Relaxed incremental variational formulation for damage at large strains with application to fiber-reinforced materials and materials with truss-like microstructures
- Creators
- Balzani, Daniel
- Ortiz, Michael
Abstract
In this paper, an incremental variational formulation for damage at finite strains is presented. The classical continuum damage mechanics serves as a basis where a stress-softening term depending on a scalar-valued damage function is prepended an effective hyperelastic strain energy function, which describes the virtually undamaged material. Because loss of convexity is obtained at some critical deformations, a relaxed incremental stress potential is constructed, which convexifies the original nonconvex problem. The resulting model can be interpreted as the homogenization of a microheterogeneous material bifurcated into a strongly and weakly damaged phase at the microscale. A one-dimensional relaxed formulation is derived, and a model for fiber-reinforced materials based thereon is given. Finally, numerical examples illustrate the performance of the model by showing mesh independency of the model in an extended truss, analyzing a numerically homogenized microtruss material and investigating a fiber-reinforced cantilever beam subject to bending and an overstretched arterial wall.
Additional Information
© 2012 John Wiley & Sons, Ltd. Received 27 October 2011; Revised 14 March 2012; Accepted 9 April 2012. Article first published online: 7 Jun. 2012. The financial support of the 'Deutsche Forschungsgemeinschaft' (DFG), project no. BA 2823/6-1, is gratefully acknowledged.
Additional details
- Eprint ID
- 35718
- DOI
- 10.1002/nme.4351
- Resolver ID
- CaltechAUTHORS:20121129-084222336
- BA 2823/6-1
- Deutsche Forschungsgemeinschaft (DFG)
- Created
-
2012-11-29Created from EPrint's datestamp field
- Updated
-
2021-11-09Created from EPrint's last_modified field