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Supplementary Text 1: Deriving CH4/CO2 excess ratio from NOAA flask data 

To verify the seasonal cycle of CH4/CO2 ratio, we calculate the excess ratio using the NOAA 

MWO daytime and nighttime flask data (Supplementary Figure S4) and compare with estimates 

using CLARS-FTS data. Similar to Hsu et al.1, we used the corresponding nighttime flask 

measurements on the same day as the background and subtracted the backgrounds from the 

daytime measurements to get the CO2 excess (CO2,xs) and CH4 excess (CH4,xs). Their correlation 

and the monthly means of the excess ratios are shown in Supplementary Figure S5.  
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Supplementary Text 2: Background estimation for CLARS-FTS 

The details of the background calibration are introduced in He et al.2. To derive an unbiased 

background XCH4 and XCO2 along the same path of the CLARS target mode, we combined the 

CLARS Spectralon retrievals and NOAA in situ flask dataset at Mt. Wilson 

(https://gml.noaa.gov/dv/site/site.php?code=MWO). The NOAA in situ flask dataset gives the 

background estimate using in situ flask-based sampling at Mt. Wilson next to the CLARS facility. 

At night, the height of the boundary layer falls to far below the CLARS facility and the flask record 

is very likely to represent background conditions for the lower troposphere over the region, where 

there are no human activities. Therefore, to construct the background, we used the Spectralon 

measurements as the background for the atmosphere above the CLARS height, and the NOAA 

flask measurements at night as the background for the atmosphere below. Supplementary Figure 

1 shows a comparison of the time series of CLARS observations for the surface target mode and 

the Spectralon mode, and the NOAA nighttime flask monthly averaged data. 
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Supplementary Text 3: The contribution of biogenic fluxes to CO2 enhancement in LA 

Newman et al.3 used 14CO2 flask data to better constrain contributions from anthropogenic 

emissions and the biosphere to the observed CO2 enhancement in the Los Angeles Basin. They 

found that the largest biospheric contribution occurred during winter 2012–2013 (7 ppm - 28 % of 

the total Cff, where Cff is the CO2 contribution from fossil fuel combustion), and the minimum was 

0.1 ppm during spring of 2010. The average is (4.1 ± 0.5) ppm (16 % of Cff) during cooler months 

and (2.2 ± 0.3) ppm (8 % of Cff) during warmer months. An extension of the time series is shown 

in Supplementary Figure S6. In Miller et al.4, which used measurements of Δ14C and CO2 to 

separate biogenic and fossil contributions to CO2 enhancements above background, found that the 

urban biospheric component is a source in winter and a sink in summer, with an estimated 

amplitude of 4.3 parts per million (ppm), equivalent to 33% of the observed annual mean fossil 

fuel contribution of 13 ppm. The CO2,xs/CO2,ff -1.0 monthly mean data are shown in 

Supplementary Figure S7. In addition, we examine the impact on the inter-annual trend. 

Supplementary Figure S6, extended from the results in Newman et al.3, shows biogenic 

contribution from 2006 and mid-2016 (data after 2017 are not available). The slope of the CO2bio 

trend is 0.013 ppm/year, which is very small and indicates no significant trend. Based on this result, 

it is assumed the biogenic fluxes in the basin do not have a significant interannual trend that could 

affect the derived methane emissions in the paper.  
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Supplementary Figure S1. Time series of CLARS-FTS observations for the surface target mode 

and the Spectralon mode, and the NOAA nighttime flask monthly averaged data. 
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Supplementary Figure S2. A comparison of CO2 bottom-up emission inventories from Hestia 

(red; 2011-2015), CARB (green; 2011-2019), and ODIAC (blue; 2011-2019). CARB inventory 

values for the LA basin are scaled from the state’s total emissions using the ratio of SOCAB 

population (14.6 million) to total California population (39 million). ODIAC is shifted upward by 

3.5 TgCO2/month to match the Hestia annual estimate. After adjusting to the Hestia level, 10% 

uncertainty is assumed for these monthly estimates (similar to the uncertainty estimate of Hestia 

by Gurney et al.5). For CO2 emissions in 2020, we used the 2019 value as the baseline and applied 

scale factors from Yadav et al.6 to derive the drawdown of CO2 emissions in LA due to the 

COVID-19 pandemic lockdown. This extrapolation is applied to ODIAC and CARB inventories. 

See text for details. 
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Supplementary Figure S3. 2-D histogram of XCO2,xs and XCH4,xs from CLARS-FTS 

observations. The color bar indicates the observation density, which is the number of measurement 

pairs. From the linear regression, as shown in the red dashed line, the intercept = 5.75 ppb and the 

slope = 6.38 ppb/ppm. 
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Supplementary Figure S4. NOAA in-situ nighttime and daytime flask measurements on Mt. 

Wilson for CH4 and CO2. 
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Supplementary Figure S5. (a) scatter plot between CO2 excess and CH4 excess from NOAA 

MWO flask measurements from 2011 to 2020. Only data with positive excesses are used. The 

correlation coefficient is 0.82; (b) The monthly mean (in red) of excess ratio from NOAA MWO 

flask measurements from 2011 to 2020. The error bars represent the estimation uncertainty (one 

standard error) of the monthly values. We filtered the data by using CO2 excess larger than 5 ppm 

to exclude days with air not transported from the LA basin. 
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Supplementary Figure S6. The contribution from biosphere and fossil fuel constrained from 
14CO2 data, a time series extended from Newman et al.3. The slope of the CO2,bio trend is 0.013 

ppm/year from linear regression analysis. 
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Supplementary Figure S7. Monthly mean of (Cxs/Cff – 1.0) inferred from 14CO2 data by an 

extended timeseries from Newman et al.3, as shown in Supplementary Figure S6, and Miller et 

al.4, respectively. The error bars represent the estimation uncertainty (1s) of the monthly values. 
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Supplementary Figure S8. Excess ratio of XCH4,xs/XCO2,xs before and after correcting the 

biogenic fluxes derived by an extended timeseries from Newman et al.3, as shown in 

Supplementary Figure S6, and Miller et al.4, respectively. By fitting using a statistical model 

(Equation (4)) that consists of a linear component and a seasonal component by harmonic 

functions. The slopes of the linear components are -0.022±0.028 (ppb/ppm)/month 

and -0.026±0.026 (ppb/ppm)/month, respectively, for the corrected timeseries based on Newman 

et al.3 and Miller et al.4. The error bars represent the estimation uncertainty (1s) of the monthly 

values. 
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Supplementary Figure S9. Correlation between natural gas consumption and CH4 emissions 

estimated using the (a) ODIAC and (b) CARB CO2 bottom-up inventories, respectively, and 

biogenic flux correction based on Miller et al.4. The error bars represent the estimation uncertainty 

(1s) of the monthly values. 
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Supplementary Figure S10. Similar to Figure 3(a) and (b) but for CH4 emissions estimated using 

biogenic flux correction based on Miller et al.4. The error bars represent the estimation uncertainty 

(1s) of the monthly values. 
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Supplementary Figure S11. Monthly averaged CH4 emissions for period (1) from January to 

December, (2) from July to December, and (3) from January to June over 2011 to 2020. The slopes 

from linear regression over 2011-2019 are -0.41±0.22 Gg/year, -1.03±0.34 Gg/year, and                       

-0.20±0.28 Gg/year, respectively. Note that the year 2020 is not used in the linear regression. The 

uncertainties of the slopes are estimated using the Monto Carlo method as described in Methods. 

The error bars represent the estimation uncertainty (1s) of the monthly values. 
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Supplementary Figure S12. Histograms of slopes from Monte Carlo simulations for uncertainty 

estimations of the emissions trend as shown in Figure 3 of the main text. The uncertainties for the 

slope in each case are estimated using the Monte Carlo method, which samples the monthly 

emissions using a normal distribution based on the mean and error and estimates of the slope. The 

method makes 10,000 simulations for the emissions time series and obtains the standard deviation 

of the slope samplings. 
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Supplementary Figure S13. The time series of XCH4,xs/XCO2,xs ratio averaged from the three 

sub-regions in the basin, including western, central and eastern regions of the Los Angeles Basin. 

The background image in the upper panel is adopted from the Map data ©2019 Google. The error 

bars represent the estimation uncertainty (1s) of the monthly values. 
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Supplementary Figure S14. Results from EEMD analysis for the CH4 emissions shown in Figure 

2(a), which is estimated using biogenic flux correction from Newman et al.3 and ODIAC CO2 

bottom-up inventories. The EEMD results include (2nd panel) IMF1, (3rd panel) the combination 

of IMF2 and IMF3, and (4th panel) the combination of IMF4, IMF5, and the trend. The trend in 

the 4th panel before 2012 and after 2019 is due to the edge effect that can be ignored. The 

uncertainty band is ±1s. 
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Supplementary Figure S15. The same as Supplementary Figure S14, but for the CH4 emissions 

estimated using biogenic flux correction from Newman et al.3 and CARB CO2 bottom-up 

inventories. The uncertainty band is ±1s. 
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