comput. Netw.,
vol. 47, pp. 409–428, 2005.

[14] D. Dowdy and D. Foster, “Comparative models of the file assignment
problem,” ACM Comput. Surveys (CSUR), vol. 14, no. 2, pp. 287–313,
Jun. 1982.

[15] B. Gavish and O. R. L. Sheng, “Dynamic file migration in distributed
computer systems,” Commun. ACM, vol. 33, no. 2, pp. 177–189, Feb.
1990.

[16] D. S. Lun, N. Ratnakar, M. Médard, R. Koetter, D. R. Karger, T. Ho,
E. Ahmed, and F. Zhao, “Minimum-cost multicast over coded packet
networks,” IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2608–2623, Jun.
2006.

[17] J. Ni and D. H. K. Tsang, “Large-scale cooperative caching and
application-level multicast in multimedia content delivery networks,”
IEEE Commun. Mag., vol. 43, no. 5, pp. 98–105, May 2005.

[18] T. Ho and D. Lun, Network Coding: An Introduction. Cambridge
University Press, 2008.

[19] P. A. Chou, Y. Wu, and K. Jain, “Practical network coding,” in Proc.
Annu. Allerton Conf. Commun., Control, and Comput., Oct. 2003.

[20] T. Cui and T. Ho, “Minimum cost integral network coding,” in Proc.
IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2007.

[21] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and B. Weihl,
“Globally distributed content delivery,” IEEE Internet Comput., vol. 6,
no. 5, pp. 50–58, Sep./Oct. 2002.

[22] D. Xu, S. S. Kulkarni, C. Rosenberg, and H.-K. Chai, “Analysis of
a CDN–P2P hybrid architecture for cost-effective streaming media
distribution,” Multimedia Syst., vol. 11, no. 4, pp. 383–399, 2006.

[23] J. Wu, Z. Lu, B. Liu, and S. Zhang, “PeerCDN: A novel P2P network
assisted streaming content delivery network scheme,” in Proc. IEEE Int.
Conf. Comput. and Inf. Technol., Jul. 2008.

[24] B. Cohen, “Incentives build robustness in BitTorrent,” in Proc. Workshop
Econ. Peer-to-Peer Syst., May 2003.

[25] R. Hasan, Z. Anwar, W. Yurcik, L. Brumbaugh, and R. Campbell, “A
survey of peer-to-peer storage techniques for distributed file systems,” in
Proc. Int. Conf. Inf. Technol.: Coding and Comput. (ITCC), Apr. 2005.

[26] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object
location and routing for large-scale peer-to-peer systems,” in Proc.
IFIP/ACM Int. Conf. Distrib. Syst. Platforms, Nov. 2001.

[27] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for Internet applica-
tions,” in Proc. ACM SIGCOMM, Aug. 2001.

978-1-4244-2734-5/09/$25.00 ©2009 IEEE 419

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 12,2010 at 17:56:54 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

