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Abstract

Nonhuman primate and human studies have suggested that populations of neurons in the posterior 

parietal cortex (PPC) may represent high-level aspects of action planning that can be used to 

control external devices as part of a brain-machine interface. However, there is no direct neuron-

recording evidence that human PPC is involved in action planning, and the suitability of these 

signals for neuroprosthetic control has not been tested. We recorded neural population activity 

with arrays of microelectrodes implanted in the PPC of a tetraplegic subject. Motor imagery could 

be decoded from these neural populations, including imagined goals, trajectories, and types of 

movement. These findings indicate that the PPC of humans represents high-level, cognitive aspects 

of action and that the PPC can be a rich source for cognitive control signals for neural prosthetics 

that assist paralyzed patients.

The posterior parietal cortex (PPC) in humans and nonhuman primates (NHPs) is situated 

between sensory and motor cortices and is involved in high-level aspects of motor behavior 

(1, 2). Lesions to this region do not produce motor weakness or primary sensory deficits but 

rather more complex sensorimotor losses, including deficits in the rehearsal of movements 

(i.e., motor imagery) (3–7). The activity of PPC neurons recorded in NHPs reflects the 

movement plans of the animals, and they can generate these signals to control cursors on 

computer screens without making any movements (8–10). It is tempting to speculate that the 

animals have learned to use motor imagery for this “brain control” task, but it is of course 

not possible to ask the animals directly. These brain control results are promising for neural 

prosthetics because imagined movements would be a versatile and intuitive method for 

controlling external devices (11). We find that motor imagery recorded from populations of 

human PPC neurons can be used to control the trajectories and goals of a robotic limb or 
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computer cursor. Also, the activity is often specific for the imagined effector (right or left 

limb), which holds promise for bimanual control of robotic limbs.

A 32-year-old tetraplegic subject, EGS, was implanted with two microelectrode arrays on 17 

April 2013. He had a complete lesion of the spinal cord at cervical level C3-4, sustained 10 

years earlier, with paralysis of all limbs. Using functional magnetic resonance imaging 

(fMRI), we asked EGS to imagine reaching and grasping. These imagined movements 

activated separate regions of the left hemisphere of the PPC (fig. S1). A reach area on the 

superior parietal lobule (putative human area 5d) and a grasp area at the junction of the 

intraparietal and postcentral sulci (putative human anterior intraparietal area, AIP) were 

chosen for implantation of 96-channel electrode arrays. Recordings were made over more 

than 21 months with no adverse events related to the implanted devices. Spike activity was 

recorded and used to control external devices, including a 17-degree-of-freedom robotic 

limb and a cursor in two dimensions (2D) or 3D on a computer screen.

Recordings began 16 days after implantation. The subject could control the activity of single 

cells through imagining particular actions. An example of volitional control is shown in 

movie S1. The cell is activated when EGS imagines moving his hand to his mouth but not 

for movements with similar gross characteristics such as imagined movements of the hand to 

the chin or ear. Another example (movie S2) shows EGS increasing the activity of a different 

cell by imagining rotation of his shoulder, and decreasing activity by imagining touching his 

nose. In many cases, the subject could exert volitional control of single neurons by 

imagining simple movements of the upper arm, elbow, wrist, or hand.

We found that EGS's neurons coded both the goal and imagined trajectory of movements. To 

characterize these forms of spatial tuning, we used a masked memory reach paradigm 

(MMR, Fig. 1A). In the task, EGS imagined a continuous reaching movement to a spatially 

cued target after a delay period during which the goal was removed from the screen. On 

some trials, motion of the cursor was blocked from view by using a mask. This allowed us to 

characterize spatial tuning for goals and trajectories (Fig. 1B) while controlling for visual 

confounds.

The number of recorded units was relatively constant through time, but units would appear 

and disappear on individual channels over the course of hours, days, or weeks (fig. S2). This 

allowed us to sample the functional properties of a large population of PPC neurons. From 

124 spatially tuned units recorded across 7 days with the MMR task, 19% coded the goal of 

movement exclusively, 54% coded the trajectory of the movement exclusively, and 27% 

coded both goal and trajectory (Fig. 2A). Goal-tuned units supported accurate classification 

of spatial targets (>90% classification with as few as 30 units), representing the first known 

instance of decoding high-level motor intentions from human neuronal populations (Fig. 

2B). The goal encoding was rapid with significant classification (shuffle test) occurring 

within 190 ms of cue presentation and remaining high during the delay period in which there 

was no visual goal present (Fig. 2C). Similarly, this population of neurons enabled 

reconstructions of the moment-to-moment velocity of the effector (Fig. 2D) with coefficient 

of determination (R2) comparable to those reported for offline reconstructions of velocity in 

human M1 studies [e.g., (12, 13); see also fig. S3]. In other tasks, trajectory-tuned units 
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supported instantaneous volitional control of an anthropomorphic robotic limb at its 

endpoint (see movie S3).

In the MMR task, goal tuning was not directly used by the subject to control the computer 

interface; only the trajectory of the cursor was under brain control. To verify that goal-tuned 

units could support direct selection of spatial targets in closed-loop brain control, we used a 

direct goal classification (DGC) task (Fig. 3A). Target classification was performed by using 

neural activity taken during a delay period, after the visual cue was extinguished, so that 

neural activity was more likely to reflect intent. Online classification accuracy was 

significant (shuffle test); however, similar to the MMR task, aggregating neurons across days 

improved classification accuracy by providing a better selection of well-tuned units (Fig. 3, 

C and D). Goal decoding accuracy was enhanced despite the presence of more targets (six 

versus four) when the subject controlled the closed-loop interface using goal activity as 

compared to trajectory activity (Fig. 3C). Consistent with the idea that spatially tuned neural 

activity reflected volitional intent, decode accuracy was maintained whether the target was 

cued by a flashed stimulus or cued symbolically (Fig. 3, B and D).

To what degree was the spatially tuned activity specific for imagined actions of the limb? 

Does the activity reflect the intentions to move a specific limb, or more general spatial 

processes? Effector specificity was tested by asking EGS to imagine moving his left or right 

arm, or make actual eye movements in the symbolically cued delayed movement paradigm 

(Fig. 3B). We found cells that showed specificity for each effector (Fig. 4, A to C). Although 

the degree of specificity varied for individual units, the population showed a strong bias for 

imagined reaches versus saccades (Student's t test, P < 0.05, Fig. 4D). Whereas some 

neurons showed a high degree of specificity for the left and right limb, many reach-selective 

neurons were bimanual, as they frequently showed no bias for which limb EGS imagined 

using (Fig. 4E). The population response provided sufficient information to decode which 

effector EGS imagined using on a given trial (Fig. 4F).

The results show the coding of motor imagery in the human PPC at the level of single 

neurons and the encoding of goals and trajectories by populations of human PPC neurons. 

Moreover, many cells showed effector specificity, being active for imagining left-arm or 

right-arm movements or making actual eye movements. These results tie together NHP and 

human research and point to similar sensorimotor functions of the PPC in both species.

It could be argued that the results reflect visual attention rather than motor imagery. The 

voluntary activation of single neurons with specific imagined movements (e.g., movement of 

the hand to the mouth) without any visual stimulation argues against this sensory 

interpretation. The effector specificity also cannot be easily explained by a simple attention 

hypothesis.

The neural activity in delayed goal tasks is very similar to the persistent activity seen with 

planning in the NHP literature and attributed to the animals' intent (14). The PPC in NHPs 

codes both trajectory and goal information (15). The dynamics of this trajectory signal in 

NHPs, when compared to the kinematics of the co-occurring limb movements, suggest that 

the signal is a forward model of the limb movement; an internal monitor of the movement 
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command in order to match the intended movement with actual movement for online 

correction (15). Deficits in online control in humans with PPC lesions have led investigators 

to propose that the PPC uses these forward models (16). If the trajectory signal is indeed a 

forward model, then EGS can generate this forward model through imagery without actually 

moving his limbs.

Effector specificity at the single-neuron level has been routinely reported in the PPC of 

NHPs (17). In NHPs, there is a map of intentions with areas selective for eye (lateral 

intraparietal area, LIP), limb (parietal reach region, PRR, and area 5d), and grasp (anterior 

intraparietal region, AIP) movements (1). Bimanual activity (left and right limb) from single 

PRR neurons has been reported with qualitatively similar results in the NHP (18). Control of 

two limbs across the spectrum of human behavior is challenging and requires both 

independent and coordinated movement between the limbs. One possibility is that units 

showing effector-specific and bimanual tuning could play complementary roles in 

independent and coordinated movements; however, more direct evidence in which EGS 

attempts various bimanual actions is necessary to fully test the potential for controlling two 

limbs from the PPC.

We have focused on the representation of motor intentions in the human PPC. Some cells 

appeared to code comparatively simple motor intentions, whereas others coded coordinated 

ethologically meaningful actions. One unexplored possibility is that the PPC also encodes 

nonmotor intentions such as the desire to turn on the television, or preheat the oven. As the 

world becomes increasingly connected through technology, the possibility of directly 

decoding nonmotor intentions to control one's environment may alter approaches to brain-

machine interfaces (BMIs).

Neurons that constituted the recorded population would frequently change (fig. S2). This 

finding presents challenges for the widespread adoption of BMIs that can be addressed 

through a variety of techniques. One approach is the use of robust and adaptive decoding 

algorithms that can adapt alongside the changing neural population [e.g., (19)]. In the long 

term, the development of chronic recording technologies that can stably maintain recordings 

should be a priority.

This study shows that the human PPC can be a source of signals for neuroprosthetic 

applications in humans. The high-level cognitive aspects of movement imagery have several 

advantages for neuroprosthetics. The goal encoding can lead to very rapid readout of the 

intended movement (Fig. 2C). The PPC encodes both the goal and trajectory, which in NHPs 

improves decoding of movement goals when the two streams of information are combined in 

decoders (10). The bimanual representation of the limbs may allow the operation of two 

robotic limbs with recordings made from one hemisphere. In terms of usefulness for 

neuroprosthetics, it is difficult to directly compare the performance of PPC to previous 

studies of M1. In NHP studies, M1 has been shown to be a rich source of neural signals 

correlated with the trajectory of limb movements (20). In previous human M1 recordings, 

primarily the trajectory was decoded (12,13,21,22). The reported offline trajectory 

reconstructions from M1 populations are comparable to the values we achieved from PPC 

neurons (Fig. 2D) (12,13). The other aspects of encoding, e.g., goals and effectors, have not 
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yet been examined in detail in human M1. However, it can be concluded from our study that 

the PPC is a good candidate for future clinical applications as it contains signals both 

overlapping and likely complementary to those found in M1.
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Fig. 1. Goal and trajectory coding in the PPC
(A) The masked memory reach task was used to quantify goal and trajectory tuning in the 

PPC by dissociating their respective tuning in time. EGS imagined a continuous reaching 

movement to spatially cued targets after a delay period. Motion of the cursor was occluded 

from view by using a mask in interleaved trials. (B) Goal and trajectory fitting. Average 

neural response (±SE) of a sample neuron over the duration of a trial, along with a linear 

model reconstruction of the time course. The linear model included components for the 

transient early visual response, sustained goal tuning, and transient trajectory tuning. The 

significance of the fit coefficients was used to determine population tuning to goal and 

trajectory (see Fig. 2).

Aflalo et al. Page 6

Science. Author manuscript; available in PMC 2016 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. Neurons in PPC encode both the goal and trajectory of movements
(A) The pie chart indicates the proportion of units that encode trajectory exclusively, goal 

exclusively, or mixed goal and trajectory. Insets show the activity (mean ± SE) for three 

example neurons. The lighter hue indicates response to the direction evoking maximal 

response; the darker hue indicates response for the opposite direction. Data taken from 

masked trials to avoid visual confounds (Fig. 1A). (B) Small populations of informative 

units allow accurate classification of motor goals from delay-period activity (when no 

visible target is present). Using a greedy algorithm, an optimized neural population for data 

combined across multiple days shows that >90% classification is possible with fewer than 30 

units. (C) Temporal dynamics of goal representation. Offline analysis depicting accuracy of 

target classification through time [300-ms sliding window, 95% confidence interval (CI)]. 

Significant classification occurs within 190 ms of target presentation. (D) Similar to (B) but 

for trajectory reconstructions. All data taken from the MMR task (Fig. 1A).
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Fig. 3. Goal decoding
(A) Direct goal classification (DGC) task. EGS was instructed to intend motion toward a 

cued target through a delay period after the target was removed from the screen. Neural 

activity from the final 500 ms of the delay period was used to decode the location of the 

spatial target. EGS was awarded points depending on the relative location of the decoded 

and cued target. The decoded target location was presented at the end of each trial. (B) 

Symbolic task. A target grid was presented along with a number indicating the current 

target. The cue was removed during the delay period. A series of tones was used to cue the 

start and end of movements. Multiple effectors were tested in interleaved blocks. Catch trials 

provided a means to ensure that EGS was, on average, engaged in the task. (C) Estimated 

classification accuracy (mean with 95% CI) for variable population sizes. Populations were 

constructed by using randomly sampled units from the recorded population for the MMR 

and DGC tasks. Chance based on number of potential targets (MMR: four targets; DGC: six 

targets). (D) Greedy dropping curves show that high classification accuracy is possible 

whether targets are cued directly (A) or symbolically (B). Best: best single day performance; 

Combo: performance when combining data across days.
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Fig. 4. Effector specificity in PPC
(A) Unit showing preferential activation to imagined movements of the right arm. Each trace 

shows the neural firing rate (mean ± SE) for the movement direction evoking the maximal 

response for each effector. (B and C) Same as (A), but for left arm and saccade-preferring 

neurons. (D) Population analysis. The degree of effector specificity varied across the 

population. Effector specificity was quantified with a specificity index based on the 

normalized depth of modulation (DM) for reaches versus saccades . 

The specificity index for units that were spatially tuned to at least one effector is shown as a 

histogram. Colored bars indicate a significant preference for an effector. (E) Same as (D) but 

for imagined right arm versus left arm movements. (F) The effector used to perform the task 

could be decoded from the neural population (mean with 95% CI).
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