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Learning quantum systems via out-of-time-order correlators
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Learning the properties of dynamical quantum systems underlies applications ranging from nuclear magnetic
resonance spectroscopy to quantum device characterization. A central challenge in this pursuit is the learning of
strongly interacting systems, where conventional observables decay quickly in time and space, limiting the in-
formation that can be learned from their measurement. In this work, we introduce a new class of observables into
the context of quantum learning—the out-of-time-order correlator—which we show can substantially improve
the learnability of strongly interacting systems by virtue of displaying informative physics at large times and
distances. We identify two general scenarios in which out-of-time-order correlators provide a significant learning
advantage: (i) when experimental access to the system is spatially restricted, for example, via a single “probe”
degree of freedom, and (ii) when one desires to characterize weak interactions whose strength is much less
than the typical interaction strength. We numerically characterize these advantages across a variety of learning
problems, and find that they are robust to both read-out error and decoherence. Motivated by these physical
scenarios, we introduce several learning tasks—including Clifford tomography, and learning the connectivity of
an unknown unitary—in which out-of-time-order experiments have a provable exponential advantage over any
learning protocol involving only time-ordered operations.
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I. INTRODUCTION

Learning properties of quantum systems can pose chal-
lenges not present in their classical counterparts [1,2]. These
differences often stem fundamentally from the existence of
entanglement—measurements of a quantum system that is
highly entangled with another system or the environment
reveal little information from which to learn. In practical
settings, these difficulties are most commonly encountered
in strongly interacting quantum systems. Strong interactions
can introduce nonlocal entanglement throughout the system at
short time scales, and are found to thereby inhibit the learning
of system properties (e.g., the Hamiltonian) from physical
observables [3–7].

The ubiquity of strong interactions in experimental appli-
cations of quantum learning has spurred a variety of solutions
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to this problem. For instance, in nuclear magnetic resonance
(NMR) spectroscopy, a suite of technologies have been de-
veloped to controllably dampen undesired strong interactions
between solid-state nuclear spins, which has enabled the iden-
tification of hitherto inaccessible molecular structures [8]. In
a similar spirit, in quantum device characterization [9] and
quantum sensing [6], dynamical decoupling control sequences
[10] can effectively eliminate unwanted interactions and im-
prove learning of the residual interactions.

Other approaches include learning by transducing quan-
tum data from the system onto a quantum simulator [2–5],
or learning from high-precision local measurements at early
times, before entanglement has formed [11,12]. Nonetheless,
owing to incomplete control or limited experimental preci-
sion, many physical systems remain unlearnable with existing
approaches.

In this paper, we introduce a different paradigm for learn-
ing in strongly interacting quantum systems—learning via
out-of-time-order correlators (OTOCs). First studied in early
works on semi-classical methods [13] and NMR [14], the
OTOC has more recently initiated a renaissance of work at
the intersection of quantum information theory, many-body
dynamics, and quantum gravity (e.g., Refs. [15–24]). Phys-
ically, OTOCs quantify the spread of local quantum infor-
mation into highly nonlocal correlations [25]. Experimental
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FIG. 1. Schematic of time-ordered correlators (TOCs) and out-
of-time-order correlators (OTOCs) in strongly interacting systems.
TOCs typically decay in O(1) times and distances (top, red), making
it hard to learn features (yellow bond) that manifest only at late times.
OTOCs utilize backwards time evolution to “refocus” many-body
correlations (bottom, blue), enabling learning of such features.

measurements of the OTOC typically employ reversed time
evolution to refocus these correlations, and have been per-
formed on dozens of qubits in superconducting quantum
processors and trapped ion quantum simulators, and hundreds
of nuclear spins in NMR spectroscopy [26–30].

In this work, we utilize the OTOC as a tool for learning
properties of strongly interacting quantum systems. Our appli-
cation is motivated by a simple intuition: while time-ordered
observables decay quickly as a system becomes entangled,
out-of-time-order observables continue to fluctuate up to long
times (Fig. 1). Guided by this intuition, we demonstrate the
power of learning via OTOCs across a range of physical
systems, supported by numerical studies, phenomenological
estimates, and rigorous information-theoretic proofs. We be-
gin in locally interacting systems, where we identify two
general scenarios in which OTOCs provide a strong learning
advantage: (i) when experimental access to the system is
spatially restricted, for example, via a single “probe” qubit
[31–33], and (ii) for detecting weak interactions in an other-
wise strongly interacting system [6,9]. We characterize these
advantages using both information-theoretic measures (the
Fisher information) and performance metrics for concrete
learning tasks. Moreover, we find that the advantages are
robust to experimental read-out error and time-reversal imper-
fections arising from strong coupling with an environment or
decoherence.

Finally, motivated by recent advances in provable learning
advantages [4,5,34], we introduce two learning tasks that in-
volve characterizing properties of unitary operations if given
oracle access. Our first task concerns learning the connectivity
of a unitary operation. We show that a single out-of-time-order
experiment can learn the connectivity, while in a companion
work [35] we establish the exponential difficulty of this task
for any time-ordered learning protocol. Our second task shows
that learning via OTOCs can be particularly advantageous
in restricted computational models. We consider performing
tomography of a Clifford unitary. We prove that out-of-time-
order experiments provide an exponential advantage over

time-ordered experiments for this task in the presence of any
nonzero read-out error, or when read-out is restricted to a sin-
gle qubit (related to the DQC1 model of quantum computation
[36,37]).

II. BEHAVIOR OF TIME-ORDERED VERSUS
OUT-OF-TIME-ORDER CORRELATORS

We begin by reviewing the phenomenology of time-
ordered and out-of-time-order correlators in ergodic locally
interacting systems (Fig. 1). A time-ordered correlator (TOC)
is defined as any correlation function that takes the following
general form:

CTOC = tr(Ak (tk ) . . . A1(t1) ρ B1(t ′
1) . . . B�(t ′

�)), (1)

where the operators A, B increase in time away from the initial
density matrix ρ, i.e., tk > · · · > t1 and t ′

� > · · · > t ′
1. Time-

ordered correlators can be measured by evolving the state
ρ forward in time (e.g., via Hamiltonian evolution O(t ) =
eiHt Oe−iHt ) while applying intermediary quantum operations
at each time ti, t ′

j [38]. Any correlation function that does not
obey this form is called an out-of-time-order correlator.

A common example of a time-ordered correlator is the two-
point function,

CTOC = 〈Vx(t )Wx′ (0)〉, (2)

where Vx,Wx′ are local operators at sites x, x′. Here, 〈·〉 ≡
tr(·)/2L denotes the infinite temperature trace for L qubits.
We can also consider the correlator in a specific initial
state, Cψ

TOC = 〈ψ |Vx(t )Wx′ (0)|ψ〉. Such correlators measure
the spread of local quantities in space and time; for instance,
how much spin prepared at site x′ at time zero has transferred
to site x at time t . A wide range of literature on thermalization
in strongly interacting systems has found that local TOCs
typically decay quickly, i.e., in O(1) times, to their thermal
values [39]. This quick decay can inhibit learning tasks, since
no additional information can be acquired from the TOC at
times after the decay has occurred [7].

Meanwhile, the prototypical out-of-time-order correlator is
the four-point function [25],

COTOC = 〈Vx(t )Wx′ (0)V †
x (t )Wx′ (0)〉, (3)

with local unitary operators Vx,Wx′ . Again, we can also
define the OTOC for a specific initial state via Cψ

OTOC =
〈ψ |Vx(t )Wx′ (0)V †

x (t )Wx′ (0)|ψ〉. Unlike time-ordered correla-
tors, OTOCs typically require both forwards and backwards
time evolution to measure [25,35]. (Importantly for our ap-
plication, nearly all experimental techniques for time-reversal
rely only on the type of interaction being reversed and re-
quire no knowledge of the specific Hamiltonian, which one
might wish to learn. For example, the same pulse sequence
reverses a spin Hamiltonian with dipolar couplings regardless
of the specific coupling strengths [29].) Physically, the OTOC
probes whether information encoded at site x′ at time zero
is contained in correlations involving site x at time t . This
is quantified by the squared commutator of a time-evolved
operator at x with a local operator at x′, 〈|[Vx(t ),Wx′ (0)]|2〉 =
1 − COTOC. In local strongly interacting systems, operators are
expected to spread ballistically according to the connectivity
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of the system [23,40,41]. Crucially, this spread continues for
a duration proportional to the system’s spatial extent ∼L by
which time the information has been delocalized across the
entire system.

This phenomenology leads to two central intuitions for
learning from OTOCs. First, the dynamics of the OTOC
contain information primarily about the connectivity of the
system under study. Second, the OTOC continues to reveal
such information up to O(L) times, long after TOCs have
decayed. Notice that this timescale increases as the system
size increases. In what follows, we apply these intuitions to
identify two broad regimes where access to OTOCs provides
a significant learning advantage.

III. QUANTUM LEARNING SCENARIOS

The learning tasks we consider all involve estimating prop-
erties of an unknown Hamiltonian from experiments involving
time evolution under the Hamiltonian. For concreteness, we
assume that the experiments consist of measuring correlation
functions of the form of Eqs. (3) and (2). We will compare the
performance of learning algorithms for different tasks when
the algorithm has access to out-of-time-order correlation
functions [Eq. (3)] versus time-ordered correlation functions
[Eq. (2)]. From the physical arguments in the preceding sec-
tion, we anticipate that access to more general experimental
measurement schemes within a given time-ordering, e.g., via
shadow tomography or related techniques [42–44], will not
qualitatively change the observed physics (see Appendix A
for additional discussion).

Our learning tasks fall roughly into two categories. First,
we consider classification-based tasks, where one’s goal is to
classify some discrete high-level feature of the Hamiltonian
such as the connectivity of its interactions. Second, we con-
sider parameter-learning tasks, where one’s goal is to learn
the value of a continuous parameter of the Hamiltonian to
the highest precision possible. We will see in the subsequent
sections that access to OTOCs provides significant advantages
for both sets of tasks, demonstrating the generality of our
approach.

In both cases, solving the learning tasks requires compar-
ing the experimental data from the unknown Hamiltonian to
data generated by a trusted classical or quantum simulation.
If the dynamics can be analytically solved or estimated, the
data from the trusted simulator could also be replaced with
an analytic solution. Such a comparison is necessary in or-
der to relate features of the Hamiltonian to the experimental
measurement outcomes. For example, if one is estimating a
parameter J from a measured correlation function C, a simple
approach would be to simulate the correlation functions C(J )
for various values of J and see which value matches the exper-
imental result. we emphasize that our use of device (2) does
not rely on knowledge of the parameters of the Hamiltonian
(1).

In the classification tasks, the goal is to predict some
discrete property of the unknown Hamiltonian from mea-
surements of its correlation functions. We suppose that the
Hamiltonian is unknown but is drawn from some known
distribution (e.g., each of the terms in the Hamiltonian takes
a random value within a known range), which reflects the

prior knowledge of the experimenter. Since these tasks involve
high-dimensional input data (e.g., the correlation functions
for many different sites x and times t), we approach them
using machine learning techniques. Specifically, we envision
using a trusted simulator to compute the correlation functions
for ensembles of Hamiltonians with different values of the
discrete property. These ensembles can then be used to train
a classical machine learning model that predicts the desired
property from the correlation functions. Once the model is
trained, we can apply the model to the experimentally mea-
sured correlation functions to predict the desired property
of the unknown Hamiltonian. We emphasize that this use of
the trusted classical or quantum simulator does not rely on
knowledge of the parameters of the unknown Hamiltonian.
We describe further details of the machine learning procedure
in the following sections, within the context of the specific
learning scenarios.

In the parameter-learning tasks, instead of solving the task
explicitly, we quantify the optimal learnability of the pa-
rameter using the Fisher information (FI). The FI quantifies
the amount of information that a random variable (e.g., a
correlation function C, measured within some read-out error
δ) carries about an unknown parameter (e.g., a Hamiltonian
parameter, J). If one assumes that read-out errors are normally
distributed, the FI is simply a squared derivative, FI(J|C) ≡
δ2FI(J|C; δ) = |∂C/∂J|2, where we remove the δ-dependence
by introducing a factor δ2. The FI bounds the learnability of
the parameter for any learning strategy based on the given
correlation function. Specifically, the Cramer-Rao bound of
statistics states that the variance in any estimate of the param-
eter is lower bounded by the inverse Fisher information [45].
If the read-out errors are normally distributed, the Cramer-Rao
bound is easily achieved using the sample mean, i.e., calculat-
ing the average correlator Cavg over measurement outcomes,
and setting J such that C(J ) = Cavg.

This logic extends straightforwardly to the case when the
experimenter has access to many correlation functions. In this
scenario, if the read-out error is shot-noise limited, the optimal
learning strategy would be to identify the single correlator
with the highest FI and perform many repeated measurements
of this correlator. The repeated measurements minimize the
shot-noise δ. This in turn minimizes the variance in the pa-
rameter estimate. In the numerical examples that follow, we
thus quantify the learnability of a parameter J by taking the
maximum of the FI over all available correlation functions,
maxC FI(J|C) [46].

IV. LEARNING WITH RESTRICTED ACCESS

The first regime we consider is learning in systems with
restricted access. Specifically, motivated by recent advances
in solid-state defects [32,33,47,48] and NMR [49–51], we
focus on the scenario where an experimenter has state prepa-
ration and read-out capabilities over only a single “probe”
qubit interacting with a larger system that one wishes to
learn. We note that high-fidelity OTOC measurements have
already been achieved in similar setups by using rapid global
pulse sequences to reverse time evolution [29,52,53]. Previous
theoretical approaches to learning in this scenario have been
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FIG. 2. Learning with state preparation and read-out restricted to
a probe qubit, and local unitary control over the remaining system.
(a) Results from SVM regression for learning the distance, d , in
the spin geometry shown, with access to TOCs (red) or both TOCs
and OTOCs (blue). Color bars (black ticks) denote 75% (100%)
percentiles of predictions on 200 disorder realizations, and grey step
function represents the actual d . (b) Fisher information, FI(Jd |C), of
an interaction, Jd (top; red line), a distance d away from the probe
(top; purple circle), maximized over all correlators, C, in an L-qubit
1D chain. The FI decays exponentially in d when C is time-ordered
(red), and algebraically, ∼1/d , when C is out-of-time order (blue).

limited to noninteracting dynamics [31,51,54–57]. Mean-
while, experiments have found that it is in general difficult to
learn features of a system that are distant from the probe qubit
[32,33]. In strongly interacting systems, this difficulty can be
understood from the quick decay of correlation functions in
space and time. Here, we provide evidence via phenomeno-
logical estimates (Appendix B) and numerical simulations
(Fig. 2) that access to OTOCs can exponentially improve the
learnability of distant features.

To be concrete, we will consider two scenarios for the
degree of experimental control over the larger system: local
unitary control and global unitary control. The latter, weaker

form of control is more common in current experiments
[32,48–50], but the former is also achievable depending on,
for example, the strength and localization of optical address-
ing of the larger system [58]. We will also assume that the
larger system begins in an infinite temperature (i.e., maxi-
mally mixed) state, which is the natural scenario in NMR and
solid-state defect setups [47,49]. A simple class of measure-
ment protocols proceeds as follows.

(1) Prepare the probe qubit p in an eigenstate of an oper-
ator Vp, such that the density matrix of the entire system is
ρ = 1

2 (1p + Vp) ⊗ 1
2L−1 1sys.

(2) Time-evolve by time τ .
(3) Perturb the system by a unitary operation W . Depend-

ing on the degree of experimental control, this might be a
global spin rotation or a local operation on a qubit x.

(4) Time-evolve by a time τ ′.
(5) Read out the expectation value of Vp on the probe

qubit.
Taking τ, τ ′ to be positive (e.g., τ = τ ′ = t/2), this allows

measurement of time-ordered correlation functions of the
form 〈Vp(t )W (t/2)Vp(0)W †(t/2)〉. With access to reversible
time evolution (e.g., τ = −τ ′ = t), the above protocol also al-
lows measurement of out-of-time-order correlation functions
〈Vp(0)W (t )Vp(0)W †(t )〉. We note that, in step 1, the probe
qubit does not need to be in an exact eigenstate and could
instead be initialized with any finite polarization f of the Vp

operator, i.e., replacing 1p + Vp → 1p + f Vp.
We begin our exploration of learning via OTOCs by in-

troducing a concrete learning task. We begin with the case
of local unitary control. We consider the following scenario:
one is given access to a quantum system consisting of two
spin chains intersecting at a distance d from a probe qubit
[Fig. 2(b)]. The value of d as well as the specific Hamiltonian
parameters of the system are unknown (see below for the
specific distribution that the Hamiltonian is drawn from). The
goal is to learn the value of d , i.e., the geometry of the system,
from measurements of the system’s correlation functions. This
task is a toy model meant to explore the ability of the OTOC
to learn distant geometric features of a system in restricted
access scenarios. As discussed in the previous section, we
approach this task by training a classical machine learning
model to predict d from the measured correlation functions,
using training data generated by either a classical computer or
a separate trusted quantum simulator.

Let us briefly summarize our numerical simulations in
more detail (see Appendix A for a complete descrip-
tion). Throughout this work, we consider spin systems
with disordered on-site fields, Hf = ∑

i,α hα
i σα

i with hα
i ∈

[−1, 1] and α = x, y, z, and disordered dipolar interactions
between neighboring spins, Hc = ∑

〈i j〉 Ji j (σ x
i σ x

j + σ
y
i σ

y
j −

2σ z
i σ z

j ) with Ji j ∈ [0.6, 1.4]. We specify to Floquet dynamics
consisting of alternating applications of Hf and Hc for time
T = π/2, and simulate time evolution via Krylov-subspace
methods [59]. We expect that learning Floquet dynamics will
be qualitatively similar to learning time-independent Hamilto-
nian dynamics at moderate times and distances, which we are
restricted to in our numerics (see Appendix C for numerical
support of this statement). At larger distances, we expect
Hamiltonian dynamics to be dominated by hydrodynamics of
the conserved energy (Appendix B) and the two will differ. We
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FIG. 3. Learning in the restricted access scenario with global
unitary control for TOCs (red) and both OTOCs and TOCs (blue).
Results are for a binary classification task to characterize whether the
system geometry is a line or loop. For probes at distances d � 3 from
the boundary, learning via TOCs gives trivial accuracy. Meanwhile,
learning via OTOCs gives an accuracy that increases with the system
size L.

verify that the dynamics studied are in the ergodic regime, and
not many-body localized, by observing the decay of two-point
autocorrelation functions in Appendix A.

Returning to the learning task at hand, we train a support
vector machine (SVM) on 3000 randomly drawn Hamil-
tonians (300 for each value of d = 0, . . . , 9), and test its
performance on 2000 additional Hamiltonians. The input to
the machine learning model consists of the correlations func-
tions described above for a range of times t and local operators
Wx. To mimic the conditions of realistic experimental set-
tings, we add a Gaussian distributed “read-out error” to all
correlation functions, with mean zero and standard deviation
δ = 3%. The model’s predictions as a function of the actual
value of d are displayed in Fig. 2(b), for learning either via
TOCs (red) or both TOCs and OTOCs (blue). We find that
learning via OTOCs allows accurate predictions of d within
±1 of its actual value for all distances probed (up to d = 9).
In contrast, with access to only TOCs, the model performs
significantly worse for all d and resorts to nearly random
guessing for d � 3.

We now turn to the case of global unitary control. We
consider a slightly simpler learning task to reflect the lesser
information available with global control. Namely, we sup-
pose that one is given access to an unknown quantum spin
chain with either a line or loop geometry (i.e., either open
or periodic boundary conditions). In the line geometry, we
suppose the probe qubit is a distance d from the boundary.
The goal is to use the correlation functions of the system,
involving global spin rotations W = eiφ

∑
j σα

j for various φ, α,
to perform binary classification of the two possible geome-
tries. Using the same machine learning procedure as in the
previous task, we indeed find a sizable learning advantage for
OTOCs (Fig. 3). This advantage is particularly pronounced for
distances d greater than only a few qubits, since after this the
TOC provides little information. Moreover, we observe that

this advantage increases with increasing system size. Indeed,
in the limit of large system sizes in ergodic dynamics, the
learning task we consider is strictly solvable with OTOCs
and strictly impossible with TOCs. We expect that learning
tasks involving more complicated geometric features might
be solvable in larger-size systems with global unitary control
as well. In Appendix C, we discuss an additional threefold
classification task, and how learning is modified when the
experimentalist has only global state preparation and read-out.

To quantify the learning advantage of OTOCs for more pre-
cise learning tasks, we turn to the Fisher information (FI). We
numerically compute the FI in ergodic 1D spin chains, where
one seeks to learn a coupling Jd lying a distance d away from
a probe qubit [Fig. 2(b) inset] [31,51,54–57]. We consider the
same set of correlation functions as specified for the learning
task in Fig. 2(a). In Fig. 2(b), we plot the maximum Fisher
information maxC FI(J|C) over all correlation functions (i.e.,
over all x, t), averaged over 200 and 1000 disorder realizations
for TOCs and OTOCs respectively. We find that the maximum
FI of TOCs (red) decays exponentially in the distance d from
the probe qubit. In contrast, the maximum FI of OTOCs (blue)
follows a slow algebraic decay, ∼1/d , thereby achieving a
multiple-order-of-magnitude advantage over TOCs even at
modest distances, d � 3. This algebraic decay arises from
the ∼√

t broadening of the OTOC wavefront in time [23],
see Appendix B for a full phenomenological derivation. In
Appendix B, we also provide phenomenological estimates
for the Fisher information when the experimentalist has only
global unitary control over the larger system.

V. LEARNING WEAK INTERACTIONS

We now turn to our second learning scenario: character-
izing weak interactions in an otherwise strongly interacting
system. Such characterization is notoriously difficult because
weak interactions take long times to manifest (of order the in-
verse interaction strength), at which point TOCs have decayed
due to the strong interactions. Previous approaches require
either dynamical decoupling of the strong interactions [6,9]
or high-precision measurements at early times [11,12]. We
will now show that access to OTOCs allows one to side-step
these requirements when characterizing weak interactions that
change the connectivity of a strongly interacting system.
Notably, in contrast to the previous learning scenario, this
advantage holds even when the experimenter is capable of
measuring all local correlation functions of the system of
interest.

For concreteness, we specialize to 1D spin chains with a
single “weak link” interaction, of strength J� much less than
the typical interaction strength J [see Fig. 4(b) inset]. We
consider TOCs and OTOCs of the form Eqs. (2) and (3), where
x, x′ run over all qubits in the system.

We begin as before with a concrete learning task. Specif-
ically, we suppose that one is given access to a spin chain
with unknown Hamiltonian parameters and either no link
interaction (J� → 0) or a fixed nonzero weak link interaction
strength J�. For each fixed value of J�, we train a binary SVM
classifier on the correlation functions [Eqs. (2) and (3)] of 300
disorder samples, again including a read-out error δ = 3%
in each correlator value. We test model performance on 200
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FIG. 4. (a) Learning a weak “link” interaction (red line) in a 1D
spin chain with otherwise strong interactions (black lines). (b) Accu-
racy of binary SVM classification of whether the link is present or
absent, as a function of the link strength J� and at fixed read-out error
δ = 3%. Learning via OTOCs can detect smaller J� as L increases,
while the TOC can only detect relatively large J�, independent of L.
(c) The maximum Fisher information FI(ln(J�)|C) of J� decays ∼J4

�

for small J�, and is enhanced in OTOCs (blue) compared to TOCs
(red) by a factor that increases with L.

additional samples; the resulting classification accuracies are
shown in Fig. 4(b). We observe the following general trends:
(i) the accuracy decreases as J� decreases; (ii) learning via
both OTOCs and TOCs (blue) allows detection of ∼10 times
smaller J� than learning via only TOCs (red); and (iii) OTOCs
allow detection of increasingly small J� as the size L of the
chain increases.

We can also use this learning task to explore how the
learning advantage of OTOCs depends on the choice of initial
state. Indeed, in many quantum simulation platforms where
detecting weak interactions is of interest, the most natural
choice of initial state is a simple product state. In Fig. 5,
we show the accuracy of classification for the same learning
task as above, but replacing the infinite-temperature correla-
tors with their values in several specific initial product states
(see Appendix A for details). For all states considered, the
results qualitatively resemble the infinite-temperature setting.
Compared to the infinite-temperature setting, learning from
TOCs displays a modest improvement for some initial states at

FIG. 5. Learning a weak link interaction with initial prod-
uct states. Accuracy of binary classification of whether the link
is present or absent for four different initial product states,
{|0〉⊗L, |01〉⊗L/2, |+〉⊗L, |+−〉⊗L/2}, with fixed read-out error δ =
3% and system size L = 12. Learning via OTOCs provides a per-
sistent advantage compared to learning via TOCs for all product
states considered, and qualitatively resembles the results for infinite-
temperature correlators in Fig. 4(b).

moderate coupling strengths, J� ∼ 0.3, although the steep de-
crease in accuracy for smaller values of the couplings remains.
Meanwhile, the accuracy of learning via OTOCs displays
remarkably little variation for different initial states. These
results conform to our expectation for ergodic dynamics, in
which we expect a system to quickly lose memory of its
initial state. Since learning via OTOCs relies predominantly
on the values of correlators at later times, it displays a weaker
dependence on the initial state.

To understand this behavior analytically, we first note that
the optimal correlation functions for detecting the link will
typically involve operators lying immediately adjacent to that
link, on both of its sides. These correlators measure either the
transfer of spin polarization (for TOCs) or operator support
(for OTOCs) across the link, and will be nontrivial only if
the link interaction strength is nonzero. For TOCs, one ex-
pects spin polarization to cross the link incoherently, at a
rate ∼J2

� /J , where J is the typical strong interaction strength.
Combined with an overall exponential decay of spin in time
(if the system has no conserved quantities), we expect CTOC ∼
(J2

� /J ) t e−Jt . For OTOCs, one expects an operator’s support
to cross the link at a similar rate, 1 − COTOC ∼ (J2

� /J )t . Cru-
cially however, this growth persists until much later times,
t ∼ L/J , at which information traveling “around” the chain
will abruptly cause the OTOC to decay to zero. The optimal
time for detecting the link occurs when these correlators are
maximized, since each is zero in the absence of the link. The
TOC is maximized at an order one time t ∼ 1/J , at which
the correlator magnitude CTOC ∼ J2

� /J2 is suppressed by the
square of the weak link interaction strength. In contrast, the
OTOC is maximized at a much later time t ∼ L/J , and thereby
features a magnitude 1 − COTOC ∼ L(J2

� /J2). In both cases we
see that detection of the link becomes more difficult as the link
strength decreases. Detection via the OTOC is enhanced by a
factor of L, which captures the connectivity change associated
with the link.
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We confirm these estimates quantitatively by comput-
ing the Fisher information of the link interaction strength.
In Fig. 4(b), we plot the maximum Fisher information
maxC FI(ln(J�)|C) over all local correlation functions, aver-
aged over 100 disorder realizations. Here, we consider the
logarithm of the link interaction strength in order to appro-
priately compare the Fisher information over multiple orders
of magnitude of the interaction. The Fisher information of
ln(J�) bounds the learnability of the interaction strength as
a percentage of its actual value. Applying our phenomeno-
logical estimates, we predict that FI ∼ J4

� /J4 for TOCs, and
FI ∼ L2J4

� /J4 for OTOCs. Observing Fig. 4(b), we indeed
find that the FI is suppressed by ∼J4

� (dashed lines) for small
J�, and displays a multiplicative advantage for OTOCs (blue)
compared to TOCs (red), which grows as L increases.

VI. EFFECT OF EXPERIMENTAL ERRORS

Let us now address the impact of experimental errors on
learning. We begin with errors that accumulate throughout
time evolution. These may occur from extrinsic decoherence
or imperfect time-reversal dynamics, each of which disrupt
the nonlocal correlations probed by the OTOC [27,29,30,60–
62]. While this disruption can be mitigated via independent
error estimates [27,60], for sufficiently large errors these
estimates involve measuring quantities of small magnitude
(comparable to the TOC), squandering the OTOC’s learning
advantage. In Appendix B, we estimate that our previous
results are modified in the presence of a small local error
rate ε � J as follows: in the first learning regime, the OTOC
maintains its advantage up to distances d � J/ε; in the second
regime, the L-fold advantage is replaced by a (min{L,

√
J/ε})-

fold advantage.
In practice, we find that learning via OTOCs remains robust

even to relatively large amounts of imperfect time-reversal
[Fig. 6(a)]. We study this numerically in the “weak interac-
tion” learning problem of Fig. 4(b). As a concrete instance
of imperfect time-reversal, we take the spins to be coupled to
an extrinsic cavity mode and assume that the spin dynamics
are perfectly reversed but the cavity dynamics and spin-cavity
coupling g are unreversed. We find that access to OTOCs sub-
stantially improves the classification accuracy even for quite
large spin-cavity couplings g ∼ 0.5, up to half the spin-spin
interaction strength.

We can also examine the dependence of learning on read-
out errors, namely where one measures a correlator C up to
additive error. Indeed, we have already incorporated a realis-
tic read-out error δ = 3% in our previous numerical studies
[Figs. 2(a), 4(a), and 6(a)]. Intuitively, we expect larger read-
out errors to make learning more difficult; however, we have
little reason to expect read-out error to change the relative
advantage of OTOCs compared to TOCs. We test this numeri-
cally by repeating the analysis of Fig. 4(b) for various read-out
errors, δ. For each δ, we compute the minimum link strength
J∗
� that can be learned with >90% accuracy [Fig. 6(b)]. For er-

rors δ � 10−3, our results agree well with analytic estimates,
which predict (J∗

� /J )2 ∼ δ for TOCs and (J∗
� /J )2 ∼ δ/L for

OTOCs. Intriguingly, for sufficiently small errors δ � 10−3,
the minimum link strength detectable with TOCs saturates to
a finite value J∗

� ∼ 0.2. Below this value, sample-to-sample

FIG. 6. Learning as a function of experimental error, in the
“weak interaction” learning task of Fig. 4(a). (a) Accuracy of binary
SVM classification as in Fig. 4(a), now with a coupling g, to an
extrinsic cavity mode that is not time-reversed (cavity frequency
ω = 1.7). Despite imperfect time-reversal, learning via OTOCs con-
tinues to provide an advantage up to large spin-cavity couplings
g ∼ 0.5. (b) The minimum link strength J∗

� classifiable with >90%
accuracy as a function of read-out error δ, obtained by repeating
Fig. 4(a) for each δ. The minimum link strength in general decreases
with decreasing δ; for learning via TOCs, this decrease plateaus for
δ � 0.1%, indicating that learning below this value is not limited by
read-out error.

fluctuations of the TOC cause the learning task to be difficult
regardless of the read-out error.

VII. PROVABLE ADVANTAGE FOR CLASSIFYING
UNITARY CONNECTIVITY

We have so far demonstrated the learning power of OTOCs
using phenomenological arguments and numerical simula-
tions, owing to the difficulty of obtaining analytic results
for ergodic Hamiltonian systems. Complementary to these
results, in this and the following section, we introduce two
learning tasks in which the OTOC provides a provable expo-
nential advantage over time-ordered measurement strategies.

In this section, we consider the following binary classifica-
tion task.

Disjoint unitary problem. One is given oracle access to
either (i) a fixed, n-qubit Haar-random unitary U , or (ii) a
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FIG. 7. Solution to the disjoint unitary problem with out-of-time-
order measurements. The state |0〉⊗n is prepared and the unknown
unitary (either U or U1 ⊗ U2) is applied. Next σx is applied to the
first qubit, followed by the inverse of the unknown unitary. Finally,
it is checked if the second block of n/2 qubits ends up in the all zero
state. If so, then the hidden unknown unitary is U1 ⊗ U2 as per case
(ii); if not, then the unknown unitary is U as per case (i).

tensor product of two fixed, n/2-qubit Haar-random unitaries,
U1 ⊗ U2. The task is to determine which of (i) or (ii) is
realized.

Qualitatively, this problem resembles the Hamiltonian
learning scenarios identified previously. First, the feature we
seek to learn—the connectivity of the unitary—directly de-
termines how information spreads through the system, as
measured by the OTOC. Second, a Haar-random unitary is
inherently “strongly interacting,” which causes time-ordered
measurements to decay and thus provide little information.

In Fig. 7, we show that the disjoint unitary problem can be
solved with a constant number (with respect to n) of queries
to the oracle and its time-reverse U †, by measuring an out-of-
time-order observable. Letting V denote the unknown unitary
(either U or U1 ⊗ U2), the OTOC is

OTOC(V ) = tr
(
1 n

2
⊗ |0〉〈0|⊗ n

2
{
V †σ 1

x V |0〉〈0|⊗nV †σ 1
x V

})
.

In case (i), the OTOC is near zero with probability exponen-
tially close to one [35]. In case (ii), the OTOC is one, since
the two subsystems are not coupled by U1 ⊗ U2. Thus, with
probability exponentially close to one, the two cases may be
distinguished with a single query to the unknown unitary and
its time-reverse. In contrast, in a companion work [35], we
prove that any time-ordered learning protocol requires an ex-
ponential number �(2n/4) of queries of the unknown unitary
to solve the disjoint unitary problem. Our proof applies even
to adaptive measurement strategies, and leverages novel con-
temporary techniques from quantum learning theory [4,5,34].

VIII. PROVABLE ADVANTAGE FOR LEARNING
WITH IMPERFECT READ-OUT

As we saw in Sec. IV, out-of-time-order experiments can
provide a particularly substantial learning advantage in sys-
tems with imperfect read-out capabilities. We now establish
this advantage rigorously. We consider two experimental sce-
narios: first, where read-out is restricted to a single qubit,

and second, where full read-out is allowed, but occurs with
a nonzero error δ per qubit.

The first scenario is motivated by the advantages we ob-
served for learning in spin chains with restricted access in
Sec. IV. This setting has been the subject of significant pre-
vious study in the quantum computing community, and is
known as the deterministic quantum computation with one
clean qubit (DQC1) model of quantum computation [36,37].
Experiments within this model are restricted to act on an ini-
tial state ρ = |0〉〈0| ⊗ (1/2)⊗(n−1), which is maximally mixed
on all but the first qubit. Measurements are similarly restricted
to act on only the first qubit. Nevertheless, arbitrary unitary
operations are allowed in between state preparation and mea-
surement. We note, in advance, that our hardness results for
Clifford tomography in the DQC1 model will in fact hold
when either the initial state or the final read-out is restricted
(see Appendix D), we do not require both.

Our second scenario is, in some ways, an extension of
the first. Indeed, we can view the nonmeasured qubits in the
DQC1 model as being fully “decohered” at the conclusion of
the experiment. If we consider instead a finite local read-out
error δ on each qubit, this will decohere nonlocal correlations
in the final quantum state that involve more than O(1/δ)
qubits. If a learning algorithm relies on these nonlocal correla-
tions, then a nonzero read-out error may substantially increase
the difficulty of the learning task. This opens the door to a
learning advantage for out-of-time-order experiments, since
backwards time evolution can refocus nonlocal correlations to
a local basis for a less error-prone read-out.

To establish an advantage for out-of-time-order exper-
iments within these scenarios, we consider a well-known
learning task, tomography of Clifford unitaries [63,64]:

Clifford tomography. One is given oracle access to an n-
qubit Clifford unitary U . The task is to fully characterize the
unitary.

In what follows, we provide an efficient protocol for Clif-
ford tomography given oracle access to both U and U †, which
involves precisely 4n2 + 2n experiments in the DQC1 model.
Our protocol is a straightforward adaptation of a previous
Clifford learning algorithm [64] to the DQC1 model. We also
show that this protocol is robust to a finite read-out error
in the measured qubit. We then summarize our hardness re-
sults, which establish that Clifford tomography with oracle
access only to U requires exponentially many experiments
in n in both the first and second scenarios described above.
The proofs of these statements are contained in Appendixes
D and E, respectively. Together with our learning protocol,
these results establish an exponential advantage for out-of-
time-order learning protocols in both the DQC1 model and
in experiments with noisy read-out.

We begin with a few preliminaries on the Clifford group,
before turning to our learning protocol. A Clifford unitary is
fully characterized by its action on a generating set of Pauli
operators. The simplest generating set is the set of single-qubit
Pauli-z and -x operators on each qubit, {σ 1

z , σ 1
x , . . . , σ n

z , σ n
x },

which contains 2n total operators. A Clifford unitary maps
each single-qubit Pauli operator to a Pauli string,

Uσ i
αU † = (−1)si

α (i)
∑

j ci j
αxci j

αz
∏

j

(
σ j

z

)ci j
αz
∏

j

(
σ j

x

)ci j
αx
. (4)
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The goal of Clifford tomography is thus to determine the
components of the Pauli string, ci j

αz and ci j
αx, and the sign, si

α ,
for each input Pauli operator.

To characterize the Pauli string, we first perform a unitary
operation V to map to the stabilizer of the initial state, σ 1

z ,
to the operator of interest, V σ 1

z V † = σ i
α . We then apply the

unknown unitary U , followed by some intermediary Pauli
operator σ

j
β , followed by the inverse unitary U †. Finally, we

apply the inverse V † and measure the first qubit in the Z basis.
The measurement outcome is equal to the OTOC,〈

σ
j

β

(
Uσ i

αU †
)
σ

j
β

(
Uσ i

αU †
)〉 = 2ci j

αβ
− 1, (5)

which determines the Pauli string component ci j
αβ

. Here we de-

note x = z, z = x. The OTOC takes value ±1 because Uσ i
αU †

is a Pauli operator. By repeating this procedure 4n2 times, we
can determine the Pauli string components for each i, j, α, β.

To characterize the signs si
α , we apply the same V as before

and again follow it by applying the unitary U . We then use
our knowledge of the Pauli string components to apply a new
unitary V ′ that maps the unsigned Pauli string [i.e., Eq. (4)
without the sign] to σ 1

z . Measuring the first qubit in the z basis
then gives the sign si

α . Repeating this procedure 2n total times
gives the signs for each i, α, and completes characterization
of the unitary U .

Finally, we note that this protocol is trivially robust to
the effect of read-out errors, since each experiment measures
only a single qubit. By repeating each measurement a number
m times and taking a majority vote, the effective read-out
error can be reduced exponentially in m. Since the learning
protocol involves poly(n) number of experiments, we can
ensure with high probability that no errors occur by taking
m = polylog(n).

In Appendix D, we show that DQC1 Clifford tomography
with oracle access only to U requires a number of experiments
T that scales exponentially in the system size, T = �(2n/2).
The analogous hardness result for Clifford tomography with
read-out noise is contained in Appendix E, and requires a
number of experiments T = �( 1

n ( 1
1−δ

)
n/2

), which is exponen-
tial in n whenever the read-out error δ is nonzero. Our proofs
utilize the fact that the Clifford unitaries form a 2-design [65],
and therefore apply to any time-ordered learning protocols
that involve a single application of the unknown unitary per
experiment. This contrasts with our hardness result in the
previous section, where no restriction was placed on the num-
ber of unknown unitary applications. As we have seen, this
restriction can be relaxed if the Clifford unitaries are promoted
to Haar random unitaries. In this case, full tomography of the
unitary becomes exponentially difficult but, as shown, more
coarse-grained properties such as the connectivity remain ef-
ficiently estimable via OTOCs.

IX. EXPERIMENTAL IMPLICATIONS

Our results demonstrate that access to out-of-time-order
measurements can greatly improve the learning of numerous
different properties of unknown quantum dynamics. As men-
tioned in Sec. II, a key ingredient in these applications is the
ability to reverse the time evolution of an unknown Hamilto-

nian. While it may appear surprising that time evolution can
be reversed without precise knowledge of the Hamiltonian,
nearly all existing strategies for time-reversal succeed in ex-
actly this way. We outline several specific strategies (all of
which have been experimentally demonstrated) below. At the
end, we also discuss a distinct application of our work to vali-
dating digital quantum simulations of Hamiltonian dynamics.

The simplest approach to reversing time evolution applies
to a specific class of Hamiltonians: those that possess a chiral
symmetry C such that CHC† = −H . If this is case, time
evolution can be easily reversed by physically conjugating
time evolution with applications of the chiral symmetry oper-
ation, Ce−iHtC† = eiHt . Chiral symmetries are commonplace
in condensed matter physics (e.g., in the study of topological
insulators), and occur in many physically relevant Hamilto-
nians. For example, this approach was used to reverse the
time evolution of the hard-core Bose-Hubbard Hamiltonian on
a bipartite lattice, H = ∑

i j Ji j (σ+
i σ−

j + H.c.), in an analog
superconducting quantum processor [28]. In this case, the
chiral symmetry is equal to the product of Z operators over
one of the two sublattices.

Another widely applied approach is to use frequent global
rotations, i.e., “pulse engineering,” to reverse the sign of all
interactions of a known type. For qubits, this is possible when-
ever the interactions are traceless, i.e., when Jxx + Jyy + Jzz =
0 [66]. The most widespread example of this is the dipolar in-
teraction. In this setting, time-reversed interactions have been
realized with tremendous accuracy to measure OTOCs and the
Loschmidt echo in NMR [29,30], as well as in other dipolar-
interacting systems such as nitrogen-vacancy centers [67].

A third approach utilizes the underlying physics that give
rise to the Hamiltonian. In many quantum simulators, the
interactions of the system arise from a off-resonant Raman
transitions with an excited state(s). The experimenter drives
the transition with a strength � and detuning �, which pro-
duces an effective interaction ∼�2/�. In this setting, the
sign of the interaction can be easily reversed by changing
the detuning of the transition. This approach has been used
to measure OTOCs in trapped ion analog quantum simulators
[26] and to reverse the sign of spin interactions mediated by a
cavity mode [68].

Finally, we anticipate that learning via OTOCs will also
find useful applications for benchmarking digital quantum
simulations [69]. Suppose one performs a series of known
quantum gates, for example a Trotter decomposition, with the
goal of approximating time evolution under a desired Hamil-
tonian. If one does not have precise knowledge of the validity
of the approximation, it is desirable to in some way verify that
the approximated time evolution resembles that of the desired
Hamiltonian. The most direct way to do so would be to learn
the Hamiltonian corresponding to the digital approximation,
and compare the learned Hamiltonian to the desired Hamil-
tonian [70]. This setting is a prime candidate for learning via
OTOCs. Since the time evolution is implemented by a known
series of quantum gates, one can easily reverse time evolution
by conjugating each individual gate and performing the gates
in opposite order. By comparing the OTOCs of the digital
time evolution to the OTOCs of the desired Hamiltonian, our
work shows that parameters of the digital time evolution can
be estimated much more efficiently in certain scenarios.
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X. DISCUSSION

In this work, we have shown that out-of-time-order mea-
surements can provide powerful advantages for learning the
dynamics of quantum systems. Our results thus highlight
the potential gains that can be achieved by quantum ex-
periments if they have sufficient control and coherence to
apply time-reversed dynamics. At a conceptual level, this
ties in to recent progress on using time-reversed dynamics
for quantum metrology [71,72] as well as rigorous Hamilto-
nian learning algorithms [3,73]. Extraordinary experimental
progress has led to an ever-increasing number of such plat-
forms [26,27,29,30,74–76], and we envision that learning via
OTOCs might find applications across these diverse physical
contexts. Specific future directions include learning long-
range cross-talk in quantum processors [77], and strongly
interacting problems in NMR [7].

On the theoretical front, our results follow in the footsteps
of recent works in quantum learning theory [4,5,34,78,79] to
provide new avenues for exponential advantages in quantum
learning. Our applications pertain to genuine questions of
experimental interest, providing a new bridge between the
theoretical tools of quantum learning theory and problems of
practical importance in experiments.
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APPENDIX A: DETAILS OF NUMERICAL SIMULATIONS

Here we provide further details on the numerical simula-
tions displayed in Figs. 2, 4, 6 of the main text.

1. Correlation functions

We begin by explicitly writing down the correlation
functions used in Figs. 2, 4, 6. Throughout, we denote time-
evolved operators as V (t ) ≡ U (t, 0)VU (t, 0)†, where the time

evolution unitary is U (t2, t1) = T {e−i
∫ t2

t1
dt H (t )} and H (t ) is the

time-dependent stroboscopic Floquet Hamiltonian specified
in the main text (unless otherwise stated, in Fig. 10).

In the restricted access scenario considered in Figs. 2 and
10, we use the following correlation functions:

CTOC(t ) = 〈Vp(t )Vp(0)〉,
CTOC(x, t ) = 〈Vp(t )Wx(t/2)Vp(0)Wx(t/2)〉, (A1)

COTOC(x, t ) = 〈Vp(t )Wx(0)Vp(t )Wx(0)〉,

where p denotes the probe qubit, and 〈·〉 ≡ 2−Ltr(·) is an infi-
nite temperature average. Each of these correlation functions
can be measured using state preparation and read-out on the
probe qubit, combined with time evolution and a single local
unitary operation on the larger system. (In the case of the
autocorrelation function CTOC(t ), no local unitary operation
is needed, Wx = 1.)

In principle, we envision allowing V,W to run over all local
operators in the system. For instance, they could run over
all 3w(N

w) Pauli operators of weight � w, where w ∼ O(1).
This is naturally achieved by randomized measurement strate-
gies such as shadow tomography with local Clifford unitaries
and O(3w ) measurements [43,44]. In practice, we must re-
strict V,W to a few possible values in numerical simulations.
Specifically, we take V = W ∈ {σx, σz} for TOCs, and V =
W ∈ {σz} for OTOCs. The OTOC is observed to be relatively
insensitive to basis of V and W , hence our choice to restrict to
a single operator, σz (further, we note that adding σx OTOCs
could only improve the relative advantage of OTOCs com-
pared to TOCs). More broadly, we do not expect that adding
additional pairs of {V,W } will change the qualitative behav-
ior of learning via TOCs and OTOCs. Specifically, we have
seen that the learning advantage of OTOCs arises from their
ability to detect highly nonlocal correlations in the system
(i.e., large-weight components of the time-evolved operator
Vp(t ), see Appendix B for more detailed phenomenological
estimates). These correlations are not detectable by any time-
ordered correlator involving only few-body operators; indeed,
in ergodic systems we generically expect that they are not
efficiently detectable by any time-ordered measurement.

For Figs. 4 and 6 of the main text, we utilize correlation
functions between pairs of local operators:

CTOC = 〈Vx(t )Wx′ (0)〉,
COTOC = 〈Vx(t )Wx′ (0)Vx(t )Wx′ (0)〉. (A2)

We again take V = W ∈ {σx, σz} for TOCs and V = W ∈ {σz}
for OTOCs. We allow x, x′ to span all qubits within a distance
2 of the link—this consists of six possible values for each of
x, x′, corresponding to distances 0, 1, and 2 to both the left
and right of the link. In principle, we would like x, x′ to run
over the entire lattice; however, in practice we observe that
correlation functions involving qubits distant from the link
provide little information, and so can be safely neglected.

For Fig. 5 of the main text, we utilize the correlation
functions:

Cψ

TOC = tr(Vx(t ) [Wx′ (0) ⊗ |ψ〉〈ψ |=x′]),

Cψ

OTOC = tr(Vx(t )Wx′ (0)Vx(t ) [Wx′ (0) ⊗ |ψ〉〈ψ |=x′]). (A3)

Here, |ψ〉〈ψ |=x′ denotes the projector onto the initial product
state on all qubits besides x′. We utilize this expression for
the correlation functions because it is most direct to measure
in experiment. For example, for the time-ordered correlator,
one simply measures how an observable Vx at time t depends
on the choice of initial state on qubit x′ in the basis of W
at time 0. To do so, one can first prepare the initial state
|+W 〉′x ⊗ |ψ〉=x′ , where |+W 〉x denotes the positive eigenstate
of W on qubit x, evolve to time t , and measure Vx; then repeat
this for the negative eigenstate |−W 〉′x; and take the difference

043284-10



LEARNING QUANTUM SYSTEMS VIA … PHYSICAL REVIEW RESEARCH 5, 043284 (2023)

σ
i x
(t

)σ
i x
(0

)

σ
i z
(t

)σ
i z
(0

)

FIG. 8. The time-ordered two-point autocorrelation functions for
the Hamiltonian studied in Fig. 4 of the main text, shown for all sites
i in a L = 14 spin chain. The decay of the autocorrelation function
verifies that the Hamiltonian is in the ergodic regime and not many-
body localized.

of the results. This recovers the correlation function above.
In contrast, the more frequent expression for a pure state cor-
relator, e.g., 〈ψ |Vx(t )Wx′ (0)|ψ〉, typically requires an ancilla
qubit to measure. For all product states, we take V,W, x, x′
identically to the infinite-temperature case above.

We now briefly comment on our numerical methods for
computing the above correlation functions and the Fisher
information [Figs. 2(b) and 4(b)]. We compute the infinite
temperature average in the correlation functions by sampling
over Haar-random initial states |ψ〉. To motivate this, we can
insert a resolution of the identity, 1 = 1

2L

∑
ψ |ψ〉〈ψ | into the

correlation functions Eq. (A2) to obtain

CTOC = 1

2L

∑
ψ

〈ψ |Vi(t )Wj (0)|ψ〉, (A4)

and similarly for the OTOC. In numerics, we approximate this
sum by sampling a finite number Nψ of states |ψ〉 drawn from
the Haar distribution; errors in this approximation will scale
as ∼1/

√
Nψ2L.

In Fig. 8, we plot the time-ordered correlations of the
Hamiltonian considered in Fig. 4 of the main text. The corre-
lation functions decay in time, indicating that the Hamiltonian
is ergodic and not many-body localized.

In the learning problems considered in the main text
[Fig. 2(a), 4(a), and 6], we take Nψ = 25, 25, 10, 1, and 1
for system sizes L = 6, 8, 10, 12, and 14, respectively. In
contrast, when estimating the Fisher information [Fig. 2(b)
and 4(b)], we perform a large-Nψ extrapolation to im-
prove precision. This is required in order to establish the
asymptotic scaling of the Fisher information at large d
[Fig. 2(b)] and small J� [Fig. 4(b)]. Specifically, we compute
the estimated correlation function CNψ

averaged over Nψ =
1, . . . , 25 Haar-random initial states, as well as the resultant
Fisher information max FI(Nψ ) ≡ |∂CNψ

/∂J|2, maximized
over all relevant correlation functions. We then perform a
linear fit max FI(Nψ ) = max FI(∞) + A

Nψ
, where max FI(∞)

and A are fitting parameters. Finally, the fitting parameter
max FI(∞) represents our estimation of the Fisher informa-
tion at Nψ → ∞, which we plot in Figs. 2(b) and 4(b). We
illustrate this procedure in Fig. 9, using the data for Fig. 2(b).
On the left of Fig. 9, we plot the maximum Fisher information,
max FI(Nψ ), for each Nψ , as a function of the distance d .
We observe that in regions where C is relatively large (i.e.,

FIG. 9. Depiction of the extrapolation method used to calcu-
late the maximum Fisher information over time-ordered correlators
[Fig. 2(b)]. Each correlation function is computed for 25 Haar-
random values of the state |ψ〉 [Eq. (A4)]. For each value of Nψ

between 1 and 25, we choose a random subset of Nψ values of
|ψ〉 and compute the average correlation function over the subset.
(Left) For each value of Nψ , we then compute the maximum Fisher
information over all correlation functions, max FI(Nψ ) (solid red
lines, darker lines corresponds to higher Nψ ).

small d), the estimates are quite accurate even for Nψ = 1,
while in regions where C is small (i.e., large d) the Fisher
information becomes successively smaller as the number of
sampled states Nψ increases. On the right of Fig. 9, we replot
the Fisher information for each d as a function of Nψ . Solid
lines represent the results of the linear fit, which we observe to
fit the Nψ dependence of the data quite well. The extrapolated
Fisher information [as displayed in Fig. 2(b)] is shown in
Fig. 9 as a dashed line.

2. Imperfect time-reversal via cavity mode

In Fig. 6(a), we benchmark the effects of decoherence on
learning by coupling the spin system to a single cavity mode.
Our motivation for studying this model is twofold. First, in er-
godic many-body systems the effect of local errors on OTOCs
is expected to be independent of the precise microscopic form
of the error [62]. We therefore expect the spin-cavity system
to display similar OTOC physics to more generic local error
models. Second, for L = 10 spins the spin-cavity system can
be exactly simulated in a Hilbert space of size 2L × L (we
assume the cavity initially has zero occupation number; since
the sum of spin magnetization and the cavity occupation is
conserved, the cavity occupation is upper bounded by L).
This is substantially smaller than the requirements to exactly
simulate a mixed state quantum system, 22L.

More specifically, the spin-cavity Hamiltonian is as fol-
lows. We modify the Floquet time evolution described
in the main text to alternate between the following two
Hamiltonians:

H1 = ±Hf + g
∑

i

(a†σ−
i + aσ+

i ) + ωa†a,

(A5)
H2 = ±Hc + g

∑
i

(a†σ−
i + aσ+

i ) + ωa†a,

where Hf , Hc are the field and coupling Hamiltonians written
in the main text, a, a† are lowering/raising operators for a
bosonic cavity mode, g = {0.0, 0.25, 0.5} is the spin-cavity
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FIG. 10. Learning in the restricted access scenario under Hamil-
tonian evolution. Numerical simulations are performed identically
to Fig. 2 but now with Hamiltonian evolution under (Hc + Hf )/2
instead of Floquet evolution. In both (a) the learning task and (b) the
Fisher information, the results for learning Hamiltonian dynamics
are qualitatively similar to the results for learning Floquet dynamics
(Fig. 2). In (b), the maximum Fisher information is averaged over
100 disorder realizations for both TOCs and OTOCs. At large d , we
expect the Fisher information for Hamiltonian evolution to approach
a power law decay ∼1/d4 (see Appendix B), but this cannot be
observed in our finite-size numerics.

interaction strength, and ω = 1.7 is the cavity frequency.
Here, the ± denote values during forwards/backwards time
evolution; note that we do not reverse the spin-cavity interac-
tion or the cavity frequency during backwards time evolution.

3. Learning model

We now detail the machine learning techniques used in
Figs. 2(a), 4(a), and 6 of the main text, and Fig. 11(b) of the
Appendix. Throughout, read-out error is mimicked by adding
a random Gaussian variable with mean zero and standard
deviation δ to the exact correlation functions.

We begin with Fig. 2(a). Our goal is to predict the value
of d [which specifies the geometry of the spin system,
see Fig. 2(a)] from the correlation functions of the system,
Eq. (A1). To do so, we train a learning model on 3000

FIG. 11. (a) The three spin geometries considered in the learning
task defined in the text. Each geometry consists of L = 14 spins. The
probe qubit (purple) is located along a subset of the system that is
identical between the three geometries up to a distance d away from
the probe. (b) Accuracy of classification, using correlation functions
that can be measured with (left) state preparation and read-out on the
probe qubit and global unitary control over the remaining system,
and (right) global state preparation, unitary control, and read-out. For
the former, the accuracy is plotted as a function of the distance d of
the probe qubit from the geometric feature of interest. In both scenar-
ios, access to OTOCs (blue) substantially improves the classification
accuracy compare solely accessing TOCs (red).

randomly drawn disorder realizations of the Hamiltonian,
consisting of 300 realizations each for d = 0, 1, . . . , 9. We
test model performance on 2000 additional disorder real-
izations, again consisting of 200 realizations each for d =
0, 1, . . . , 9. For each disorder realization, the input to our
learning model consists of the correlation functions Eq. (A1),
evaluated at x = 2, . . . , L and 30 evenly spaced times between
0 and 12. We apply Gaussian distributed read-out error δ =
3% to each correlation function. We repeat this procedure,
as well as the model training and evaluation that follows,
first using only TOCs as input to the learning algorithm, and
second using both TOCs and OTOCs.

Next, we input these correlation functions into a support
vector regression (SVR) model with radial basis functions
[81]. The radial SVR contains two hyperparameters: C, the
regularization parameter, and γ , which controls the width of
the radial basis functions. We choose C and γ by performing
fivefold cross-validation over the sets C = {10, 30, 100}, γ =
{0.03, 0.06, 0.1, 0.3, 1, 3, 6, 10}. We obtain C = 10, γ = 1
for learning via TOCs, and C = 10, γ = 0.03 for learning
via both TOCs and OTOCs. In the identical learning task for
Hamiltonian evolution [Fig. 10(a)], we obtain C = 10, γ = 1
for learning via TOCs, and C = 100, γ = 0.03 for learning
via both TOCs and OTOCs.

We now turn to Fig. 4(a) and 6. Our goal is to
perform binary classification using the correlation func-
tions Eq. (A2) to distinguish whether the link interaction
strength is zero or nonzero. To do so, we simulate the
correlation functions of 300 randomly drawn disorder re-
alizations of the Hamiltonian for each link strength, J� =
{0, 0.01, 0.017, 0.03, 0.06, 0.1, 0.17, 0.3, 0.6, 1.0}. For each
nonzero J�, we train a learning model to perform binary
classification between link strength 0 and J�. We test model
performance on 400 additional disorder realizations, again
consisting of 200 realizations each for link strength 0 and J�.

The first step of our learning model is to prune the cor-
relation functions used as input. We do so by estimating
the mutual information between each individual correlation
function and the link interaction strength, and selecting the
K correlation functions with the highest mutual information.
Here K is a hyperparameter that will ultimately be chosen via
cross-validation. To estimate the mutual information, we fit
the distribution of correlation functions values over disorder
realizations to a Gaussian for each link strength, and com-
pute the Jensen-Shannon divergence between the Gaussian
distributions. The Jensen-Shannon divergence is equal to the
desired mutual information [82].

As before, we input the selected correlation functions into
a support vector machine (SVM) with radial basis functions
[81]. We now have three hyperparameters: the SVM hyper-
parameters C and γ and the number of selected correlation
functions K . We choose C, γ , and K by performing fivefold
cross-validation over each value C = {0.1, 1, 10, 100, 1000},
γ = {0.1, 0.3, 1, 3, 10, 30}. We obtain Figs. 6(b), by repeat-
ing this procedure for various simulated read-out errors,
δ = {0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1}. At each
read-out error, we perform a linear interpolation of the clas-
sification accuracy as a function of J� [as shown in Fig. 4(a)
for δ = 0.03]. The minimum detectable link strength J∗

� oc-
curs at the intersection of this interpolation with a horizontal
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line (not depicted) corresponding to a classification accuracy
of 90%.

Finally, we turn to Fig. 11(b) in Appendix C. In the probe
qubit scenario, training and testing are performed on 300 and
200 samples respectively for each geometry and each value
of d . In the global state preparation and read-out scenario, we
instead use 60 and 40 samples respectively for each geometry.
Our learning model consists of a support vector machine with
hyperparameters chosen via fourfold cross-validation from
the sets C = {0.1, 1, 10}, γ = {0.3, 3, 30}. As in our previous
learning tasks, we apply a read-out error δ = 3% to each
correlation function before use in learning.

APPENDIX B: PHENOMENOLOGICAL ESTIMATES

In this section, we provide more detailed reasoning behind
the phenomenological estimates of the Fisher information pre-
sented in the main text. We begin with the Fisher information
under unitary dynamics with restricted access and then turn to
the effects of imperfect time-reversal and decoherence.

1. Fisher information in restricted access scenario

At sufficiently large times and distances, we expect the pro-
file of correlation functions in ergodic many-body systems to
be described by only a few phenomenological parameters. For
instance, in one-dimensional systems the out-of-time-order
correlator is predicted to take the following functional form
[41,83],

COTOC(x, t ) ≈ f

(
x/vB − t

A
√

t

)
, (B1)

where the phenomenological parameters vB and A describe
the butterfly velocity and the width of the OTOC wavefront,
respectively. Here f is a compactly supported bump function
which interpolates between zero and one and then zero again
within an O(1)-sized region about the origin. Meanwhile, in
systems with a local conservation law, we expect time-ordered
correlators to be dominated by diffusion of the conserved
quantity. This leads to the following profile for the autocor-
relation function,

CTOC(t ) ∼ 1√
Dt

, (B2)

where D is a diffusion constant. In the absence of conserved
quantities, one expects time-ordered correlation functions to
instead decay exponentially in time,

CTOC(t ) ∼ exp(−γ t ), (B3)

parameterized by a decay rate γ .
To obtain the Fisher information, FI(J|C) = |∂C/∂J|2, we

must compute the derivative of the correlation functions with
respect to a local coupling strength, Jy. To do so while
leveraging the above phenomenological predictions, we must
first recognize that the phenomenological parameters are
themselves dependent on the local coupling strengths of the
system, e.g., vB → vB({Jy}). We expand on this in further
detail for each case below. The resultant scaling of the Fisher
information in various physical regimes is summarized in
Table I.

TABLE I. Fisher information estimates in the local and global
restricted access scenarios, for learning an interaction a distance d
from a probe qubit.

Probe qubit with Probe qubit with
Correlation function local unitary control global unitary control

TOC without O(exp(−d )), O(exp(−d )),
conserved quantity [Fig. 2(b)]

TOC with O(1/d4) O(1/d4)
conserved quantity

OTOC O(1/d ), O(1/d2),
[Fig. 2(b)]

a. Fisher information of OTOCs

We begin with the Fisher information of OTOCs. Our treat-
ment is broken into two parts, corresponding to the scenarios
where the experimenter has either local or global unitary con-
trol over the larger system. The former scenario is simulated
numerically in Fig. 2 of the main text.

Local unitary control. We consider local OTOCs [Eq. (A1)]
and are interested in the dependence of the OTOC on the local
coupling strengths, {Jy}. To approach this, we will assume that
OTOC takes the same functional form as in Eq. (B1),

COTOC(x, t ) = 〈Vp(t )Wx(0)Vp(t )Wx(0)〉 ≈ f

(
x/vB(x) − t

A
√

t

)
,

(B4)

but now with a position-dependent butterfly velocity, vB(x).
Specifically, we assume that the effective butterfly velocity
at time t receives contributions from all couplings that have
been visited thus far, i.e., all Jy with y � x. Since the time
to traverse a single coupling is proportional to the inverse
coupling strength 1/Jy, we expect the time to traverse all
couplings up to a distance x to be proportional to the sum∑x

y=0 1/Jy. Equating this time to the distance divided by the
effective butterfly velocity x/vB(x), we have

vB(x) ≈
[

1

x

x∑
x=0

1

Jx

]−1

. (B5)

If each coupling strength is drawn independently from some
disorder realization, then at large times the butterfly velocity
will be close to its typical value, vB = 1/J .

We can now compute derivatives of the correlation function
with respect to a given coupling strength via the chain rule.
The derivative of the butterfly velocity is

∂Jd vB(x) ≈ vB(x)2

J2
d x

· δd�x, (B6)

which yields the following for the OTOC:

∂JdCOTOC(x, t ) ≈ − x

A
√

tvB(x)2
· f ′

(
x/vB(x) − t

A
√

t

)
·∂Jd vB(x)

≈ − 1

AJ2
d

√
t

· δd�x · f ′
(

x/vB(x) − t

A
√

t

)
. (B7)

There are two parameters of the local OTOC chosen
by a potential experimentalist: the position x of the local
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perturbation, and the evolution time t . We are interested in
the maximum Fisher information given an optimal choice of
x and t . Observing Eq. (B7), we see that the derivative f ′ is
maximized by the choice x = vBt , while the delta function
then sets vBt = d . Plugging these values in, we find the Fisher
information

max
C

FI(J|COTOC) ≈
∣∣∣∣∣ f ′(0)

AJ2
y

√
vBd

∣∣∣∣∣
2

∼ 1

d
. (B8)

Global unitary control. We now turn to an alternate exper-
imental scenario, where one has only global unitary control
over the larger system. In this scenario, the natural generaliza-
tion of the correlation functions Eq. (A1) is the following:

CTOC = 〈Vp(t )Vp(0)〉,
CTOC = 〈

Vp(t ) eiφ
∑

x Wx (t/2) Vp(0) e−iφ
∑

x Wx (t/2)
〉
, (B9)

COTOC = 〈
Vp(t ) eiφ

∑
x Wx (0) Vp(t ) e−iφ

∑
x Wx (0)

〉
.

Here we replace the local unitary operations of Eq. (A1) with
global spin rotations, eiφ

∑
x Wx , by an angle φ (here, Wx is a

local Hermitian operator on qubit x).
We expect the behavior of the OTOC under global con-

trol to be governed by the “size” of time-evolved operators
[29,30,53]. The size corresponds to the average of local
OTOCs over all qubits in the system [84]. In one-dimensional
ergodic systems, the size grows linearly ∼vBt , which yields
the following phenomenological expectation for the global
OTOC [30]:

Cglob
OTOC = exp(−φ2vB(t )t ). (B10)

Here we have made the butterfly velocity time-dependent to
capture its dependence on the local coupling strengths,

vB(t ) ≈
⎡
⎣ 1

vBt

vBt∑
y=0

1

Jy

⎤
⎦

−1

, (B11)

where vB = 1/J is the typical butterfly velocity.
Taking the derivative of the OTOC via the chain rule, we

have

∂JdC
glob
OTOC ≈ −φ2t · ∂Jd vB(t ) · exp(−φ2vB(t )t )

= −φ2t · vB(t )2

vBJ2
d t

· δd�vB (t )t · exp(−φ2vB(t )t )

≈ −φ2 · vB

J2
d

· δd�vBt · exp(−φ2vBt ). (B12)

We would like to maximize the Fisher information over the
parameters (φ, t ). This entails taking the time t to be as
early as allowed by the delta function, t ≈ d/vB, in order to
minimize the exponential. The correlator is then maximized
by choosing φ such that φ2vBt ∼ 1. This gives a Fisher infor-
mation:

max
C

FI(J|COTOC) ≈
∣∣∣∣∣vBe−1

J2
y d

∣∣∣∣∣
2

∼ 1

d2
, (B13)

which decays algebraically, with an additional factor of d
compared to the local unitary control scenario.

Before moving on, we briefly summarize the intuition
behind the two above estimates. In both cases, an O(1) pertur-
bation in a local coupling strength produces an O(1) shift in
the location of the OTOC wavefront. With local control, this
shift produces an O(1/

√
d ) change in the OTOC, since the

OTOC wavefront is spread across a width ∼√
d by the time

it reaches the coupling. With global control, this produces an
O(1/d ) change in the OTOC, since the global OTOC depends
on the average of ∼d individual coupling strengths. Since the
Fisher information involves the square of the OTOC deriva-
tive, these lead to an O(1/d ) and O(1/d2) Fisher information,
respectively.

b. Fisher information of TOCs in absence of conserved quantities

We now turn to a simpler case, the Fisher information of
time-ordered correlators in the absence of conserved quan-
tities [Fig. 2(b)]. Under ergodic dynamics, we expect such
correlation functions to decay exponentially in time at suffi-
ciently large times, see Eq. (B3). Now, consider the derivative
of the correlation function with respect to a local coupling
strength at a distance d away from the probe qubit. By causal-
ity, this derivative can only be nonzero after a time t � d/vB.
However, at such times, the magnitude of the correlation func-
tion has already decayed by a factor of e−γ t . This suggests that
the Fisher information will decay exponentially in the distance
d ,

max
C

FI(J|CTOC) � exp(−2γ x/vB), (B14)

as observed numerically in Fig. 2(b).

c. Fisher information of TOCs in presence of conserved quantities

The scaling of the Fisher information for TOCs is modified
in the presence of a conserved quantities. In this case, one
expects the TOC at sufficiently large times to be dominated by
slow diffusive dynamics of the conserved quantity. This lies in
contrast to the exponential decay expected in the absence of
conserved quantities.

To study this, we begin with the autocorrelation function
[first line of Eq. (A1)]. Recall that the autocorrelation function
can be measured with access solely to the probe qubit, and is
thus accessible in both the local and global control scenar-
ios. Similar to the case of OTOCs, we will assume that the
dependence of the correlation function on the local coupling
strengths is captured by replacing the diffusion constant D
with a time-dependent value,

CTOC(t ) = 1√
D(t )t

. (B15)

Following the logic of the previous section, we assume the
effective diffusion constant takes the form [85]

D(t ) ∼
⎡
⎣ 1√

Dt

√
Dt∑

y=0

1

Jy

⎤
⎦

−1

, (B16)

where D = 1/J is the diffusion constant’s typical value. Dif-
ferentiating with respect to the local coupling strength gives

∂Jd D(t ) ∼ D(t )2

J2
d

√
Dt

· δd<
√

Dt . (B17)
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Computing the derivative of the autocorrelation function,
we have

∂JdCTOC(t ) = − 1

2D(t )3/2t1/2
· ∂Jd D(t ) = − D(t )1/2

2J2
d t

√
D

· δd<
√

Dt

≈ − 1

2J2
d t

· δd<
√

Dt . (B18)

The magnitude of the derivative is maximized by taking the
minimum possible time, t ≈ d2/D, which yields a Fisher in-
formation,

max
C

FI(J|CTOC) ≈
∣∣∣∣ D

2J2
x d2

∣∣∣∣
2

∼ 1

d4
. (B19)

This can be understood intuitively as follows. For the autocor-
relation function to be sensitive to the coupling strength Jd ,
the conserved quantity must have spread to at least distance
d . At such a distance, the magnitude of the autocorrelation
function is O(1/d ), since the conserved quantity has spread
over ∼d sites. In addition, the derivative with respect to an
individual coupling strength is suppressed by an additional
factor O(1/d ), since the autocorrelator depends only on the
average (inverse) coupling strength over ∼d sites. Combining
these two factors and squaring leads to an O(1/d4) Fisher
information.

We now turn to the remaining time-ordered correlation
functions in Eqs. (A1) and (B9), which require either local or
global unitary control over the nonprobe qubits. We will find
that such correlators provide no scaling advantage beyond the
autocorrelator.

We first consider the case of local unitary control
[Eq. (A1)]. Physically, these correlation functions correspond
to preparing an amount of the conserved quantity (e.g., a spin
polarization) at the probe qubit, letting it diffuse for a time
t/2, flipping the spin polarization at a qubit x, and measuring
the polarization at the probe qubit after an additional time t/2.
We thus expect the TOC behave as follows:

CTOC(x, t ) = 〈Vp(t )Wx(0)Vp(t )Wx(0)〉
≈ q(0, t ) − 2q(x, t/2) · q(x, t/2), (B20)

where q(x, t ) ≈ (2πD(t )t )−1/2 exp(−x2/(2D(t )t )) is the
propagator of the conserved quantity from position 0 to
position x (or vice versa). The first term is equal to the
autocorrelation function. The second term arises from the
spin flip at position x and time t/2. The spin flip effectively
inserts a negative polarization −2q(x, t/2) on the qubit x,
which propagates back to the probe qubit with amplitude
q(x, t/2).

The derivative of the second term is as follows:

∂Jd [q(x, t/2)2] = ∂Jd

[
1

πD(t )t
exp

(
− 2x2

D(t )t

)]

≈ ∂Jd

[ −1

πJ2
y D1/2t3/2

exp

(
− 2x2

D(t )t

)

+ 2x2

πJ2
y D3/2t5/2

exp

(
− 2x2

D(t )t

)]
· δd<

√
Dt .

(B21)

The magnitude of the derivative is maximized at Dt ∼ x2, x ∼
d , and is of order O(1/d3). This is subleading compared to the
autocorrelation function, of order O(1/d2), and thus does not
affect the asymptotic scaling of the Fisher information with d .

The case of a global control [Eq. (B9)] is even simpler. A
global spin rotation about the x axis by an angle φ multiplies
the conserved quantity at each site by a factor of cos(φ).
Here we assume that the x and y components of spin that are
generated by the rotation quickly decay in time if they are not
conserved by the ergodic dynamics. The resulting correlation
function is then given by the autocorrelation multiplied by
cos(φ). Again, this provides no scaling advantage in the Fisher
information.

2. Effect of imperfect time reversal and decoherence
on Fisher information

We now incorporate imperfect time-reversal dynamics into
our estimates of the Fisher information of OTOCs. Previous
works have been found that a wide range of experimental
errors (e.g., extrinsic decoherence, coherent errors in time-
reversal) have a similar effect on OTOC measurements, as
long as the relevant errors are local and the dynamics are
ergodic [27,29,30,60,62].

Specifically, in one-dimensional systems, one expects that
the OTOC under open-system dynamics, C̃OTOC, is equal to
the same OTOC under unitary dynamics, COTOC, multiplied
by an overall Gaussian decay in time [62]:

C̃OTOC ≈ exp(−aεvBt2) × COTOC. (B22)

Here ε is an effective local error rate, vB is the butterfly veloc-
ity, and a is an order one constant. The argument of the above
exponential is proportional the volume of the time-evolved
operator’s light cone. Intuitively, Eq. (B22) states that each
error in the causal past of an operator contributes a roughly
equal amount to the decay of the OTOC. We note that in
finite-size systems we do not expect Eq. (B22) to precisely
hold, however, corrections are expected to be suppressed by
∼ε/J , where J is the local interaction strength [62], so we
neglect them here.

Substituting Eq. (B22) into our estimate for the Fisher
information [Eq. (B13)] and setting vBt ≈ d , we find

max
C

FI(Jd |C̃OTOC) ∼ 1

d2
exp(−aεd2/vB). (B23)

Meanwhile, we assume that the Fisher information with re-
spect to TOCs is comparatively unaffected by error, and thus
once again follows a linear exponential decay in d:

max
C

FI(Jd |C̃TOC) ∼ exp(−γ d ). (B24)

Setting the two exponentials to be equal,
maxC FI(Jd |C̃OTOC) ∼ maxC FI(Jd |C̃TOC), we find that the
OTOC continues to provide an advantage over the TOC up to

d � γ vB

ε
, (B25)

as quoted in the main text.
We now apply the same analysis to our second learning

regime. Let us set vB ∼ J for consistency with the main text.
The Fisher information of an OTOC between operators on
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either side of the link with respect to the link interaction
strength is now modified to

max
C

FI(J�|C̃OTOC) ∼ J4
� t2

J2
exp(−aεJt2), Jt � L. (B26)

The maximum of the Fisher information as a function of time
now occurs at

t∗ ∼ min

{√
1

εJ
,

L

J

}
, (B27)

with value

max
C

FI(J�|C̃OTOC) ∼ min

{
J4
�

εJ3
,

J4
� L2

J4

}
, (B28)

which differs from the unitary OTOC for sufficiently high
error rates. Again, we assume that the Fisher information of
TOC is not affected by error to leading order. Taking the
square root of Eq. (B28), we thus find the L-fold advantage
of the OTOC is replaced by a

√
J/ε-fold advantage at error

rates
√

ε/J � 1/L, as quoted in the main text.

APPENDIX C: ADDITIONAL NUMERICS

In this section, we provide numerical results in two
additional learning scenarios. We begin by repeating the
simulations leading to Fig. 2 for time-independent Hamilto-
nian evolution instead of Floquet evolution. We then discuss
learning in the restricted access scenario with global unitary
control, in contrast to local unitary control as considered in
the main text).

1. Learning with time-independent Hamiltonian evolution

In the main text numerical simulations, we utilized Floquet
time evolution in which the spin interactions and local fields
were applied in a stroboscopic fashion. Our motivations for
using Floquet time evolution instead of Hamiltonian time
evolution were threefold. First, Floquet dynamics are preva-
lent in a variety of quantum systems that one might wish
to learn, e.g., in digital quantum simulators, and NMR or
solid-state defect setups with optical driving. Second, the Flo-
quet dynamics considered are moderately faster to simulate
via Krylov subspace methods than Hamiltonian dynamics,
since the Hamiltonian of the former contains fewer terms at
a given instant in time. Third, we do not expect the behavior
of learning via TOCs or OTOCs under the two dynamics to
qualitatively differ at moderate times and distances (although
at large distances they may, see Appendix B).

Here, we check the latter assumption by repeating the
numerical analysis of Fig. 2 using time-independent Hamil-
tonian dynamics. As shown in Fig. 10(a), we find that the
results of the learning task of Fig. 2(a) behave quite sim-
ilarly for Hamiltonian and Floquet dynamics. In particular,
access to OTOCs continues to enable substantially more ac-
curate predictions for the crossing distance d for all d � 3. In
Fig. 10(b), we turn to the behavior of the Fisher information
as a function of a coupling’s distance from the probe qubit.
Unfortunately, we are not able to discern the ∼1/d4 scaling
predicted in Appendix B in our finite-size numerics. Instead,
the Fisher information behaves qualitatively similar to that of

Floquet dynamics [Fig. 2(b)]. We anticipate that at sufficiently
large distances the Fisher information of Hamiltonian dynam-
ics will indeed asymptote to the expected power law decay.
However, at such distances the Fisher information will likely
already be too small to be useful for most practical purposes.

2. Learning under restricted access with global unitary control

We now turn to learning when one has only global unitary
control over the system of interest. We consider a learning
task where one wishes to classify the geometry of an unknown
spin system, which we assume is drawn with equal probability
from the three geometries shown in Fig. 11(a). We find that
access to OTOCs provides a substantial advantage in this
classification task. Notably, we find that OTOCs continue to
improve learning even when one has only global state prepara-
tion, control, and read-out (i.e., even in the absence of a probe
qubit).

The classification problem we consider is a close variant of
those introduced in the main text. We suppose that one has ac-
cess to the correlation functions of an unknown Hamiltonian
whose connectivity corresponds to one of the three geometries
shown in Fig. 11(a). The goal is to distinguish which geometry
describes the Hamiltonian. We again approach this task by
training and testing a support vector machine on samples of
disorder realizations, see Sec. A 3 for details.

We consider learning in two different experimental access
scenarios. First, we consider the scenario where one has state
preparation and read-out from a single probe qubit, and global
control over the remainder of the system. In this case, we
take the probe qubit to be a distance d away from any dis-
tinguishing features of the geometry (see Fig. 11), and study
the learnability as a function of d . Note that we are restricted
to relatively small distances, d � 4, owing to the particular
form of the three geometries considered. We find that access
to OTOCs increases the classification accuracy between 10%
and 35% for all values of d [Fig. 11(b)]. For instance, OTOCs
allow classification with accuracy ∼65% at d = 3, at which
learning via TOCs has nearly trivial accuracy.

Our second scenario is even more restrictive: we suppose
that one has only global state preparation, control and read-out
over the entire system. Despite being commonplace in experi-
ments such as NMR spectroscopy [8], learning in this scenario
remains quite difficult in strongly interacting systems, due to
the combination of time-ordered correlators decaying quickly
and local information being averaged out by global control
and measurement. Indeed, in our learning task, we find that
learning via TOCs features a classification accuracy of only
∼55%. Intuitively, we expect access to global OTOCs to
improve learning, as operator spreading at late times is depen-
dent on global geometric features of the system. In keeping
with this intuition, we find that learning via both TOCs and
OTOCs improves the classification accuracy to ∼80%.

APPENDIX D: PROOF OF HARDNESS FOR CLIFFORD
TOMOGRAPHY IN DQC1

As described in the main text, an experiment within the
DQC1 model consists of [36]

(1) the initial state ρ = |0〉〈0| ⊗ (1/2)⊗n−1,
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(2) arbitrary unitary operations involving all qubits,
(3) measurement of the first qubit in the z basis.
In the main text, we showed that out-of-time-order exper-

iments can be used to learn an n-qubit Clifford unitary U
given oracle access to U and U †, within the DQC1 compu-
tational model. Here, we show that the same task requires an
exponential number of measurements in n for time-ordered
DQC1 experiments that involve only a single application of
the unitary U .

We will in fact prove hardness for an even simpler task:
distinguishing a random n-qubit Clifford unitary from the
maximally depolarizing channel. Moreover, our proof of hard-
ness will apply even if condition (i) or (iii) of the DQC1 model
is relaxed. In what follows, we will relax condition (i) to be
concrete, but our results are easily generalized to relaxing
condition (iii) instead. Our theorem is as follows.

Theorem 1. (Exponential hardness of Clifford learning with
time-ordered DQC1 experiments.) Consider having oracle ac-
cess to either (i) a fixed n-qubit Clifford-random unitary U ,
or (ii) a maximally depolarizing channel. Suppose one would
like to distinguish (i) and (ii) by performing experiments that
each involve only a single application of the unknown quan-
tum process, arbitrary unitary operations, and measurement of
only a single qubit in the z basis with read-out error δ. Then
any learning protocol requires at least �( 2n/2

ln(1/δ) ) experiments,
and so is exponentially inefficient. As stated in the theorem,
our proof of hardness requires the inclusion of a nonzero
read-out error δ. The required number of experiments is ex-
ponential in the system size whenever the read-out error δ is
not double-exponentially small in the system size. Our proof
utilizes techniques from recent hardness results for learning
properties of mixed stabilizer states [5].

Proof of theorem 1. The most general experiment within the
above description prepares an initial state ρ, applies the un-
known quantum process, and then applies an arbitrary known
unitary V . The experiment concludes by measuring the first
qubit in the Z basis with read-out error δ. In case (i) with
a Clifford unitary U , this produces a measurement outcome
s = ±1 with probability

pU (s) = tr

([
1 + sασ 1

z

2

]
VUρU †V †

)

= 1

2
+ sα

2
tr
([

U †V †σ 1
z VU

]
ρ
)
, (D1)

where we denote the read-out fidelity α = 1 − δ. For conve-
nience, we represent the operator in the latter expression as
σV (t ) = U †V †σ 1

z VU . In case (ii), one instead has the constant
probability distribution pD(s) = 1/2.

A learning protocol consists of T successive experiments.
We label the initial state ρr and known unitary Vr of each
experiment by the index r. The initial state and known unitary
of an experiment r may depend on the measurement outcomes
sr′ of earlier rounds r′ < r. In case (i), the joint probability dis-
tribution of the measurement outcomes of all T experiments
is given by

pU (s1, . . . , sT ) =
T∏

r=1

(
1

2
+ αsr

2
tr(ρrσVr (t ))

)
. (D2)

In case (ii), we have instead

pD(s1, . . . , sT ) = 1

2T
, (D3)

the constant distribution.
To show that learning is hard, we will demonstrate that

the two probability distributions are close in total variational
distance. The total variational distance is defined as

TVD(E[pU ], pD) =
∑

s

|E[pU (s)] − pD(s)|. (D4)

From Eq. (C8) in Ref. [5], the total variational distance upper
bounds the success probability p of any learning algorithm as
p < 1

2 + 1
2 TVD(E[pU ], pD).

Following Ref. [4], the total variational distance can be
rewritten as

TVD(E[pU ], pD) =
∑

s s.t. E[pU (s)]
pD (s) <1

pD(s) ·
(

1 − E[pU (s)]

pD(s)

)
,

(D5)

where the sum runs over bitstrings s such that the fraction
E[pU (s)]

pD (s) is less than one. Our strategy to upper bound the
total variational distance will be to lower bound the fraction
E[pU (s)]

pD (s) . Applying Eq. (D2), we have

E[pU (s)]

pD(s)
= E

[
exp

(∑
r

ln (1 + αsr tr(σVr (t )ρr ))

)]

� exp

(∑
r

E[ln (1 + αsr tr(σVr (t )ρr ))]

)

� exp

(
−c

∑
r

E[|tr(σVr (t )ρr )|]
)

� exp

(
−c

∑
r

E
[
tr
(
σVr (t )ρr

)2]1/2

)
. (D6)

In the second line, we have used Jensen’s inequality,
E[exp(X )] � exp(E[X ]) for a random variable X . In the
third line, we have used the inequality ln(1 + αx) � −c|x|
for x ∈ [−1,∞), for the constant c = ln( 1

1−α
) = ln(1/δ). In

the fourth line, we have applied Holder’s inequality, E[|X |] �
E[X 2]1/2.

We can simplify this expression by calculating the expec-
tation value over random Clifford unitaries. Since Clifford
unitaries form a 2-design, we have

E[tr(U †σVrUρr )2] = 1

4n − 1
tr
(
σ 2

Vr

)(
tr
(
ρ2

r

) − 1

2n
tr(ρr )2

)

� 2n

4n − 1

(
1 − 1

2n

)
� 1

2n
. (D7)

Inserting this into the above bound and performing the con-
stant sum,

∑
r 1 = T , we have

E[pU (s)]

pD(s)
� exp

(
− cT

2n/2

)
. (D8)
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Inserting this into the total variational distance gives our final
bound,

TVD(E[pU ], pD) � 1 − exp

(
− cT

2n/2

)
� cT

2n/2
. (D9)

From Eq. (C8) in Ref. [5], this upper bounds the success
probability p of any learning algorithm by

2p − 1 � T

2n/2
ln(1/δ), (D10)

where we recall c = ln(1/δ). Distinguishing a random Clif-
ford unitary from the fully depolarizing channel with success
probability 2p − 1 = �(1) thus requires a number of experi-
ments T = �( 2n/2

ln(1/δ) ). �

APPENDIX E: PROOF OF HARDNESS FOR CLIFFORD
TOMOGRAPHY WITH READ-OUT NOISE

We now consider learning an n-qubit Clifford unitary U
with full read-out capabilities, but in the presence of a finite
read-out error δ per qubit. We show that this task is exponen-
tially hard in n for time-ordered experiments that involve only
a single copy of U . As in the previous section, we will in fact
prove hardness for an even simpler task: distinguishing a ran-
dom n-qubit Clifford unitary from the maximally depolarizing
channel. Our theorem is as follows.

Theorem 2. (Exponential hardness of Clifford learning for
time-ordered experiments with read-out noise.) Consider hav-
ing oracle access to either (i) a fixed n-qubit Clifford-random
unitary U , or (ii) a maximally depolarizing channel. Sup-
pose one would like to distinguish (i) and (ii) by performing
experiments that each involve only a single application of
the unknown quantum process, arbitrary unitary operations,
and measurement of all qubits in the z basis with read-out
error δ per qubit. Then any learning protocol requires at least
�( 1

n ln(1/δ) ( 1
1−δ

)
n/2

) experiments, and so is exponentially inef-
ficient whenever δ > 0. Our proof proceeds similarly to the
proof for DQC1 hardness of Clifford learning in the previous
section.

Proof of theorem 2. The most general experiment within the
above description prepares an initial state ρ, applies the un-
known quantum process, and then applies an arbitrary known
unitary V . This creates the state VUρU †V †. The experiment
concludes by measuring all qubits in the computational basis
with read-out error δ on each qubit. This produces a measure-
ment outcome s ∈ {−1, 1}n with probability

pU (s) = tr(MsVUρU †V †), (E1)

where we define the measurement operator

Ms =
n⊗

i=1

[
1 + siασ i

z

2

]
, (E2)

and the read-out fidelity α = 1 − δ. We note that as a result of
the read-out error, the outcome probability is lower bounded
by

pU (s) �
(

δ

2

)n

, (E3)

which is the lowest eigenvalue of Ms.

Following the steps of the previous section, we lower
bound the quantity

E[pU (s)]

pD(s)

= E

[
exp

(∑
r

ln(2ntr(MsVrUρrU
†V †

r ))

)]

� exp

(∑
r

E[ln(2ntr(MsVrUρrU
†V †

r ))]

)

� exp

(
−c

∑
r

E[ |1 − 2ntr(MsVrUρrU
†V †

r )| ]

)

� exp

(
−c

∑
r

E[(1 − 2ntr(MsVrUρrU
†V †

r ))2]1/2

)
.

(E4)

In the second line, we apply Jensen’s inequality. In the
third line we apply the inequality ln(y) � −c|y − 1| for y ∈
[ym,∞), for the constant c = 1

1−ym
ln( 1

ym
). From Eq. (E3), we

take ym = δn which gives c = n
1−δn ln(1/δ). In the fourth line

we have applied Holder’s inequality, E[|X |] � E[X 2]1/2.
We can now calculate the expectation value over random

Clifford unitaries. We have

E[. . .] = 1 − 2 + 4n E[tr(MsVrUρrU
†V †

r )2]

= −1 + 4n

4n − 1

[
tr
(
M2

s

)
tr
(
ρ2

r

) + tr(Ms)2tr(ρr )2

− 1

2n
tr(ρr )2tr

(
M2

s

) − 1

2n
tr
(
ρ2

r

)
tr(Ms)2

]
. (E5)

Now, we have tr(Ms) = 1, tr(ρr ) = 1, tr(M2
s ) = (1 +

α2)n/2n, and tr(ρ2
r ) � 1. The above expression thus simplifies

to

E[. . .] = −1 + 4n

4n − 1

[(
1 + α2

2

)n

tr
(
ρ2

r

) + 1

− 1

2n

(
1 + α2

2

)n

− 1

2n
tr
(
ρ2

r

)]

= 1

4n − 1
+ 4n

4n − 1
tr
(
ρ2

r

)[(
1 + α2

2

)n

− 1

2n

]

− 2n

4n − 1

(
1 + α2

2

)n

<
1

4n − 1
+ 4n

4n − 1

(
1 + α2

2

)n

< 3

(
1 + α2

2

)n

= 3(1 − δ + δ2/2)n

� 3(1 − δ)n/2, (E6)

where in the first inequality we drop negative terms, and the
second inequality holds for all n � 1. Inserting this into the
above bound and performing the constant sum,

∑
r 1 = T , we
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have
E[pU (s)]

pD(s)
� exp(−3cT (1 − δ)n/2). (E7)

Inserting this into the total variational distance gives our final
bound,

TVD(E[pU ], pD) � 1 − exp(−3cT (1 − δ)n/2)

� 3cT (1 − δ)n/2. (E8)

This upper bounds the success probability p of any learning
algorithm by

2p − 1 � 1

1 − δn
nT (1 − δ)n/2 ln(1/δ), (E9)

where we recall c = ln(1/δ). Distinguishing a random Clif-
ford unitary from the fully depolarizing channel with success
probability 2p − 1 = �(1) thus requires a number of experi-
ments T = �( 1

n ln(1/δ) ( 1
1−δ

)n/2). �
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