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A Pretraining

A.1 PubChemSTM Construction
We construct a chemical structure-text pair dataset called PubChemSTM, which is extracted from the PubChem database [1].
Below we explain the key steps of the dataset construction.

1. We use the PUG View (a REST-style web service) to download the textual descriptions of molecules. It has in total of 290
pages, and each page is downloaded in XML format. For reference, an example page (the first page) can be found here.
There is a “string” field in the XML data, and we treat it as the textual descriptions for molecules. After construction, we
have 250K molecules (with unique PubChem ID) and 281K chemical structure-text pairs. Notice that each molecule can
have multiple annotations from different resources.

• Most of the molecule annotations start with the common name or the International Union of Pure and Applied
Chemistry (IUPAC) name. We can either use the raw description (with a common name or IUPAC name) or replace
it with the text template (e.g., “This molecule is ...”).

• Thus, we construct two versions of PubChemSTM datasets, PubChemSTM-raw and PubChemSTM-extracted,
corresponding to using the raw annotation or replacing the molecule name with the text prompt, respectively. These
two versions of PubChemSTM share the molecules, except for the molecule names.

2. We download the 326 SDF files from the PubChem FTP service. Each SDF file contains the structural information (e.g.,
the SMILES string and molecular graph) for a batch of molecules.

3. We match the annotation and chemical structure for each molecule from the previous two steps using the PubChem
ID, and most of the molecules from the first step contain the corresponding chemical structures from the SDF files. In
specific, only 12 molecules failed to find the valid SMILES from SDF files, and we ignore these molecules.

4. Ultimately, following the above three steps will lead to a structure-text pair dataset with 281K pairs and 250K unique
molecules. Note that the PubChem database [1] is updated online frequently, and the above numbers are collected in
March 2022.

Pre-processing Details There is one field in the PubChem database called “name”, which includes either the common
name or the IUPAC name for each molecule. Notice that the tokenization on IUPAC is nontrivial. Thus we carry out two
versions to test its effect, i.e., the PubChemSTM-raw and PubChemSTM-extracted. We find that there exist several patterns of
textual descriptions in PubChemSTM-raw, which are further utilized to extract the cleaner version of molecule description as in
PubChem-extract. A detailed illustration is given below:

• The most common pattern is that the molecule annotation starts with “XXX (name) is / are / was / were / appears / occurs
/ stands for / belongs to / exits ...”. We manually extract this to obtain most of the molecule names and replace them with
"This molecule ..." or "These molecules ...".

• Extra word "Pure". Some molecule annotations start with “Pure xxx ...” and we remove the word “Pure”.
• Typos. For example, the "Mercurycombines ..." should be "Mercury combines ...".

Dataset Examples We provide four examples of the PubChemSTM-raw and PubChemSTM-extracted in Table 1.

Table 1. Examples on PubChemSTM. Here for the chemical structure, we only list the SMILES string, since the 2D topology graph can be
obtained using the RDKit package.

PubChemSTM-raw PubChemSTM-extracted

SMILES: c1ccccc1
Benzene is a colorless liquid with a sweet odor. It evaporates
into the air very quickly and dissolves slightly in water.

This molecule is a colorless liquid with a sweet odor. It evapo-
rates into the air very quickly and dissolves slightly in water.

SMILES: Oc1ccccc1
Phenol is both a manufactured chemical and a natural substance.
It is a colorless-to-white solid when pure.

This molecule is both a manufactured chemical and a natural
substance. It is a colorless-to-white solid when pure.

SMILES: CC(=O)Oc1ccccc1C(=O)O
Acetylsalicylic acid appears as odorless white crystals or crys-
talline powder with a slightly bitter taste.

This molecule appears as odorless white crystals or crystalline
powder with a slightly bitter taste.

SMILES: CC1(C)SC2C(NC(=O)Cc3ccccc3)C(=O)N2C1C(=O)O
Benzylpenicillin is a penicillin in which the substituent at posi-
tion 6 of the penam ring is a phenylacetamido group. It has a
role as an antibacterial drug, an epitope and a drug allergen.

This molecule is a penicillin in which the substituent at position
6 of the penam ring is a phenylacetamido group. It has a role as
an antibacterial drug, an epitope, and a drug allergen.
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Reproducibility Because the PubChem database [1] has been updated online frequently, so we provide all the pre-processed
datasets used in this work for reproducibility. In addition, the source codes for the above steps are also provided for future usage.

Comparison As mentioned, we adopt a pretrained SciBERT model [2] and continue training on PubChemSTM. SciBERT is a
BERT model specifically trained for scientific discovery. It randomly samples 1.14M papers from Semantic Scholar [3], where
around 18% papers are from the computer science domain and 82% papers are from the broad biomedical domain. Its corpus has
3.17B tokens and the vocabulary size is 31K. Besides, SciBERT was trained on the full paper, not just the abstract. One potential
issue is the vocabulary shift from the Semantic Scholar to PubChemSTM. Although we adapt the pretrained checkpoints from
SciBERT (together with its vocabulary) in this work, we still want to carefully examine the vocabulary for the textual data.

Table 2. The vocabulary comparison.

Data Source Tokenization Method size of vocabulary overlap with SciBERT

Semantic Scholar (used in SciBERT) SciBERT tokenizer 31,090 -

PubChemSTM-raw
white space 315,704 7,635
spaCy 114,976 719
SciBERT tokenizer 18,320 18,320

PubChemSTM-extract
white space 100,877 7,562
spaCy 27,519 691
SciBERT tokenizer 17,442 17,442

In Table 2, we list the vocabulary size of PubChemSTM-raw and PubChemSTM-extract with three tokenization methods:
using white space, spaCy [4], and the SciBERT tokenizer. We can observe that the difference between PubChemSTM-raw and
PubChemSTM-extract using the SciBERT tokenizer is quite small, compared to the ones using white space and spaCy. Thus, we
want to claim that vocabulary is also an important factor, and the SciBERT tokenizer has shown quite a stable tokenization effect.
In the future, more comprehensive tokenization and vocabulary are required to push forwards this research line, i.e., to enable the
large language model for drug discovery. But it is beyond the scope of this paper and requires efforts from the entire community.

A.2 Architecture Details
We have two branches, the chemical structure branch fc and the textual description branch ft .

Chemical structure branch fc This work considers two types of chemical structures: the SMILES string views the molecule
as a sequence and the 2D molecular graph takes the atoms and bonds as the nodes and edges, respectively. Then based on the
chemical structures, we apply a deep learning encoder fc to get a latent vector as molecule representation. Specifically, for the
SMILES string, we take the encoder from MegaMolBART [5], which is pretrained on 500M molecules from ZINC database [6].
For the molecular graph, we take a pretrained graph isomorphism network (GIN) [7] using GraphMVP pretraining [8].
GraphMVP is doing a multi-view pretraining between the 2D topologies and 3D geometries on 250K conformations from
GEOM dataset [9]. Thus, though we are not explicitly utilizing the 3D geometries, the state-of-the-art pretrained GIN models
can implicitly encode such information.

Textual description branch ft The textual description branch provides a high-level description of the molecule’s functionality.
We can view this branch as domain knowledge to strengthen the molecule representation. Such domain knowledge is in the
form of natural language, and we use the BERT model [10] as the text encoder ft . We further adapt the pretrained SciBERT [2],
which was pretrained on the textual data from the chemical and biological domain.

Table 3. Model specifications. # parameters in each model.

Branch Model # parameters

Chemical structure MegaMolBART 10,010,635
GIN 1,885,206

Textual description SciBERT 109,918,464

A.3 Pretraining Details
Pretraining Objective For the MoleculeSTM pretraining, we apply contrastive learning. More concretely, we choose one of
the EBM-NCE [8] and InfoNCE [11]. Both are essentially doing the same thing, yet EBM-NCE has been found to be more
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effective for graph-data [8, 12]. The objective for EBM-NCE is:
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where xxxc and xxxt form the structure-text pair for each molecule, and xxxc′ and xxxt ′ are the negative samples randomly sampled from
the noise distribution, which we use the empirical data distribution. E(·) is the energy function with a flexible formulation, and
we use the dot product on the jointly learned space, i.e., E(xxxc,xxxt) = ⟨pc ◦ fc(xxxc), pt ◦ ft(xxxt)⟩. Similarly, we have the objective
for InfoNCE as:
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Hyperparameters We list the key hyperparameters used for MoleculeSTM pretraining with the SMILES string and 2D
molecular graph as inputs, respectively.

Table 4. Hyperparameter specifications for MoleculeSTM pretraining.

Input Hyperparameter Value

SMILES string
epochs {32}
learning rate for text branch {1e-4}
learning rate for chemical structure branch {1e-5, 3e-5}
objective function { EBM-NCE, InfoNCE}

2D molecular graph
epochs {32}
learning rate for text branch {1e-4}
learning rate for chemical structure branch {1e-5, 3e-5}
objective function { EBM-NCE, InfoNCE}

Running time We list the running time of MoleculeSTM with the SMILES string and 2D molecular graph as inputs,
respectively.

Table 5. Running time for MoleculeSTM pretraining.

Input Running Time

SMILES string 44min / epoch
2D molecular graph 42min / epoch
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B Design Principles for Downstream Tasks
In this section, we discuss the key principles when designing downstream tasks.

Applicable Evaluation One of the biggest differences between the foundation model in the vision-language domain and our
MoleculeSTM can be reflected in the evaluation. Most of the vision and language tasks can be viewed as art problems, i.e.,
there does not exist a standard and exact solution that is applicable for evaluation. For instance, we can detect if the image is "a
horse riding an astronaut" or "a panda making latte art" [13], but only visually not computationally, which prevents large-scale
evaluation. This is not the case for drug discovery, because it is a scientific task, where the results (e.g., properties of the output
molecules in the editing task) can be evaluated exactly, either in vitro or in silico. Following this, the physical experiments are
usually expensive and long-lasting, so in this work, we want to focus on tasks that are computationally feasible for evaluation.

Fuzzy Matching Specifically for the molecule editing task, the text prompts should follow the “fuzzy matching” criterion
because there could exist multiple output molecules. This is in contradiction with "exact matching", where the output molecules
are deterministic. For example, for the functional group change, we can feed in the prompts like "change the third nitrogen in
the ring to oxygen". This prompt is very explicit with an exact solution, and there exist rule-based chemistry tools in handling
this problem perfectly. Thus, text-based editing cannot show its benefits in this track. Instead, text-based editing can provide
more benefits in the fuzzy matching setting by wandering around the semantically meaningful directions in the latent space.
This also reflects the open vocabulary attribute of the language model that we have been focusing on.
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C Downstream: Zero-shot Structure-text Retrieval
C.1 Dataset Construction
The DrugBank database [14] has many fields that can be interesting to explore drug discovery tasks. Here we extract three
fields of each small molecule drug for the zero-shot retrieval task: the Description field, the Pharmacodynamics field, and the
anatomical therapeutic chemical (ATC) field, as detailed below:

• DrugBank-Description. The Description field gives a high-level review of the drug’s chemical properties, history, and
regulatory status.

• DrugBank-Pharmacodynamics. This illustrates how the drug modifies or affects the organism it is being used in. This
field may include effects in the body that are desired and undesired (also known as the side effects).

• DrugBank-ATC. Anatomical therapeutic chemical (ATC) is a classification system that categorizes the molecule into
different groups according to the organ or system on which they act and their therapeutic, pharmacological, and chemical
properties.

We list the key steps in dataset construction as follows:
1. We download the full DrugBank database (in XML format) and small chemical structure files (in SDF format) from the

website.
2. We parse the XML file, and extract the data with three fields: Description, Pharmacodynamics, and ATC.
3. We do the mapping from the extracted files to chemical structures in SDF files. For DrugBank-Description and DrugBank-

Pharmacodynamics datasets, we exclude the molecules that have shown up in PubChemSTM, filtered with the canonical
SMILES. Meanwhile, for DrugBank-ATC, we exclude the molecules satisfying the following two criteria simultaneously:

• Chemical structure filtering If the molecule with the same canonical SMILES has shown up in the PubChemSTM;
• Textual data filtering We first need to define a similarity between two textual data as in Equation (3), where

textDrugBank and textPubChemSTM are the textual data for the same molecule from DrugBank and PubChemSTM,
respectively, len() is the length of textual data, and Levenshtein() is the Levenshtein distance between two textual
data. Thus, the second condition is: if the similarity between the DrugBank text and the PubChemSTM text is
above a certain threshold (e.g., 0.6).

Another detail is that, for DrugBank-ATC, there exist multiple ATC fields (textDrugBank) for each small molecule. In
PubChemSTM, there also exist multiple textual descriptions (textPubChemSTM) for each molecule. Thus during the textual
data filtering step, for each shared molecule between DrugBank and PubChemSTM, we calculate the similarity for all the
textDrugBank-textPubChemSTM pairs, and exclude the molecule if there exists one pair with similarity above the threshold
0.6.

4. Some basic dataset statistics can be found in Table 6. Notice that ATC has many levels, and we are using level 5 for
retrieval in this work.

sim
(
textDrugBank, textPubChemSTM

)
= 1−

Levenshtein
(
textDrugBank, textPubChemSTM

)
len

(
textDrugBank

) . (3)

Table 6. Statistics on three fields in DrugBank. The filtering steps have been illustrated above.

Field # structure-text pairs
molecule not in PubChemSTM

# structure-text pairs
molecule shared in PubChemSTM

but text similarity below 0.6
total

DrugBank-Description 1,154 – 1,154
DrugBank-Pharmacodynamics 1,005 – 1,005
DrugBank-ATC 1,507 1,500 3,007
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C.2 Experiments
For experiments, we introduce three baselines in the main body. As a proof-of-concept, we carry out another baseline called
Random. For Random, both encoders ( fc and ft ) are randomly initialized. The zero-shot retrieval results on three datasets are
shown in Tables 7 to 9.

Table 7. Accuracy (%) of DrugBank-Description T -choose-one retrieval.

Given Chemical Structure Given Text

T 4 10 20 4 10 20

SMILES
Random 24.59 ± 1.14 10.12 ± 1.38 4.97 ± 0.42 24.54 ± 0.97 9.97 ± 0.81 5.09 ± 0.37
Frozen 25.07 ± 1.24 10.22 ± 1.19 5.12 ± 0.65 24.69 ± 1.87 10.20 ± 1.38 5.37 ± 1.15
Similarity 36.35 ± 0.59 23.22 ± 0.58 16.40 ± 0.59 22.74 ± 0.24 10.31 ± 0.24 5.34 ± 0.24
KV-PLM 73.80 ± 0.00 53.96 ± 0.29 40.07 ± 0.38 72.86 ± 0.00 52.55 ± 0.29 40.33 ± 0.00
MoleculeSTM 97.50 ± 0.46 94.18 ± 0.46 91.12 ± 0.46 98.21 ± 0.00 94.54 ± 0.37 91.97 ± 0.46

Graph
Random 25.78 ± 1.43 10.71 ± 0.97 4.83 ± 1.00 24.98 ± 0.32 10.20 ± 0.40 4.80 ± 0.21
Frozen 24.01 ± 1.34 9.39 ± 0.92 4.85 ± 0.52 24.00 ± 1.66 9.91 ± 0.71 5.07 ± 0.75
Similarity 30.03 ± 0.38 13.63 ± 0.27 7.07 ± 0.10 24.81 ± 0.27 10.22 ± 0.24 4.74 ± 0.24
MoleculeSTM 99.15 ± 0.00 97.19 ± 0.00 95.66 ± 0.00 99.05 ± 0.37 97.50 ± 0.46 95.71 ± 0.46

Table 8. Accuracy (%) of DrugBank-Pharmacodynamics T -choose-one retrieval.

Given Chemical Structure Given Text

T 4 10 20 4 10 20

SMILES
Random 24.49 ± 0.68 9.73 ± 0.34 5.14 ± 0.57 25.61 ± 0.62 10.10 ± 0.91 5.07 ± 0.69
Frozen 25.47 ± 1.12 10.55 ± 0.75 5.48 ± 0.70 25.34 ± 0.41 9.86 ± 0.44 4.84 ± 0.26
Similarity 27.85 ± 0.03 10.75 ± 0.02 5.67 ± 0.01 24.58 ± 0.03 11.25 ± 0.03 5.29 ± 0.02
KV-PLM 68.38 ± 0.03 47.59 ± 0.03 36.54 ± 0.03 67.68 ± 0.03 48.00 ± 0.02 34.66 ± 0.02
MoleculeSTM 88.07 ± 0.01 81.70 ± 0.02 75.94 ± 0.02 88.46 ± 0.01 81.01 ± 0.02 74.64 ± 0.03

Graph
Random 26.00 ± 0.37 9.65 ± 0.88 4.95 ± 0.36 25.11 ± 0.63 9.99 ± 0.62 4.82 ± 0.54
Frozen 25.49 ± 1.82 10.19 ± 1.47 4.74 ± 0.56 25.55 ± 0.45 10.15 ± 0.77 4.88 ± 0.55
Similarity 25.33 ± 0.27 9.89 ± 0.52 4.61 ± 0.08 25.28 ± 0.03 10.64 ± 0.02 5.47 ± 0.02
MoleculeSTM 92.14 ± 0.02 86.27 ± 0.02 81.08 ± 0.05 91.44 ± 0.02 86.76 ± 0.03 81.68 ± 0.03

Table 9. Accuracy (%) of molecule-ATC T -choose-one retrieval.

Given Chemical Structure Given Text

T 4 10 20 4 10 20

SMILES
Random 25.03 ± 0.33 9.83 ± 0.19 4.80 ± 0.22 25.44 ± 1.21 10.03 ± 0.94 5.11 ± 0.79
Frozen 25.05 ± 0.94 10.17 ± 0.63 4.99 ± 0.54 25.35 ± 0.78 10.32 ± 0.44 5.22 ± 0.34
Similarity 30.03 ± 0.00 13.35 ± 0.02 7.53 ± 0.02 26.74 ± 0.03 11.01 ± 0.00 5.62 ± 0.00
KV-PLM 60.94 ± 0.00 42.35 ± 0.00 30.32 ± 0.00 60.67 ± 0.00 40.19 ± 0.00 29.02 ± 0.00
MoleculeSTM 70.84 ± 0.07 56.75 ± 0.05 46.12 ± 0.07 73.07 ± 0.03 58.19 ± 0.03 48.97 ± 0.06

Graph
Random 24.48 ± 0.66 9.97 ± 0.25 4.81 ± 0.34 25.48 ± 0.59 10.40 ± 0.37 5.38 ± 0.30
Frozen 24.19 ± 0.77 10.24 ± 0.71 4.87 ± 0.47 24.95 ± 1.52 10.07 ± 0.80 5.06 ± 0.36
Similarity 29.46 ± 0.00 12.34 ± 0.00 6.52 ± 0.00 25.78 ± 1.53 10.23 ± 0.70 5.06 ± 0.67
MoleculeSTM 69.33 ± 0.03 54.83 ± 0.04 44.13 ± 0.05 71.81 ± 0.05 58.34 ± 0.07 47.58 ± 0.05
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C.3 Ablation Study: Fixed Pretrained Encoders
In the main body, we conduct pretraining by adopting pretrained single-modality checkpoints, i.e., the GraphMVP and
MegaMolBART for fc, and SciBERT for ft . Then for MoleculeSTM pretraining, we use contrastive learning and update all
the model parameters. Here we take an ablation study by only optimizing the projection layers to the joint space of the two
branches (pc, pt ) while keeping the two encoders ( fc, ft ) fixed. The results on the three datasets are shown in Tables 10 to 12.

Table 10. Accuracy (%) of DrugBank-Description T -choose-one retrieval.

Given Chemical Structure Given Text

T 4 10 20 4 10 20

SMILES
Random 24.59 ± 1.14 10.12 ± 1.38 4.97 ± 0.42 24.54 ± 0.97 9.97 ± 0.81 5.09 ± 0.37
Frozen 25.07 ± 1.24 10.22 ± 1.19 5.12 ± 0.65 24.69 ± 1.87 10.20 ± 1.38 5.37 ± 1.15
Similarity 36.35 ± 0.59 23.22 ± 0.58 16.40 ± 0.59 22.74 ± 0.24 10.31 ± 0.24 5.34 ± 0.24
MoleculeSTM 47.64 ± 0.40 29.21 ± 0.47 19.69 ± 0.47 52.60 ± 0.46 32.24 ± 0.37 21.45 ± 0.37

Graph
Random 25.78 ± 1.43 10.71 ± 0.97 4.83 ± 1.00 24.98 ± 0.32 10.20 ± 0.40 4.80 ± 0.21
Frozen 24.01 ± 1.34 9.39 ± 0.92 4.85 ± 0.52 24.00 ± 1.66 9.91 ± 0.71 5.07 ± 0.75
Similarity 30.03 ± 0.38 13.63 ± 0.27 7.07 ± 0.10 24.81 ± 0.27 10.22 ± 0.24 4.74 ± 0.24
MoleculeSTM 51.28 ± 0.00 31.99 ± 0.41 20.71 ± 0.47 55.27 ± 0.00 33.08 ± 0.00 21.77 ± 0.00

Table 11. Accuracy (%) of DrugBank-Pharmacodynamics T -choose-one retrieval.

Given Chemical Structure Given Text

T 4 10 20 4 10 20

SMILES
Random 24.49 ± 0.68 9.73 ± 0.34 5.14 ± 0.57 25.61 ± 0.62 10.10 ± 0.91 5.07 ± 0.69
Frozen 25.47 ± 1.12 10.55 ± 0.75 5.48 ± 0.70 25.34 ± 0.41 9.86 ± 0.44 4.84 ± 0.26
Similarity 27.85 ± 0.03 10.75 ± 0.02 5.67 ± 0.01 24.58 ± 0.03 11.25 ± 0.03 5.29 ± 0.02
MoleculeSTM 46.43 ± 0.00 27.42 ± 0.47 18.24 ± 0.47 52.53 ± 0.41 30.53 ± 0.00 19.98 ± 0.00

Graph
Random 26.00 ± 0.37 9.65 ± 0.88 4.95 ± 0.36 25.11 ± 0.63 9.99 ± 0.62 4.82 ± 0.54
Frozen 25.49 ± 1.82 10.19 ± 1.47 4.74 ± 0.56 25.55 ± 0.45 10.15 ± 0.77 4.88 ± 0.55
Similarity 25.33 ± 0.27 9.89 ± 0.52 4.61 ± 0.08 25.28 ± 0.03 10.64 ± 0.02 5.47 ± 0.02
MoleculeSTM 46.29 ± 0.03 27.18 ± 0.02 17.73 ± 0.02 50.95 ± 0.04 31.65 ± 0.03 23.00 ± 0.03

Table 12. Accuracy (%) of DrugBank-ATC T -choose-one retrieval.

Given Chemical Structure Given Text

T 4 10 20 4 10 20

SMILES
Random 25.03 ± 0.33 9.83 ± 0.19 4.80 ± 0.22 25.44 ± 1.21 10.03 ± 0.94 5.11 ± 0.79
Frozen 25.05 ± 0.94 10.17 ± 0.63 4.99 ± 0.54 25.35 ± 0.78 10.32 ± 0.44 5.22 ± 0.34
Similarity 30.03 ± 0.00 13.35 ± 0.02 7.53 ± 0.02 26.74 ± 0.03 11.01 ± 0.00 5.62 ± 0.00
MoleculeSTM 43.41 ± 0.12 25.66 ± 0.06 15.69 ± 0.06 48.75 ± 0.11 29.44 ± 0.06 19.75 ± 0.03

Graph
Random 24.48 ± 0.66 9.97 ± 0.25 4.81 ± 0.34 25.48 ± 0.59 10.40 ± 0.37 5.38 ± 0.30
Frozen 24.19 ± 0.77 10.24 ± 0.71 4.87 ± 0.47 24.95 ± 1.52 10.07 ± 0.80 5.06 ± 0.36
Similarity 29.46 ± 0.00 12.34 ± 0.00 6.52 ± 0.00 25.78 ± 1.53 10.23 ± 0.70 5.06 ± 0.67
MoleculeSTM 42.53 ± 0.07 24.34 ± 0.00 14.78 ± 0.03 48.91 ± 0.03 28.77 ± 0.07 19.28 ± 0.07

7/19



D Downstream: Zero-shot Text-based Molecule Editing
Molecule editing or controllable molecule generation refers to changing the structures of the molecules based on a given and
pretrained molecule generative model. In this work, with the help of a large language model in MoleculeSTM, we are able
to do the zero-shot text-based molecule editing. First, we would like to list two key challenges, comparing the editing task
between the vision domain and molecule domain, as follows:

• Backbone generative model. For domains in vision, the image controllable generation can be quite feasible based on
StyleGAN [15], a well-disentangled backbone model. However, it is nontrivial for deep molecule generative models. A
recent work GraphCG [16] has explored the disentanglement property of the graph-based controllable molecule generation
methods, and the conclusion is that, even though the backbone generative models are not perfectly disentangled, there
still exist methods for controllable generation on highly structured data like molecular graphs or point clouds. Meanwhile,
developing a novel disentangled molecule generative model is out of the scope of this work, since the editing solution by
MoleculeSTM is model-agnostic, and can be easily generalized to future models.

• Evaluation. Image controllable generation is an art problem, i.e., it is subjective and can have multiple (or even infinitely
many) answers. On the contrary, controllable molecule generation is a science problem, i.e., it is objective and has only a
few answers. This has been discussed in Appendix B.

D.1 Experiment Set-up
Implementation Details Because most of the modules are fixed, we only need to learn the adaptor module and the optimized
latent code w. The two key hyperparameters are the learning rate {1e-2, 1e-3} and λ ∈ {1e1,1e0,1e−1,1e−2,1e−3}. As a
fair comparison, for baselines, we take the form of w = win +α ·D, where D is obtained using random, PCA and variance and
λ ∈ {1.0,1.5,2.0,2.5,3.0}. For GS, we repeat the random sampling five times of each input molecule.

Next, we will conduct the zero-shot text-based molecule editing on four types of editing tasks, as well as three case study,
as discussed below:

• Single-objective molecule editing in Appendix D.2 (eight tasks).
• Multi-objective molecule editing in Appendix D.3 (six tasks).
• Binding-affinity-based molecule editing in Appendix D.4 (six tasks).
• Drug relevance editing in Appendix D.5 (four tasks).
• Neighborhood searching for patent drug molecules in Appendix D.6 (three case studies).

Due to the page limit, we only show four multi-objective and four binding-affinity-based editing tasks in the main body. Here
we show more comprehensive results.

We want to mention that for single- and multi-objective editing, we randomly select 200 molecules from ZINC as the input
molecules. None of these 200 input molecules appears in PubChemSTM. Furthermore, the random selection process ensures
that the property distributions of these 200 molecules remain consistent with the entire dataset. Illustrated below (Figures 1
and 2) are three examples of molecular properties: LogP (measuring water solubility), tPSA (measuring permeability) and
molecular weight.

Figure 1. Three property distributions on 200 randomly sampled molecules for editing.

Figure 2. Three property distributions on 250K molecules from ZINC250K.
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D.2 Single-objective Molecule Editing
We first consider eight single-objective properties for molecule editing. As shown in the Methods section, the definitions of the
satisfaction function and threshold ∆ are based on each task specifically, as:

• We use LogP to evaluate the solubility and insolubility. We take 0 and 0.5 as the different thresholds.
• We use QED to evaluate the drug-likeness. We take 0 and 0.1 as the different thresholds.
• We use tPSA to evaluate the high and low permeability. We take 0 and 10 as the different thresholds.
• For the hydrogen bond acceptor (HBA) and hydrogen bond donor (HBD), we can directly count them in the molecules,

and we use 0 and 1 as the different thresholds.
For ∆, it is the threshold that only difference above it can be viewed as a hit. So the larger ∆ means a stricter editing criterion.
Below we show both the quantitative and qualitative results on eight single-objective property molecule editing results.

Table 13. Results on eight single-objective molecule editing. The inputs are 200 molecules randomly sampled from ZINC, and the
evaluation is the hit ratio of the property change. The latent optimization is text-based molecule editing with MoleculeSTM, with the
SMILES string and the molecular graph, respectively.

baseline latent optimization

∆ Random PCA High Variance GS-Mutate SMILES Graph

This molecule is soluble in water. 0 35.33 ± 1.31 33.80 ± 3.63 33.52 ± 3.75 52.00 ± 0.41 61.87 ± 2.67 67.86 ± 3.46
0.5 11.04 ± 2.40 10.66 ± 3.24 10.86 ± 2.56 14.67 ± 0.62 49.02 ± 1.84 54.44 ± 3.99

This molecule is insoluble in water. 0 43.36 ± 3.06 39.36 ± 2.55 42.89 ± 2.36 47.50 ± 0.41 52.71 ± 1.67 64.79 ± 2.76
0.5 19.75 ± 1.56 15.12 ± 2.93 18.22 ± 0.33 12.50 ± 0.82 30.47 ± 3.26 47.09 ± 3.42

This molecule is like a drug. 0 38.06 ± 2.57 33.99 ± 3.72 36.20 ± 4.34 28.00 ± 0.71 36.52 ± 2.46 39.97 ± 4.32
0.1 5.27 ± 0.24 3.97 ± 0.10 4.44 ± 0.58 6.33 ± 2.09 8.81 ± 0.82 14.06 ± 3.18

This molecule is not like a drug. 0 36.96 ± 2.25 35.17 ± 2.61 39.99 ± 0.57 71.33 ± 0.85 58.59 ± 1.01 77.62 ± 2.80
0.1 6.16 ± 1.87 5.26 ± 0.95 7.56 ± 0.29 27.67 ± 3.79 37.56 ± 1.76 54.22 ± 3.12

This molecule has high permeability. 0 25.23 ± 2.13 21.36 ± 0.79 21.98 ± 3.77 22.00 ± 0.82 57.74 ± 0.60 59.84 ± 0.78
10 17.41 ± 1.43 14.52 ± 0.80 14.66 ± 2.13 6.17 ± 0.62 47.51 ± 1.88 50.42 ± 2.73

This molecule has low permeability. 0 16.79 ± 2.54 15.48 ± 2.40 17.10 ± 1.14 28.83 ± 1.25 34.13 ± 0.59 31.76 ± 0.97
10 11.02 ± 0.71 10.62 ± 1.86 12.01 ± 1.01 15.17 ± 1.03 26.48 ± 0.97 19.76 ± 1.31

This molecule has more hydrogen bond acceptors. 0 12.64 ± 1.64 10.85 ± 2.29 11.78 ± 0.15 21.17 ± 3.09 54.01 ± 5.26 37.35 ± 0.79
1 0.69 ± 0.01 0.90 ± 0.84 0.67 ± 0.01 1.83 ± 0.47 27.33 ± 2.62 16.13 ± 2.87

This molecule has more hydrogen bond donors. 0 2.97 ± 0.61 3.97 ± 0.55 6.23 ± 0.66 19.50 ± 2.86 28.55 ± 0.76 60.97 ± 5.09
1 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 1.33 ± 0.24 7.69 ± 0.56 32.35 ± 2.57

Table 14. Visualization of text-based editing on solubility, measured by the logarithm of the octanol-water partition coefficient (LogP) of
the molecules. Generally, molecules with smaller LogP are more soluble in water. For generating molecules soluble in water, we can add
polar components (e.g., oxygens and nitrogens), remove hydrophobic moieties (e.g., benzene and cyclohexane), or replace hydrophobic
groups with polar functionalities in the input molecule. For generating molecules insoluble in water, we can make opposite modifications to
the input molecule. The pink and blue regions highlight the modified structure in the input and output molecules, respectively.

Text Prompt: This molecule is soluble in water.

Input Molecule Output Molecule Input Molecule Output Molecule Input Molecule Output Molecule

LogP: 3.66 LogP: 3.05 LogP: 3.72 LogP: 2.56 LogP: 4.25 LogP: 2.76

Text Prompt: This molecule is insoluble in water.

Input Molecule Output Molecule Input Molecule Output Molecule Input Molecule Output Molecule

LogP: 3.66 LogP: 5.03 LogP: -0.36 LogP: 0.72 LogP: 2.37 LogP: 4.41
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Table 15. Visualization of text-based editing on permeability, measured by the topological polar surface area (tPSA) of the molecules.
Generally, molecules with smaller tPSA are more permeable. For generating molecules with high permeability, we can remove functional
groups or heterocycles with high polarity from the input molecule, such as amides, sulfonamides, ureas, nitro groups, and nitrogen-containing
arenes. For generating molecules with low permeability, we can make opposite modifications to the input molecule. The pink and blue
regions highlight the modified structure in the input and output molecules, respectively.

Text Prompt: This molecule has high permeability.

Input Molecule Output Molecule Input Molecule Output Molecule Input Molecule Output Molecule

tPSA: 104 tPSA: 87 tPSA: 96 tPSA: 68 tPSA: 76 tPSA: 20

Text Prompt: This molecule has low permeability.

Input Molecule Output Molecule Input Molecule Output Molecule Input Molecule Output Molecule

tPSA: 104 tPSA: 116 tPSA: 42 tPSA: 67 tPSA: 20 tPSA: 46

Table 16. Visualization of text-based editing on hydrogen bond acceptors (HBA) and hydrogen bond donors (HBD). For generating
molecules with more HBA, we can add heteroatoms to the input molecule such as oxygen, nitrogen, and sulfur, or replace existing groups
with heteroatom-containing structural motifs. For generating molecules with more HBD, we can add heteroatoms that bear attached
hydrogens, such as functional groups like amines, and heterocycles like pyrroles. The pink and blue regions highlight the modified structure
in the input and output molecules, respectively.

Text Prompt: This molecule has more hydrogen bond acceptors.

Input Molecule Output Molecule Input Molecule Output Molecule Input Molecule Output Molecule

HBA: 6 HBA: 7 HBA: 5 HBA: 6 HBA: 3 HBA: 5

Text Prompt: This molecule has more hydrogen bond donors.

Input Molecule Output Molecule Input Molecule Output Molecule Input Molecule Output Molecule

HBD: 2 HBD: 3 HBD: 2 HBD: 3 HBD: 1 HBD: 2
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D.3 Multi-objective Molecule Editing
We then consider six multi-objective properties for molecule editing. As shown in the Methods section, the definitions of
the satisfaction function and threshold ∆ are based on each task specifically. First, for each single-objective, we follow the
evaluation metric in Appendix D.2, including the solubility, permeability, and the number of HBA and HBD. Then for the
multi-objective evaluation, we consider two cases:

• The simple case with the loose thresholds, such as threshold 0 and 0 for solubility and permeability simultaneously.
• The challenging case with strict thresholds, such as threshold 0.5 and 1 for solubility and HBA/HBD simultaneously and

threshold 0.5 and 10 for solubility and permeability simultaneously.
Then a successful hit needs to satisfy both conditions simultaneously. Below we show both the quantitative and qualitative
results on six multi-objective property molecule editing results.

Table 17. Results on six multi-objective molecule editing. The inputs are 200 molecules randomly sampled from ZINC, and the evaluation
is the hit ratio of the property change. The latent optimization is text-based molecule editing with MoleculeSTM, with the SMILES string and
the molecular graph, respectively.

baseline latent optimization

∆ Random PCA High Variance GS-Mutate SMILES Graph

This molecule is soluble in water
and has more hydrogen bond acceptors.

0 – 0 9.88 ± 1.03 8.64 ± 2.06 9.09 ± 1.25 14.00 ± 2.48 27.87 ± 3.86 27.43 ± 3.41
0.5 – 1 0.23 ± 0.33 0.45 ± 0.64 0.22 ± 0.31 0.67 ± 0.62 8.80 ± 0.04 11.10 ± 1.80

This molecule is insoluble in water
and has more hydrogen bond acceptors.

0 – 0 2.99 ± 0.38 2.00 ± 0.58 2.45 ± 0.67 7.17 ± 0.85 8.55 ± 2.75 8.21 ± 0.81
0.5 – 1 0.45 ± 0.32 0.00 ± 0.00 0.22 ± 0.31 0.17 ± 0.24 2.93 ± 0.30 0.00 ± 0.00

This molecule is soluble in water
and has more hydrogen bond donors.

0 – 0 2.28 ± 1.15 2.23 ± 1.16 4.44 ± 0.58 13.83 ± 2.95 33.51 ± 4.08 49.23 ± 1.71
0.5 – 1 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 9.98 ± 1.03 23.94 ± 1.09

This molecule is insoluble in water
and has more hydrogen bond donors.

0 – 0 0.69 ± 0.58 1.96 ± 0.87 1.79 ± 0.66 5.67 ± 0.62 17.03 ± 2.75 14.42 ± 3.43
0.5 – 1 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 2.59 ± 1.14 3.84 ± 0.71

This molecule is soluble in water
and has high permeability.

0 – 0 5.06 ± 1.21 3.53 ± 0.38 4.88 ± 2.21 8.17 ± 1.03 35.69 ± 3.19 39.74 ± 2.26
0.5 – 10 1.16 ± 0.68 0.67 ± 0.55 0.66 ± 0.54 0.00 ± 0.00 19.15 ± 0.73 22.66 ± 1.90

This molecule is soluble in water
and has low permeability.

0 – 0 12.17 ± 1.05 10.43 ± 2.88 13.08 ± 2.28 19.83 ± 2.46 44.35 ± 0.68 30.87 ± 0.62
0.5 – 10 6.20 ± 0.64 6.23 ± 2.31 6.67 ± 0.53 4.83 ± 0.85 28.67 ± 2.22 20.06 ± 1.26

Table 18. Visualization of text-based editing on multi-objective (compositionality) properties: solubility and hydrogen bond donors (HBD),
measured by LogP and number of HBD of the molecules. Molecules with more HBD are likely also soluble in water, such as replacing
hydrophobic groups (benzene, thiophene, bromide, etc.) with polar groups or rings containing hydrogen-attached heteroatoms (alcohol,
azaindole, carboxylic acid, etc.) in the input molecules. Nevertheless, we can add HBD to the input molecule while reducing its solubility,
such as replacing high-polarity structural motifs (amide, lactone, etc.) with less hydrophilic HBD (indole, thiol, etc.) in the input molecules.
The pink and blue regions highlight the modified structure in the input and output molecules, respectively.

Text Prompt: This molecule is soluble in water and has more hydrogen bond donors.

Input Molecule Output Molecule Input Molecule Output Molecule Input Molecule Output Molecule

LogP: 4.67, HBD: 1 LogP: 2.29, HBD: 2 LogP: 2.15, HBD: 1 LogP: 1.41, HBD: 2 LogP: 1.79, HBD: 1 LogP: 0.43, HBD: 3

Text Prompt: This molecule is insoluble in water and has more hydrogen bond donors.

Input Molecule Output Molecule Input Molecule Output Molecule Input Molecule Output Molecule

LogP: 1.56, HBD: 1 LogP: 2.42, HBD: 2 LogP: 3.26, HBD: 1 LogP: 3.64, HBD: 2 LogP: 3.10, HBD: 2 LogP: 5.00, HBD: 3
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Table 19. Visualization of text-based editing on multi-objective (compositionality) properties: solubility and permeability, measured by
LogP and tPSA of the molecules. Molecules with low permeability are likely also soluble in water, such as adding polar functional groups
(e.g., amide, amine) and removing hydrocarbons (e.g., methyl, phenyl) with regard to the input molecules. Nevertheless, we can increase both
the solubility and permeability of the molecule, such as removing hydrocarbons and polar moieties simultaneously or reducing the size of the
heterocycles (e.g., [1,2]oxazolo[5,4-b]pyridine to imidazole) in the input molecules. The pink and blue regions highlight the modified
structure in the input and output molecules, respectively.

Text Prompt: This molecule is soluble in water and has low permeability.

Input Molecule Output Molecule Input Molecule Output Molecule Input Molecule Output Molecule

LogP: 0.55, tPSA: 71 LogP: -0.34, tPSA: 100 LogP: 2.70, tPSA: 71 LogP: 2.39, tPSA: 82 LogP: 3.70, tPSA: 93 LogP: 1.62, tPSA: 119

Text Prompt: This molecule is soluble in water and has high permeability.

Input Molecule Output Molecule Input Molecule Output Molecule Input Molecule Output Molecule

LogP: 4.46, tPSA: 76 LogP: 3.21, tPSA: 47 LogP: 2.51, tPSA: 84 LogP: 1.82, tPSA: 55 LogP: 3.50, tPSA: 68 LogP: 2.38, tPSA: 58
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D.4 Binding-affinity-based Molecule Editing
We further apply text-based editing on the binding affinity assays. In specific, we take six binding affinity tasks from
ChEMBL [17]. Each assay has a textual description, as listed in Table 20.

Table 20. ChEMBL assay descriptions.

ChEMBL ID Assay Description

1613777 This molecule is tested positive in an assay that are inhibitors and substrates of an enzyme protein. It uses
molecular oxygen inserting one oxygen atom into a substrate and reducing the second into a water molecule.

1613797 This molecule is tested positive in an assay for Anthrax Lethal, which acts as a protease that cleaves the
N-terminal of most dual specificity mitogen-activated protein kinase kinases.

2114713 This molecule is tested positive in an assay for Activators of ClpP, which cleaves peptides in various proteins
in a process that requires ATP hydrolysis and has a limited peptidase activity in the absence of ATP-binding
subunits.

1613838 This molecule is tested positive in an assay for activators involved in the transport of proteins between the
endosomes and the trans Golgi network.

1614236 This molecule is an inhibitor of a protein that prevents the establishment of the cellular antiviral state
by inhibiting ubiquitination that triggers antiviral transduction signal and inhibits post-transcriptional
processing of cellular pre-mRNA.

1613903 This molecule is tested positive in the high throughput screening assay to identify inhibitors of the SARS
coronavirus 3C-like Protease, which cleaves the C-terminus of replicase polyprotein at 11 sites.

For evaluation, we follow the Methods section. Recall that each binding affinity assay can correspond to molecules with
positive and negative labels. Thus, we can train a classifier on these data points, and the satisfy criteria here is if the output
molecules can have higher confidence than the input molecule, where the confidence is predicted using the classifier for each
task. The pipeline can be found in Figure 3.

Input Molecule
(docking score: -9.055)

Output Molecule with GS
(docing score: -8.843)

Output Molecule with MoleculeSTM
(docking score: -10.35)

(a) Set 1, input molecule (SMILES): Cc1cc(F)cc(C(=O)Oc2cccc(C(N)=O)c2)c1

Input Molecule
(docking score: -7.441)

Output Molecule with GS
(docing score: -7.747)

Output Molecule with MoleculeSTM
(docking score: -11.363)

(b) Set 2, input molecule (SMILES): COC(=O)[C@@H]1CN(Cc2cnc(C3CC3)s2)C[C@@H](C)O1

Figure 3. Pipeline for binding-affinity-based molecule editing. The input molecules are randomly sampled from ZINC, and the text prompt
is the assay description. For evaluation, the small molecules for each assay are used to train a binary classifier, and two types of models
(random forest and logistic regression) are considered.
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The hit ratio results are shown in Table 21. Notice that to better prove the validity of our results, we train two classifiers for
each assay: random forest (RF) and logistic regression (LR), with the fingerprint as featurization. the ∆ is 0.

Table 21. Results on six ChEMBL assay editing. Each ChEMBL assay is a binary task and we train a classifier to obtain the
confidence score of each molecule (input and output molecules). The inputs are 200 molecules randomly sampled from ZINC,
and the evaluation is the hit ratio of the confidence change. The latent optimization is the text-based molecule editing with
MoleculeSTM, with the SMILES string and the molecular graph, respectively.

baseline latent optimization

ChEMBL ID Random PCA High Variance GS-Mutate SMILES Graph

1613777 RF 44.99 ± 2.08 44.49 ± 1.22 44.45 ± 1.01 39.17 ± 3.66 48.70 ± 2.06 44.53 ± 1.60
LR 47.34 ± 5.53 49.13 ± 0.86 49.69 ± 6.75 51.50 ± 2.86 54.09 ± 1.94 50.55 ± 3.14

1613797 RF 44.76 ± 2.18 46.25 ± 0.97 46.92 ± 3.34 46.67 ± 1.55 55.03 ± 2.23 49.03 ± 0.03
LR 48.40 ± 3.71 49.92 ± 4.31 48.67 ± 1.64 49.17 ± 3.01 57.98 ± 3.34 54.95 ± 3.74

2114713 RF 39.87 ± 2.32 42.91 ± 2.64 42.19 ± 3.68 41.33 ± 1.25 49.20 ± 2.11 60.93 ± 2.53
LR 51.39 ± 1.15 52.62 ± 1.64 52.24 ± 1.07 50.50 ± 1.47 56.93 ± 3.67 58.77 ± 2.41

1613838 RF 44.49 ± 1.48 44.71 ± 1.80 45.30 ± 2.47 36.00 ± 2.68 43.94 ± 3.75 49.13 ± 2.52
LR 50.22 ± 4.23 49.73 ± 2.33 44.69 ± 2.41 41.33 ± 3.17 47.50 ± 2.28 56.13 ± 1.50

1614236 RF 41.33 ± 3.59 42.28 ± 1.91 42.85 ± 2.88 45.33 ± 1.65 57.90 ± 2.39 35.71 ± 4.19
LR 46.57 ± 0.51 49.34 ± 1.80 50.62 ± 3.86 56.00 ± 1.08 65.78 ± 5.67 46.36 ± 2.53

1613903 RF 44.28 ± 0.77 43.83 ± 2.65 42.00 ± 3.19 46.17 ± 0.85 56.82 ± 3.96 58.70 ± 1.43
LR 53.94 ± 3.30 48.63 ± 4.49 56.19 ± 2.51 56.33 ± 0.94 58.31 ± 2.98 64.64 ± 5.23

14/19



Then we add docking for visualization in Figure 4. We choose the ChEMBL 1613777 with the available PDB structure. In
specific, we first extract the output molecules using MoleculeSTM with confidence (RF and LR) higher than the ones generated
with baselines. Then we run the molecular docking software for the results. The details of docking settings are listed below.

• We use Merck molecular force field (MMFF) [18] provided in RDKit [19] to embed (generate) 3D conformers for each
molecule. The dielectric constant is set to be 80 and the maximum iteration of optimization is 1000 for MMFF, and the
up-to-5 conformers from each molecule are used for further analysis.

• For the binding target, we consider assay P450 (CYP) 2C19 [20] (CHEMBL id: 1613777) and select the corresponding
crystal structure available in the Protein Data Bank (PDB) (PDB id: 4GQS). Further, we take chain A for docking running.
Later for the binding, the binding pockets are aligned with the original ligand in the crystal structure of PDB complexes:
the center is set to (-81.48, 16.55, -41.6), and the box is (20.0, 23.0, 25.0).

• Then we take a preprocessing step to complement the hydrogen atoms and add partial charges. We utilize meeko v0.3.3
for small molecules and AutoDock Flexible Receptor (ADFR) suite v1.2 for proteins.

• For docking, we use AutoDock Vina v1.2.3 [21]. Each molecule conformer is docked with exhausitiveness being 32,
and the pose with the best (lowest) docking score is picked and used for visualization. For visualization, we use UCSF
Chimera.

ZINC

Molecule 001
Molecule 001
Molecule 002

...

...

Molecule 100
Molecule 101
Molecule 102

...

...

Neg

Pos

C
lassifier

Assay Description

encode fg

decode hg

Figure 4. Two sets of docking visualization for binding-affinity-based molecule editing. The text prompt is from ChEMBL 1613777 (“This
molecule is tested positive in an assay that are inhibitors and substrates of an enzyme protein. It uses molecular oxygen inserting one oxygen
atom into a substrate, and reducing the second into a water molecule.”). For visualization, the input molecule and output molecules with GS
and MoleculeSTM are displayed. It is observed that MoleculeSTM can generate molecules with the lowest docking scores (with the most
Hydrogen bonds, and marked in red dashed lines). In set 1 (a), the output molecules are sharing the same molecule scaffold. In set 2 (b), the
motif of the output molecule using MoleculeSTM also changes.
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D.5 Drug Relevance Editing
As a proof-of-concept, we further take four editing tasks on common drug editing. The text prompts used here are to make
the input molecules look like an existing drug, e.g., “This molecule looks like Penicillin.” Following the Methods section, the
satisfy function used is the Tanimoto similarity, and the threshold ∆ takes the value of 0 and 0.05.

Table 22. Results on four common drug molecule editing. The inputs are 200 molecules randomly sampled from ZINC, and the evaluation
is the hit ratio on the increase of the Tanimoto similarity with the common drug. The latent optimization is text-based molecule editing with
MoleculeSTM, with the SMILES string and the molecular graph, respectively.

baseline latent optimization

∆ Random PCA High Variance GS-Mutate SMILES Graph

This molecule looks like Penicillin. 0 43.61 ± 2.23 46.51 ± 3.02 44.42 ± 3.56 28.67 ± 0.94 58.13 ± 0.97 50.91 ± 2.80
0.05 0.69 ± 0.55 0.23 ± 0.32 0.89 ± 0.30 0.67 ± 0.62 11.01 ± 0.58 3.64 ± 0.57

This molecule looks like Aspirin. 0 43.82 ± 1.41 43.12 ± 5.35 44.63 ± 3.33 25.00 ± 2.16 40.13 ± 1.33 54.05 ± 3.58
0.05 2.99 ± 0.38 3.08 ± 0.82 2.45 ± 0.33 0.33 ± 0.47 4.28 ± 1.22 10.84 ± 1.26

This molecule looks like Caffeine. 0 42.71 ± 3.16 40.33 ± 0.71 40.64 ± 3.89 26.17 ± 1.31 46.08 ± 3.81 51.01 ± 1.22
0.05 0.69 ± 0.01 0.23 ± 0.32 0.44 ± 0.31 0.33 ± 0.24 1.61 ± 0.67 0.61 ± 0.01

This molecule looks like Dopamine. 0 42.00 ± 3.08 42.50 ± 2.12 41.33 ± 2.86 30.50 ± 1.63 47.00 ± 4.11 55.50 ± 2.73
0.05 0.00 ± 0.00 0.44 ± 0.31 0.22 ± 0.31 0.83 ± 0.24 2.30 ± 0.44 6.24 ± 0.56

D.6 Case Studies on Neighborhood Searching for Patent Drug Molecules
To demonstrate the utility of text-based molecule editing, we show three case studies of generating approved drugs from their
analogs. Lead optimization is a critical phase of drug discovery in which closely related compounds are made based on the
lead molecule, aiming to improve its efficacy and DMPK (drug metabolism and pharmacokinetics) properties and ultimately
identifying a drug candidate [22]. A text prompt calling for greater drug-like properties will thus be informative towards
improving on deficiencies in the lead molecule and accelerating drug discovery research.

In specific here, the input molecules are the patented analogs of each approved drug molecule, and the input text prompt is
single-objective, like the ones in Appendix D.2. The goal here is to check if the approved drugs can be successfully generated
as the output molecules, with the structural changes consistent with the property improvement reflected in the text prompt.
For example, in Table 23 (a), Erlotinib is successfully generated from an analog by replacing an imidazole substituent to a
methoxy group [23]. This change reflects a tPSA drop from 83 to 75, consistent with the text prompt indicating a higher
permeability. Table 23 (b) generates Celecoxib from its amino-substituted derivative [24], where the removal of the amino
group yields a greater intestinal permeability of the molecule leading to higher bioavailability. Bioavailability is the fraction of
a drug molecule that reaches the systemic circulation, a key factor for oral drug absorption [25]. Finally, Table 23 (c) illustrates
how potential metabolic liabilities in a molecule can be addressed via text-based editing. A text calling for a metabolically
stable molecule successfully turns a trimethoxy arene to a dimethoxy arene in Donepezil [26], where the former represents an
electron-rich aromatic compound known to undergo oxidative phase I metabolisms [27].

Table 23. Visualization on three single-objective molecule editing on drug analogs that generates approved drugs based on the text prompt.
The pink and blue regions highlight the modified structure in the input and output molecules, respectively.

(a) Prompt: This molecule has high permeability. (b) Prompt: This molecule has high bioavailability. (c) Prompt: This molecule is metabolically stable.

Input Molecule Output Molecule Input Molecule Output Molecule Input Molecule Output Molecule

CAS: 183320-43-6 Tarceva (Erlotinib) CAS: 170570-28-2 Celebrex (Celecoxib) CAS: 120013-52-7 Aricept (Donepezil)
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E Downstream: Molecular Property Prediction
In this section, we review two main categories of datasets used for molecular property prediction downstream tasks from
MoleculeNet and molecule benchmarking works [28, 29].

Molecular Property: Pharmacology The Blood-Brain Barrier Penetration (BBBP) [30] dataset measures whether a molecule
will penetrate the central nervous system. All three toxicity-related datasets, Tox21 [31], ToxCast [28], and ClinTox [32]
are related to the toxicity of molecular compounds. The Side Effect Resource (SIDER) [33] dataset stores the adverse drug
reactions on a marketed drug database.

Molecular Property: Biophysics Maximum Unbiased Validation (MUV) [34] is another sub-database from PCBA, and is
obtained by applying a refined nearest neighbor analysis. HIV is from the Drug Therapeutics Program (DTP) AIDS Antiviral
Screen [35], and it aims at predicting the inhibition of HIV replication. BACE measures the binding results for a set of inhibitors
of β -secretase 1 (BACE-1) and is gathered in MoleculeNet [28].

Table 24. Summary for the molecule chemical datasets.

Dataset Task # Tasks # Molecules

BBBP Classification 1 2,039
Tox21 Classification 12 7,831
ToxCast Classification 617 8,576
Sider Classification 27 1,427
ClinTox Classification 2 1,478
MUV Classification 17 93,087
HIV Classification 1 41,127
Bace Classification 1 1,513

For data splitting, we adopt the scaffold splitting [28]. Scaffold measures the skeleton structure of molecules, and scaffold
splitting means we will put the molecules with more common scaffolds into training, and the rest into validation and test, so as
to mimic the out-of-distribution (OOD) setting. The OOD setting is more common in real scenarios and thus is preferred to test
the pretrained molecule representation power.

Implementation Details For the SMILES string, we use MegaMolBART [5] as the backbone Transformer model. For
the molecular graph, we use the same backbone GIN model, and we use rich features (as used for the regression tasks in
GraphMVP [8]). We list the main hyperparameters below.

Table 25. Hyperparameter specifications for molecular property prediction.

Hyperparameter Value

Pretraining Baseline
epochs {100}
learning rate {1e-3}
weight decay {0}

Downstream
epochs {100}
learning rate {1e-3, 5e-4}
weight decay {0}

Choice of backbone models. We want to clarify that the MoleculeSTM is agnostic to the backbone encoders for each
modality, e.g., the molecule representation model.

• For the backbone model, we use the GIN model as the fixed 2D GNN backbone encoder. In other words, the performance
of MoleculeSTM is limited by the 2D backbone model.

• In the molecule pretraining research line, (e.g., AttrMask [36], MolCLR [37], GraphMVP [8], MoleculeSDE [38]), all of
these works adopt GIN as the 2D backbone model, serving as a control to test the effectiveness of various pretraining
algorithms. This is a similar case for our proposed MoleculeSTM.

• In the future, we would like to explore more advanced GNN models on molecules.
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