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Kinetic theory provides a rigorous foundation for calculating the dynamics of gas flow
at arbitrary degrees of rarefaction, with solutions of the Boltzmann equation requiring
numerical methods in many cases of practical interest. Importantly, the near-continuum
regime can be examined analytically using asymptotic techniques. These asymptotic
analyses often assume steady flow, for which analytical slip models have been derived.
Recently, developments in nanoscale fabrication have stimulated research into the
study of oscillatory non-equilibrium flows, drawing into question the applicability
of the steady flow assumption. In this article, we present a formal asymptotic
analysis of the unsteady linearized Boltzmann–BGK equation, generalizing existing
theory to the oscillatory (time-varying) case. We consider the near-continuum limit
where the mean free path and oscillation frequency are small. The complete set of
hydrodynamic equations and associated boundary conditions are derived for arbitrary
Stokes number and to second order in the Knudsen number. The first-order steady
boundary conditions for the velocity and temperature are found to be unaffected by
oscillatory flow. In contrast, the second-order boundary conditions are modified relative
to the steady case, except for the velocity component tangential to the solid wall.
Application of this general asymptotic theory is explored for the oscillatory thermal
creep problem, for which unsteady effects manifest themselves at leading order.
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1. Introduction
The Navier–Stokes equations together with the no-slip boundary condition provide

a rigorous framework for studying many flow phenomena, including turbulence
(Reynolds 1895; Batchelor 1953; Ashurst et al. 1987; Clercx & van Heijst 2009),
oscillatory flows (Stokes 1851; Pozrikidis 1992), boundary layer effects (Prandtl 1904;
Schlichting 1960), and pipe and channel flows (Reynolds 1883; Orszag & Kells 1980).
Applicability of the Navier–Stokes equations and no-slip condition is contingent on
validity of the continuum approximation. Miniaturization or operation at low gas
densities can lead to violation of this fundamental tenet. The degree of gas rarefaction
can be captured by the Knudsen number, Kn, defined as the ratio of the mean free
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path λ to the characteristic length scale of the flow Lc:

Kn= λ

Lc
. (1.1)

Maxwell (1878) showed that rarefaction effects in a gas could be modelled by
allowing for velocity slip at the boundaries (assumed to be solid walls), and presented
the first of many slip models for rarefied flows (Weng & Chen 2008). This area has
received significant attention of late, motivated by the need to model flow phenomena
in micro- and nanoscale devices, e.g. those encountered in nanoelectromechanical
systems (NEMS). These modern devices have many applications, including ultra-
fine scale mass measurement (Craighead 2000; Cleland 2002; Yang et al. 2006;
Bargatin, Kozinsky & Roukes 2007; Burg et al. 2007), fluid property detection
(Sader 1998; Boskovic et al. 2002; Motamedi & Wood-Adams 2010), sensing of
environmental conditions (Berger et al. 1997; Lavrik, Sepaniak & Datskos 2004),
and atomic resolution imaging (Binnig, Quate & Gerber 1986; Giessibl 2003). The
flows generated by these small devices are often oscillatory and some lie outside the
realm of standard continuum theory. For example, these devices can exhibit oscillation
frequencies in the microwave range and length scales comparable to the gas mean free
path, rendering invalid the fundamental assumptions of this classical theory.

Solutions to non-equilibrium gas flows have been widely reported, and are primarily
based on an analysis of the Boltzmann equation (Boltzmann 1872) or an associated
model equation, the Boltzmann–BGK equation (Bhatnagar, Gross & Krook 1954;
Welander 1954). The derivation of these equations utilizes particle conservation
principles, ensuring their general applicability over all oscillation frequencies and
length scales. Direct analysis of the Boltzmann equation is complicated by the
nature of the collision integral (Cercignani 2000). The BGK approximation retains
the qualitative properties of the collision operator and simplifies the analysis of
many significant gas flows (Cercignani 2000). The validity of the approximation is
contingent on the assumption of a uniform collision frequency, which is valid provided
temperature perturbations in the gas are small. A well-documented shortcoming of
the Boltzmann–BGK equation is that the correct Prandtl number for monatomic
gases is not recovered (Cercignani 1988; Sone 2000). Despite these issues, the BGK
approximation is widely applied and has proved to be an important tool in many
theoretical investigations (see Cercignani 2000 and Sone 2000). As such, this article
focuses on the Boltzmann–BGK equation.

Asymptotic analyses of both the Boltzmann and Boltzmann–BGK equations have
been undertaken to probe the near-continuum regime. Pioneering methods include the
Hilbert and Chapman–Enskog expansions (Hilbert 1900, 1912; Chapman 1916; Enskog
1917). We explore a generalization of the former procedure in this article. Grad’s
moment method can also be used to generate hydrodynamic equations that characterize
non-equilibrium flows (Grad 1949, 1958). Numerical schemes in use today primarily
implement Monte Carlo methods, in particular the direct simulation Monte Carlo
(DSMC) method (Bird 1963). More recently, the lattice Boltzmann (LB) method has
been investigated (McNamara & Zanetti 1988; Higuera & Jiménez 1989).

The DSMC method was originally developed by Anderson and Lord Kelvin
(Bird 1978). The method simulates gas flows using the collisional dynamics of
the constituent particles (Bird 1998). In this regard, DSMC has found widespread
application in analysing flows for a variety of intermolecular potentials. However,
at the low Mach numbers intrinsic to nanoscale systems, statistical noise can
dominate these numerical solutions (Hadjiconstantinou et al. 2003). Techniques have
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Kinetic theory of oscillatory flows in rarefied gas 199

also been proposed to minimize noise at low Mach numbers (Fan & Shen 2001;
Baker & Hadjiconstantinou 2005; Chun & Koch 2005; Baker & Hadjiconstantinou
2008; Ramanathan & Koch 2009; Ramanathan, Koch & Bhiladvala 2010; Radtke,
Hadjiconstantinou & Wagner 2011).

The origins of the LB method are more recent, evolving from the lattice gas cellular
automata (LGCA) model (Frisch, Hasslacher & Pomeau 1986). The first formal LB
algorithm appeared just over two decades ago, and was later simplified through the
use of the Boltzmann–BGK equation (McNamara & Zanetti 1988; Higuera & Jiménez
1989; Chen et al. 1991; Qian, D’Humières & Lallemand 1992). The LB method is
now used to study a diverse range of flow problems (Chen et al. 2003; Yu, Girimaji
& Luo 2005; Shi & Sader 2010). Most recently, its applicability to rarefied gas flows
has also been explored (Colosqui et al. 2010; Shi et al. 2011; de Izarra, Rouet & Izrar
2011).

The Chapman–Enskog method provides a link between kinetic theory and gas
hydrodynamics (Chapman 1916; Enskog 1917; Chapman & Cowling 1960; Cercignani
2000; Sone 2000). In this method, a formal asymptotic expansion of the Boltzmann
equation is sought for rarefied flows in the continuum limit, via an expansion of the
distribution function and the streaming operator. The result is a series of hydrodynamic
equations at successive orders of Knudsen number. One recovers the Euler equations
to leading order and the Navier–Stokes equations of continuum flow to first order.
At subsequent orders, the hydrodynamic equations are the Burnett and super-Burnett
equations (Burnett 1935; Chapman & Cowling 1960; Shavaliyev 1993; Agarwal, Yun
& Balakrishnan 2001).

Issues regarding these higher-order Burnett equations remain. The instability of
the Burnett and super-Burnett equations has been the focus of considerable research
(Bobylev 1982; Struchtrup & Torrilhon 2003; Struchtrup 2005). While methods have
been discussed to regularize or stabilize these equations (Zhong, MacCormack &
Chapman 1993; Jin & Slemrod 2001; Soderholm 2007), their applicability in a general
context has not been established. Second, these higher-order differential equations
require additional boundary conditions to determine their unique solution (Lee 1994;
Agarwal et al. 2001). Numerous methods and models have been proposed to resolve
this issue (Maurer et al. 2003; Shen et al. 2007; Gu & Emerson 2007; Torrilhon &
Struchtrup 2008). While the Chapman–Enskog procedure provides us with a means
to derive higher-order bulk flow equations, there remains no consensus on a systemic
approach to solve the associated boundary value problem.

Grad’s moment method (Grad 1949, 1958) bypasses the solution for the mass
distribution function by taking moments of the Boltzmann or Boltzmann–BGK
equation (Torrilhon & Struchtrup 2008). However, the resulting set of moment
equations are coupled, and appropriate closures and boundary conditions must be
derived. These issues have been addressed by Struchtrup & Torrilhon (2003), Torrilhon
& Struchtrup (2008) and Groth & McDonald (2009).

Hilbert proposed a method for solving the Boltzmann equation using a formal
asymptotic expansion in the Knudsen number (Hilbert 1900, 1912). To leading order
in the Knudsen number, the method recovers the Euler equations for inviscid flow as
the governing hydrodynamic equations. At higher order, the Euler equations reappear,
but now with forcing terms related to lower-order stresses and heat flows (Sone 2000).
Interestingly, the classical (nonlinear) Navier–Stokes equations never arise (Sone 2000).
The relevant boundary conditions to apply at each order in the Knudsen number
remained unresolved at the time of Hilbert (Hilbert 1900, 1912; Cercignani 2000; Sone
2000).
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Cercignani addressed this issue and derived tangential velocity boundary conditions
directly from the linearized Boltzmann–BGK equation for the first- and second-order
(steady) hydrodynamic equations (Cercignani 1962, 1964). Sone elaborated on this
approach and derived a general set of boundary conditions for linearized steady flow
over simple (i.e. rigid) solid walls (Sone 1969, 1974). Incident particles were assumed
to undergo diffuse reflection from these walls with zero net mass flux. The shape or
curvature of the walls was considered arbitrary, the only restriction being that they
were smooth. The bulk flow equations (away from any surface) were derived using
the classical Hilbert expansion, which recovered the Stokes equations for creeping
flow at each order in the Knudsen number – non-equilibrium effects did not alter
the macroscopic hydrodynamic equations. To account for the Knudsen layer near the
surface, a matched asymptotic expansion was performed for small Knudsen number,
with the surface geometry characterized by the method of moving frame (Cartan
1977; Sone 2000). The anisotropy of space within the boundary layer resulted in an
infinite set of integral equations, which were solved simultaneously using numerical
methods up to second order in the Knudsen number (Sone 1964, 1965; Sone & Onishi
1973). This asymptotic formulation recovered the no-slip condition as the unique
boundary condition in the continuum limit, and the slip models derived by Cercignani
at first and second order (Sone 1968b, 1969). Furthermore, the set of higher-order
slip conditions contained thermal gradient terms whose presence was later verified
experimentally (see Sone 2000). Corrective terms to account for curvature effects of
the solid walls also appeared, and were subsequently confirmed for microscale flows
(Tibbs, Baras & Garcia 1997). This resolved the boundary value problem originally
encountered by Hilbert (Hilbert 1900, 1912; Cercignani 2000). The theory assumed
steady flow at low Mach and Reynolds number.

While many of the assumptions underlying Sone’s original theory have since
been relaxed, e.g. the low Mach and Reynolds number restrictions, the effect of
unsteadiness is yet to be fully explored (Sone & Onishi 1978; Onishi & Sone 1979;
Ohwada, Sone & Aoki 1989a,b; Sone, Ohwada & Aoki 1989; Ohwada & Sone 1992).
Some canonical unsteady flows have been considered, such as Stokes’ second problem
and the linearized Rayleigh problem (Sone 1964, 1965, 1968a). The influence of time-
dependence on the bulk flow has also been investigated for the hard-sphere Boltzmann
equation (Bardos, Golse & Levermore 1993, 1998; Sone 2007). Interestingly, unsteady
effects have been shown to not affect the existing steady boundary conditions and
Knudsen layer corrections to first order in the Knudsen number (Sone 2007). The
effect of unsteadiness on the full hydrodynamic equation/boundary condition set, up
to and including second order in the Knudsen number, is yet to be investigated.
Second-order models have received considerable attention recently, particularly in
the context of oscillatory flows (Hadjiconstantinou 2003, 2005b; Cao et al. 2009;
Pitakarnnop et al. 2009). Interestingly, Hadjiconstantinou’s numerical studies have
suggested that unsteady motion does not affect the second-order tangential slip model
(Hadjiconstantinou 2005b). A mathematical proof of this suggestion is yet to appear.
More recently, Takata et al. (2012) presented a formal asymptotic analysis of the
unsteady (linear in time, t) heating of two parallel plane walls. They show that
unsteady heating of this form results in a modification of the classical second-order
steady temperature slip model derived by Sone (1974).

In this article, we present a formal asymptotic analysis of the Boltzmann–BGK
equation for oscillatory flows in a slightly rarefied gas, i.e. small Knudsen numbers.
In so doing, we elucidate the effect of unsteadiness on the bulk flow hydrodynamic
equations and their associated boundary conditions. This is performed up to and
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Kinetic theory of oscillatory flows in rarefied gas 201

including equations second-order in the Knudsen number. Our analysis is restricted
to low Mach and Reynolds number flow; all perturbations in the macroscopic
quantities about their equilibrium values are thus small. This permits linearization
of the governing equation and boundary conditions, and justifies the assumption
of uniform gas collision frequency implicit in the BGK approximation. Numerical
techniques have been proposed and applied to analyse solutions of the linearized
Boltzmann–BGK equation for some canonical oscillatory rarefied gas flows (Sharipov
& Kalempa 2007, 2008; Manela & Hadjiconstantinou 2010; Yap & Sader 2012).
While these analyses provide high-accuracy data sets for linearized problems of
immense practical importance, analytical expressions provide additional insight into
the underlying physics driving the gas flows. The work we present in this article
provides the essential generalization to the original steady asymptotic theory of Sone
(1969, 1974).

We prove that oscillatory motion leads to compressible bulk flow at first order in
the Knudsen number; non-isothermal flows are also shown to evolve according to
a modified Navier–Stokes equation. In contrast, both isothermal and non-isothermal
flows obey a (different) modified Navier–Stokes equation at second order in the
Knudsen number. This feature is distinct from the well-known steady flow asymptotic
theory (Cercignani 1962, 1964; Sone 1969, 1974), where the bulk flow equations are
identical to the Stokes equations at all orders in the Knudsen number.

Tangential velocity slip models, up to and including second order in the Knudsen
number, are found to be identical to those for steady flow. This validates the
observation of Hadjiconstantinou (2005b), who suggested that the conventional
(steady) second-order tangential slip model can be used to analyse oscillatory flows.
Even so, other second-order components of the boundary conditions are modified by
unsteady effects. In particular, we show that oscillatory (time-varying) heating results
in a modification to the second-order temperature slip model that is equivalent to
that presented in Takata et al. (2012). Our analysis is supplemented by additional
terms, which account for non-zero boundary curvature, wall-normal velocity and gas
compressibility effects, as we shall discuss. The leading-order effects of unsteadiness
on gas rarefaction thus manifest themselves through the bulk flow equations, rather
than their associated boundary conditions.

To demonstrate application of this theory, we study flows generated by oscillatory
temperature gradients applied to two adjacent solid walls, i.e. thermal creep and
transpiration. This generalizes the original work of Sone (1966), who considered the
classical thermal creep problem of steady flow in an infinite half-space, due to a time-
independent temperature gradient imposed along the wall (Reynolds 1879; Maxwell
1879; Kennard 1938).

This phenomenon has found applications in a wide range of contexts. For example,
thermal transpiration in a circular pipe was considered by Sone (1968b) and Ohwada
et al. (1989b), and subsequently applied to study of the Knudsen compressor (Knudsen
1909a,b; Loyalka 1971; Loyalka, Petrellis & Storvick 1979; Vargo et al. 1999). More
recently, thermal creep has been proposed as a mechanism for motion of (volatile)
Leidenfrost drops along a ratchet surface (Lagubeau et al. 2011; Würger 2011). In
addition to its practical significance, the leading-order flow generated in the thermal
creep problem occurs at O(Kn). As discussed, the leading-order effect of unsteadiness
in a rarefied flow also appears at O(Kn) for non-isothermal flows. Consequently,
we present a detailed analysis of the oscillatory (time-varying) thermal creep
problem.
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While several canonical shear-driven gas flows, e.g, oscillatory Couette flow, have
been examined using a variety of numerical and analytical methods, these flows are
isothermal in the linear limit (Park, Bahukudumbi & Beskok 2004; Hadjiconstantinou
2005a; Sharipov & Kalempa 2007, 2008; Tang et al. 2008). The leading-order effect
of unsteadiness in these flows occurs via a modification to the classical Navier–Stokes
description at second order in the Knudsen number, i.e. O(Kn2): this does not alter the
leading-order shear flow. For this reason, we restrict ourselves to a detailed exposition
of the thermal creep problem in this article.

Section 2 begins with a brief outline of the linearized Boltzmann–BGK equation
and its derivation. Details of the matched asymptotic expansion, relevant curvature
equations, and a discussion of the scaling analysis are then given. In § 3, we present
a detailed exposition of the required asymptotic results for the bulk flow equations
and boundary conditions up to second order in the Knudsen number. Key findings
and formulas from the bulk flow analysis are summarized in § 3.1. The complete set
of hydrodynamic equations, up to second order in the Knudsen number, are given
in table 1. A discussion of the Knudsen layer analysis, up to first order in the
Knudsen number, is presented in § 3.2.1, with the complete of associated Knudsen
layer corrections and slip boundary conditions in table 2. Corresponding discussion
and summary of the formulas at second order in the Knudsen number are given in
§ 3.2.2 and table 3, respectively. The Knudsen layer integral equations, Knudsen layer
corrections, and slip coefficients are relegated to the Appendices. We conclude in § 4
by exploring the application of this theory to oscillatory thermal creep between two
adjacent walls.

2. Theoretical framework
The mass distribution function of the gas, F(x,v, t), is assumed to obey the

Boltzmann–BGK equation (Bhatnagar et al. 1954; Welander 1954; Vincenti & Kruger
1965),

∂F

∂t
+ vi

∂F

∂xi
+ ai

∂F

∂vi
= ν (ρ (x, t) f0 (v)− F) , (2.1)

where the equilibrium velocity distribution function at the local temperature, T(x, t),
and mean velocity, v̄(x, t), is

f0(v)=
(

1√
πvmp(T)

)3

exp

(
−
[
vi − v̄i

vmp(T)

]2
)
, (2.2)

and t is time, ν is the particle collision frequency, kB is Boltzmann’s constant, and x, v
and a are the particle position, particle velocity and body force, respectively. The most
probable collision speed of gas molecules of mass m at temperature T(x, t) is defined
as

vmp(T)=
√

2kBT

m
, (2.3)

and the local density is ρ(x, t). The local density ρ, mean gas velocity v̄ and
temperature T are given by the following moments of the mass distribution
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function,

ρ =
∫ ∞
−∞

F dv, (2.4a)

v̄= 1
ρ

∫ ∞
−∞

vF dv, (2.4b)

3kBT

m
= 1
ρ

∫ ∞
−∞
(v− v̄)2 F dv, (2.4c)

p

ρ
= kBT

m
, (2.4d)

where the equation of state is the ideal gas law, and p(x, t) is the local pressure.
Mass, momentum and energy are conserved quantities over intermolecular collisions

(Vincenti & Kruger 1965):0
0
0

= ∫ ∞
−∞


m

mv
1
2

mv2

 (ν[ρ(x, t)f0(v)− F]) dv. (2.5)

We restrict our analysis to low Mach and Reynolds number flows. This permits
linearization of the governing equation for F, its moments, and the collisional invariant
relations about their respective equilibrium solutions. To proceed, we thus define

ρ = ρ0 (1+ σ(x, t)) , (2.6a)
T = T0 (1+ τ(x, t)) , (2.6b)
p= p0 (1+ P(x, t)) , (2.6c)

F = ρ0E0 (1+ φ(x,v, t)) , (2.6d)

where ρ0, T0, p0 and ρ0E0 are the equilibrium density, temperature, pressure and
mass distribution, respectively; the functions σ , τ , P and φ are perturbations to these
equilibrium values. The function E0 in (2.6) is given by

E0 =
(

1√
πvmp(T0)

)3

exp

(
−
[

vi

vmp(T0)

]2
)
. (2.7)

We then substitute (2.6) into (2.1), (2.4) and (2.5) and linearize the resulting system.
This allows all time-varying functions to be expressed in terms of the explicit time-
dependence,

α(x,v, t)= α̃(x,v) exp (−iωt) , (2.8)

where i is the usual imaginary unit, ω is the radial frequency of oscillation, and
α represents any of: (i) the perturbations in (2.6); (ii) the mean gas velocities v̄i;
or (iii) the body force ai. The body force is thus regarded in general as oscillatory
(time-varying). For simplicity we omit the ‘ ˜ ’ notation used in (2.8); henceforth, all
dependent functions are thus frequency-dependent expressions. This immediately leads
to the required linearized Boltzmann–BGK equation for oscillatory flow,

−iωφ + vi
∂φ

∂xi
− 2
v2

mp(T0)
viai = ν

(
σ − φ + 2

v2
mp(T0)

v̄ivi +
[(

vi

vmp(T0)

)2

− 3
2

]
τ

)
,

(2.9)
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where the moment equations are

σ =
∫ ∞
−∞
φE0 dv, (2.10a)

v̄i =
∫ ∞
−∞
viφE0 dv, (2.10b)

3
2
τ =

∫ ∞
−∞

((
vi

vmp(T0)

)2

− 3
2

)
φE0 dv, (2.10c)

P= σ + τ, (2.10d)

with the collisional invariant relations in (2.4) taking the form0
0
0

= ∫ ∞
−∞

 1
v
v2

(σ − φ + 2
v2
mp(T0)

v̄ivi +
[(

vi

vmp(T0)

)2

− 3
2

]
τ

)
E0 dv. (2.11)

2.1. Scaling and generalized coordinates

The following scales are chosen for the particle velocity vi, mean velocity v̄i and bulk
acceleration ai,

vs = vmp(T0), v̄s = vmp(T0), as = vmp(T0)ω, (2.12)

where the subscript s denotes a scale. The scaling for ai is appropriate for an
oscillatory body force. Two length scales exist: the mean free path of the gas λ,
and the geometric length scale of the solid Lc, which is assumed to be much larger
than the mean free path. This separation of length scales results in a local flow
near the solid surface, i.e. within the Knudsen layer, and a bulk flow away from the
surface. The flows in these complementary regions will be solved for using a matched
asymptotic expansion in the Knudsen number, Kn� 1.

The bulk flow is analysed via a classical Hilbert expansion, with isotropic length
scale Lc (Hilbert 1900, 1912; Sone 1969, 1974; Cercignani 2000). Within the Knudsen
layer, the Boltzmann–BGK equation is scaled in the normal direction to the walls by
the mean free path λ, while the tangential directions are scaled by the geometric
length scale Lc. Thus, all perturbations to the mass distribution function and its
respective moments (represented by α), take the form

α = αH + αK. (2.13)

This yields two physically distinct equations to solve. The bulk flow quantities are
represented by a subscript H, while the Knudsen layer corrections are denoted by a
subscript K.

The surface geometry within the Knudsen layer is specified using the method of
moving frame (Cartan 1977; Sone 2000). A local orthonormal coordinate system
is chosen comprising two (principal) tangent vectors t1

i and t2
i (parametrized by

χ1 and χ2 respectively) and an associated outward wall-normal ni. The coordinate
normal to a solid wall is denoted η, and is scaled by the mean free path λ. The
wall curvature is chosen to be negative when its centre of curvature lies within the
gas (Sone 1969, 1974). The surface thus satisfies the following geometric relations
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(see Cartan 1977; Sone 2000; Ando 2011):

tq
j

∂tq
i

∂xj
=−κqni − (−1)qgqt3−q

i , (2.14a)

tq
j

∂t3−q
i

∂xj
= (−1)qgqtq

i , (2.14b)

tq
j

∂ni

∂xj
= κqtq

i , (2.14c)

tq
j

∂κq

∂xj
=−gq (κ1 − κ2) , (2.14d)

κij = κ1t1
i t1

j + κ2t2
i t2

j , (2.14e)

κ̄ = κ1 + κ2

2
, (2.14f )

where the index q takes the values 1, 2, and the normal and geodesic curvatures are κq

and gq, respectively. The curvature tensor κij is defined on the surface in terms of the
normal curvatures and local tangents, whereas the mean curvature is κ̄ .

2.2. Boundary conditions
Solution to (2.9) is sought subject to classic diffuse reflection from rigid walls of
arbitrary and smooth shape. The functional form of the mass distribution function for
reflected particles is

Fb = ρb

(
1√

πvmp(Tb)

)3

exp

(
−
[
vi − Vi

vmp(Tb)

]2
)
, (2.15)

where the subscript ‘b’ denotes values at the solid walls, and Vi is the velocity of the
solid walls.

Zero net mass flux at the solid walls is also required. This immediately leads to the
following results for the density of particles re-emitted from the walls and the usual
no-penetration condition:

ρb =−2

√
π

vmp(Tb)

∫
(vi−Vi)ni<0

(vi − Vi) niF dv, (2.16a)

Vini = v̄ini. (2.16b)

Linearizing and scaling (2.15) and (2.16) then gives the required set of boundary
conditions for particles reflected from the solid wall:

φb = σb + 2Vivi +
(
v2

i −
3
2

)
τb, (2.17a)

σb =
√
πVini − 1

2
τb − 2

√
π

∫ ∞
−∞

∫ ∞
−∞

∫ 0

−∞
ξφE(vit

1
i , vit

2
i , ξ) dξ d

(
vit

1
i

)
d
(
vit

2
i

)
, (2.17b)

Vini = v̄ini, (2.17c)
ξ = vini − Vini. (2.17d)

We have defined the normalized Gaussian E:

E(v1, v2, v3)= π−3/2 exp
(−v2

1 − v2
2 − v2

3

)
. (2.18)
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From (2.17), it then follows that outgoing particles from the solid walls satisfy the
condition

φK,ξ>0

∣∣
η=0
= φb − φH. (2.19)

In the outer region of the Knudsen layer, i.e. η→∞, we also require that the
Knudsen layer correction decays to zero,

lim
η→∞

φK,ξ<0 = 0. (2.20)

Finally, all solid walls are considered rigid, as formalized by the condition of zero
rate-of-strain,

∂Vi

∂xj
+ ∂Vj

∂xi
= 0. (2.21)

This ensures the curvatures κs and gs are constant and well-defined over the course of
the motion.

2.3. System of equations and their solution
The mass distribution function is written as the sum of a bulk flow component and
a Knudsen layer correction, as per (2.13). This leads to the following set of scaled
governing equations:

− i
2
βk2φH + kvi

∂φH

∂xi
− βk2aivi = σH − φH + 2v̄H|ivi +

(
v2

i −
3
2

)
τH, (2.22a)

− i
2
βk2φK + k

(
vit

1
i t1

j

∂φK

∂xj
+ vit

2
i t2

j

∂φK

∂xj

)
= σK − φK − vini

∂φK

∂η

+ 2v̄K|ivi +
(
v2

i −
3
2

)
τK. (2.22b)

Here, a vertical line ‘|’ in the subscript is used to delineate between the indices of the
tensor and other subscripts; this notation shall be used henceforth.

The corresponding boundary conditions are given in (2.19) and (2.20), and the
scaled collisional invariants become0

0
0

= ∫ ∞
−∞

 1
v
v2

(σA − φA + 2v̄A|ivi +
(
v2

i −
3
2

)
τA

)
E(v) dv, (2.23)

while the moment equations are

σA =
∫ ∞
−∞
φAE(v) dv, (2.24a)

v̄A|i =
∫ ∞
−∞
viφAE(v) dv, (2.24b)

3
2
τA =

∫ ∞
−∞

(
v2

i −
3
2

)
φAE(v) dv, (2.24c)

and the pressure is

PA = σA + τA. (2.25)

We emphasize that all variables in (2.22)–(2.25) represent their scaled quantities. The
subscript A in (2.23)–(2.25) takes the values H or K.
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The scaled Knudsen number, k, is defined by

k =
√
π

2
Kn, (2.26)

and the Stokes number, β, is

β = ωL2
c

νkin (T0)
. (2.27)

The scaled Knudsen number k and frequency ratio, ω/ν, are small and are related by

ω

ν
= 1

2
βk2. (2.28)

The scaled Knudsen number k simplifies the resulting analytical expressions, and is
used henceforth. The kinematic viscosity, νkin (T0), at temperature T0 is related to the
most probable speed and mean free path by

νkin (T0)=
√
π

4
vmp (T0) λ. (2.29)

3. Asymptotic formulae
In this section, we derive the required asymptotic formulae for the bulk flow

and Knudsen layer corrections, in the limit of small scaled Knudsen number, i.e.
k � 1. With the Stokes number β being a natural parameter of the problem, the
decomposition in (2.28) ensures that the frequency ratio is always small in the
asymptotic limit of infinitesimal scaled Knudsen number.

The mass distribution function and its moments appearing in the linearized
Boltzmann–BGK equation (2.22), the collisional invariants (2.23), the moment
equations (2.24), and the diffuse reflection, zero net mass flux and decay conditions
(equations (2.17), (2.19) and (2.20)), are expanded asymptotically in the small
parameter k, i.e.

α =
∞∑

n=0

α(n)kn, (3.1)

where α represents any of these dependent functions, and α(n) is the nth component.
Substituting (3.1) into the bulk flow equation in (2.22), and equating powers of k,
produces the required set of relations for φ(n)H (we remind the reader that φ(n)H is
the nth-order term in the k-expansion of φH); see (3.1). Enforcing the collisional
conservation laws (equation (2.23)) produces a set of hydrodynamic equations at each
order in k. These are analysed up to second order (i.e. n= 2) in § 3.1.

The corresponding boundary conditions at each order, n, are derived by analysis of
the Knudsen layer equation in (2.22). This results in a set of first-order differential
equations for φ(n)K , i.e. the nth-order term in the k-expansion of φK . Substituting the
solutions to these differential equations into the moment equations (2.24), yields a set
of simultaneous integral equations. The integral equations at second order (i.e. n = 2)
are given in appendix A – integral equations at lower order are identical to steady
flow (Sone 1969), as we shall discuss. Solutions to the integral equations for n 6 2
are obtained using numerical techniques and give the required bulk flow boundary
conditions and Knudsen layer corrections.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

30
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.302


208 J. Nassios and J. E. Sader

3.1. Hilbert expansion and bulk flow hydrodynamic equations

Proceeding as outlined above, we arrive at the following results for φ(n)H :

φ
(0)
H = σ (0)H + 2v̄(0)H|ivi +

(
v2

i −
3
2

)
τ
(0)
H , (3.2a)

φ
(1)
H = σ (1)H + 2v̄(1)H|ivi +

(
v2

i −
3
2

)
τ
(1)
H − vj

∂φ
(0)
H

∂xj
, (3.2b)

φ
(2)
H = σ (2)H + 2v̄(2)H|ivi +

(
v2

i −
3
2

)
τ
(2)
H − vj

∂φ
(1)
H

∂xj
+ i

2
βφ

(0)
H + βaivi, (3.2c)

φ
(n)
H = σ (n)H + 2v̄(n)H|ivi +

(
v2

i −
3
2

)
τ
(n)
H − vj

∂φ
(n−1)
H

∂xj
+ i

2
βφ

(n−2)
H , n > 3. (3.2d)

Substituting (3.2) into the collision invariants in (2.23), and after some algebra, we
obtain the required set of bulk flow hydrodynamic equations listed in table 1. Note that
the order n = 3 continuity equation is required to close the order n = 2 hydrodynamic
system (not shown).

The results in table 1 contrast with the steady formulation (β = 0) of Sone (1969),
where it was found that the incompressible Stokes equations were recovered to all
orders in the scaled Knudsen number k. Indeed, Sone’s steady results are recovered
from table 1 for β = 0. For the general unsteady case, β > 0, gas compressibility
affects the equations of motion for n > 1. Specifically, the linearized Navier–Stokes
equations are recovered at leading order, with compressibility effects and temperature
corrections modifying the bulk flow equations at higher order; the first-order equations
were discussed in Sone (2000). Even for isothermal and unidirectional flows, unsteady
effects lead to departures from the classical linearized Navier–Stokes equation at
higher order (n > 2); see table 1.

3.2. Knudsen layer corrections and boundary conditions

Performing a similar analysis for the Knudsen layer leads to the following set of
first-order governing equations for φ(n)K :

vini
∂φ

(n)
K

∂η
+ φ(n)K = Q(n), (3.3)

where

Q(0) = σ (0)K + 2v̄(0)K|ivi +
(
v2

i −
3
2

)
τ
(0)
K , (3.4a)

Q(1) = σ (1)K + 2v̄(1)K|ivi +
(
v2

i −
3
2

)
τ
(1)
K − vi

(
∂χ1

∂xi

∂φ
(0)
K

∂χ1
+ ∂χ2

∂xi

∂φ
(0)
K

∂χ2

)
, (3.4b)

Q(n) = σ (n)K + 2v̄(n)K|ivi +
(
v2

i −
3
2

)
τ
(n)
K − vi

(
∂χ1

∂xi

∂φ
(n−1)
K

∂χ1
+ ∂χ2

∂xi

∂φ
(n−1)
K

∂χ2

)

+ i
2
βφ

(n−2)
K , n > 2. (3.4c)
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n= 0

0= ∂P(0)H

∂xi

0= ∂v̄
(0)
H|i
∂xi

−iβv̄(0)H|i =−
∂P(1)H

∂xi
+ ∂

2v̄
(0)
H|i

∂x2
j

+ βai

−3i
5
β

(
τ
(0)
H −

2
3
σ
(0)
H

)
= ∂

2τ
(0)
H

∂x2
i

n= 1

i
2
βσ

(0)
H =

∂v̄
(1)
H|i
∂xi

−iβv̄(1)H|i =−
∂P(2)H

∂xi
+ ∂

2v̄
(1)
H|i

∂x2
j

+ 1
3

∂2v̄
(1)
H|j

∂xi∂xj
+ 2iβ

3
∂τ

(0)
H

∂xi

−3i
5
β

(
τ
(1)
H −

2
3
σ
(1)
H

)
= ∂

2τ
(1)
H

∂x2
i

n= 2
i
2
βσ

(1)
H =

∂v̄
(2)
H|i
∂xi

−iβv̄(2)H|i +
β2

2
v̄
(0)
H|i = −∂P(3)H

∂xi
+ ∂

2v̄
(2)
H|i

∂x2
j

+ 1
3

∂2v̄
(2)
H|j

∂xi∂xj
+ 2iβ

3
∂τ

(1)
H

∂xi
− 23iβ

30
∂P(1)H

∂xi

− i
2
β2ai − β

(
∂2ai

∂x2
j

+ ∂2aj

∂xi∂xj

)

−3i
5
β

(
τ
(2)
H −

2
3
σ
(2)
H

)
− 29i

20
β

(
∂2τ

(0)
H

∂x2
i

)
= ∂

2τ
(2)
H

∂x2
i

+ 19
5
∂2

∂x2
j

(
∂2τ

(0)
H

∂x2
i

)
TABLE 1. Bulk flow hydrodynamic equations up to and including second order.

The associated boundary conditions at order n are (equations (2.17), (2.19) and (2.20))

φ
(n)
b = σ (n)b + 2V (n)

i vi +
(
v2

i −
3
2

)
τ
(n)
b , (3.5a)

σ
(n)
b =

√
πV (n)

i ni − 1
2
τ
(n)
b

− 2
√
π

∫ ∞
−∞

∫ ∞
−∞

∫ 0

−∞
ξφ(n)E(vit

1
i , vit

2
i , ξ) dξ d

(
vit

1
i

)
d
(
vit

2
i

)
, (3.5b)

V (n)
i ni = v̄(n)i ni. (3.5c)
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(a) Leading-order Knudsen layer corrections for the unsteady flow problem.

(
v̄
(0)
H|i − V (0)

i

)
t1,2
i 0

τ
(0)
H − τ (0)b 0(
v̄
(0)
H|i − V (0)

i

)
ni 0

v̄
(0)
K|it

1,2
i 0

v̄
(0)
K|ini 0

σ
(0)
K 0

τ
(0)
K 0

(b) First-order Knudsen layer corrections for the unsteady flow problem.(
v̄
(1)
H|i − V (1)

i

)
t1,2
i k0S(0)H|ijnit

1,2
j + K1G(0)

H|it
1,2
i

τ
(1)
H − τ (1)b −d1G(0)

H|ini(
v̄
(1)
H|i − V (1)

i

)
ni 0

v̄
(1)
K|it

1,2
i Y0(η)S

(0)
H|ijnit

1,2
j + 1

2 Y1(η)G
(0)
H|it

1,2
i

v̄
(1)
K|ini 0

σ
(1)
K −Ω1(η)G

(0)
H|ini

τ
(1)
K −Θ1(η)G

(0)
H|ini

TABLE 2. Knudsen layer results for the unsteady flow problem up to first order. Slip
coefficients and Knudsen layer corrections are summarized in appendix B.

Equation (3.3) can be solved subject to (3.5), yielding the required solutions for
all n:

φ
(n)
K =


(
φ
(n)
b − φ(n)H

)
exp

(
− η

vini

)
+ 1
vini

∫ η

0
Q(n) exp

(
−η − η0

vini

)
dη0, vini > Vini,

1
vini

∫ η

∞
Q(n) exp

(
−η − η0

vini

)
dη0, vini < Vini.

(3.6)

3.2.1. Leading- and first-order results
Considering the cases of n = 0, 1, we substitute (3.6) into the moment (2.24). This

enables the Knudsen layer corrections and associated boundary conditions for the bulk
flow to be determined. A set of integral equations are derived and solved numerically
using the refined moment method (Sone & Onishi 1973). This method will be outlined
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shortly. The results of the analysis are given in table 2; all bulk flow quantities in
table 2 are evaluated at the solid wall.

We have also defined S(n)H|ij to be the rate-of-strain tensor, and G(n)
H|i the temperature

gradient vector, each evaluated on the wall (η = 0),

S(n)H|ij =−
(
∂v̄

(n)
H|i
∂xj
+ ∂v̄

(n)
H|j
∂xi

)
, G(n)

H|i =−
∂τ

(n)
H

∂xi
. (3.7)

Importantly, the quantities φ(0)H , φ(1)H , Q(0) and Q(1) that appear in (3.6) for n = 0, 1 are
independent of the unsteady parameter β, i.e. the Stokes number. The leading- and
first-order Knudsen layer integral equations thus remain unchanged from the steady
analysis of Sone (1969), and are omitted for brevity. The boundary conditions for the
bulk flow and Knudsen layer corrections, up to first order (n 6 1), remain unaffected
by oscillatory motion; see table 2. This conclusion is consistent with the observations
of Sone (2007), who considered unsteady tangential motion of the wall, i.e. zero
wall-normal velocity and body force.

The Knudsen layer functions and the slip coefficients are found via a refined
moment method analysis of the Knudsen layer integral equations. Each Knudsen layer
function for the density, temperature and mean tangential velocity, Ωm(η), Θm(η) and
Ym(η) respectively in table 2, are expanded in the truncated series

Ψ (η)=
N∑

n=0

cnJn(η), (3.8)

where Ψ represents any of Ωm, Θm or Ym; the subscript m distinguishes between
the different Knudsen layer functions, the coefficients cn are to be evaluated, N is a
positive integer and Jn(η) are Abramowitz functions (Abramowitz & Stegun 1965),

Jn(η)=
∫ ∞

0
tn exp

(
−η

t
− t2

)
dt. (3.9)

Expanding Ωm, Θm or Ym as in (3.8), the solution of a coupled set of integral
equations for the Knudsen layer corrections and bulk flow boundary conditions reduces
to a matrix inversion problem for the coefficients cn and the slip coefficients. Our
results are given in appendix B, enabling each Knudsen layer function to be readily
evaluated. The coefficients cn and the slip coefficients are quoted to a suitably
high number of significant figures to yield solutions of similar accuracy to those
summarized in Sone (2000).
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3.2.2. Second-order results
Derivation of the second-order results (n= 2) requires φ(2)K , which from (3.6) is

φ
(2)
K =



[
σ
(2)
b − σ (2)H + 2vi

(
V (2)

i − v̄(2)H|i
)
+
(
v2

i −
3
2

)(
τ
(2)
b − τ (2)H

)
+ vj

∂

∂xj

(
σ
(1)
H + 2viv̄

(1)
H|i +

(
v2

i −
3
2

)
τ
(1)
H

)
− vjvk

∂2

∂xj∂xk

(
σ
(0)
H + 2viv̄

(0)
H|i +

(
v2

i −
3
2

)
τ
(0)
H

)
− i

2
β

(
σ
(0)
H + 2vi

(
v̄
(0)
H|i + ai

)
+
(
v2

i −
3
2

)
τ
(0)
H

)]
exp

(
− η

vini

)
+ 1
vini

∫ η

0

[
σ
(2)
K + 2v̄(2)K|ivi +

(
v2

i −
3
2

)
τ
(2)
K

− vi

(
∂χ1

∂xi

∂

∂χ1
+ ∂χ2

∂xi

∂

∂χ2

)
φ
(1)
K +

i
2
βφ

(0)
K

]
exp

(
−η − η0

vini

)
dη0



vini > Vini

1
vini

∫ η

∞

[
σ
(2)
K + 2v̄(2)K|ivi +

(
v2

i −
3
2

)
τ
(2)
K

− vi

(
∂χ1

∂xi

∂

∂χ1
+ ∂χ2

∂xi

∂

∂χ2

)
φ
(1)
K +

i
2
βφ

(0)
K

]
exp

(
−η − η0

vini

)
dη0

 vini < Vini.

(3.10)

Three β-dependent terms appear in (3.10): two are proportional to φ
(0)
K , which is

uniquely zero; one is proportional to φ(0)H , which is non-zero in general. This indicates
that the second-order Knudsen layer corrections and associated boundary conditions
for the bulk flow may be altered by oscillatory motion.

To evaluate these corrections and boundary conditions, we follow the procedure
outlined in § 3.2.1. The complete set of second-order integral equations is given in
tables 4 and 5 of appendix A. Numerical solution using the refined moment method
yields the formulae summarized in table 3. The slip coefficients, and the Knudsen
layer correction coefficients, cn, are summarized in tables 8–11 of appendix B. The
well-known steady solution (Sone 2000) is recovered in the zero β limit, as required.

3.2.3. Implications
Two important conclusions immediately result from the formulae in tables 2 and 3.

(i) The tangential velocity Knudsen layer correction and associated boundary
condition for the bulk flow, up to and including second order (n 6 2), are
unaffected by unsteady motion (non-zero β), i.e. the steady result of Sone
(1969) holds true for all β. This finding is consistent with Hadjiconstantinou
(2005b), who observed that the steady second-order slip model provides good
agreement with DSMC simulations for hard spheres. Our analysis provides
rigorous mathematical justification for the use of the steady tangential velocity
condition for unsteady BGK gas flows.

(ii) Importantly, all other Knudsen layer corrections and associated boundary
conditions are altered at second order (n = 2). These modifications are driven
by unsteady gas compressibility effects, thermal gradients within the gas, and
non-zero wall-normal velocities. A requirement of steady flow is zero wall-normal
velocity (see Sone 1969).
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(
v̄
(2)
H|i − V (2)

i

)
t1,2
i

k0S(1)H|ijnit
1,2
j − K1

∂τ
(1)
b

∂xi
t1,2
i + a1

∂S(0)H|ij
∂xk

nit
1,2
j nk

+ a2κ̄S(0)H|ijnit
1,2
j + a3κijS

(0)
H|jknkt

1,2
i

+ a4
∂G(0)

H|i
∂xj

njt
1,2
i + a5κ̄G(0)

H|it
1,2
i + a6κijG

(0)
H|jt

1,2
i

(
v̄
(2)
H|i − V (2)

i

)
ni

1
2

∂S(0)H|ij
∂xk

ninjnk + 2κijκjiV
(0)
k nk + 2

(
t1
k

∂

∂xk
+ g2

)t1
j

∂
(

V (0)
i ni

)
∂xj


+ 2

(
t2
k

∂

∂xk
− g1

)t2
j

∂
(

V (0)
i ni

)
∂xj

∫ ∞
0

Y0(η0) dη0

+ 1
2

(
∂G(0)

H|i
∂xk

nink − ∂G(0)
H|i

∂xi
+ 2κ̄G(0)

H|ini

)∫ ∞
0

Y1(η0) dη0

τ
(2)
H − τ (2)b

−d4
∂S(0)H|ij
∂xk

ninjnk − d8

(
κijκjiV

(0)
k nk

+
(

t1
k

∂

∂xk
+ g2

)t1
j

∂
(

V (0)
i ni

)
∂xj

+ (t2
k

∂

∂xk
− g1

)t2
j

∂
(

V (0)
i ni

)
∂xj


− d1G(1)

H|ini − d5κ̄G(0)
H|ini − d9

∂G(0)
H|i

∂xi
− d10

∂v̄
(1)
H|i
∂xi

v̄
(2)
K|it

1,2
i

Y0(η)S
(1)
H|ijnit

1,2
j −

1
2

Y1(η)
∂τ

(1)
b

∂xi
t1,2
i + Ya1(η)

∂S(0)H|ij
∂xk

nit
1,2
j nk

+Ya2(η)κ̄S(0)H|ijnit
1,2
j + Ya3(η)κijS

(0)
H|jknkt

1,2
i

+Ya5(η)κ̄G(0)
H|it

1,2
i + Ya6(η)κijG

(0)
H|jt

1,2
i

v̄
(2)
K|ini

1
2

∂S(0)H|ij
∂xk

ninjnk + 2κijκjiV
(0)
k nk + 2

(
t1
k

∂

∂xk
+ g2

)t1
j

∂
(

V (0)
i ni

)
∂xj


+ 2

(
t2
k

∂

∂xk
− g1

)t2
j

∂
(

V (0)
i ni

)
∂xj

∫ η

∞
Y0(η0) dη0

+ 1
2

(
∂G(0)

H|i
∂xk

nink − ∂G(0)
H|i

∂xi
+ 2κ̄G(0)

H|ini

)∫ η

∞
Y1(η0) dη0

TABLE 3. (Continued on next page)

(iii) The coefficient d9, which is given to 4 significant figures of accuracy in table 8,
was also recently calculated by Takata et al. (2012). It is reported there as β(2),
and is identical to our result to 4 significant figures.
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σ
(2)
K

−Ω4(η)
∂S(0)H|ij
∂xk

ninjnk −Ω8(η)
(
κijκjiV

(0)
k nk

+
(

t1
k

∂

∂xk
+ g2

)t1
j

∂
(

V (0)
i ni

)
∂xj

+ (t2
k

∂

∂xk
− g1

)t2
j

∂
(

V (0)
i ni

)
∂xj


−Ω1(η)G

(1)
H|ini −Ω5(η)κ̄G(0)

H|ini −Ω9(η)
∂G(0)

H|i
∂xi
−Ω10(η)

∂v̄
(1)
H|i
∂xi

τ
(2)
K

−Θ4(η)
∂S(0)H|ij
∂xk

ninjnk −Θ8(η)
(
κijκjiV

(0)
k nk

+
(

t1
k

∂

∂xk
+ g2

)t1
j

∂
(

V (0)
i ni

)
∂xj

+ (t2
k

∂

∂xk
− g1

)t2
j

∂
(

V (0)
i ni

)
∂xj


−Θ1(η)G

(1)
H|ini −Θ5(η)κ̄G(0)

H|ini −Θ9(η)
∂G(0)

H|i
∂xi
−Θ10(η)

∂v̄
(1)
H|i
∂xi

TABLE 3. Knudsen layer corrections for the unsteady flow problem at second order.

The formulae in tables 1–3 provide a complete asymptotic theory correct to O(k2),
in the limit of small scaled Knudsen number, k, and small frequency ratio ω/ν.
The associated slip coefficients, and the Knudsen layer coefficients cn, are given in
appendix B.

4. Application to time-varying thermal creep
In this section, we apply the theory developed in § 3 to study the flow generated by

oscillatory (time-varying) temperature gradients imposed at two adjacent walls.
Consider two walls of infinite extent that are separated by a distance L; see figure 1.

A temperature gradient is applied along each wall in the x-direction. If the gas
between the walls is permitted to relax thermally, steady flow results from the cold
region to the hot region. This flow is commonly referred to as thermal creep (Kennard
1938; Maxwell 1879; Reynolds 1879; Sone 1966). If the ends of the channel are
enclosed (the system is sealed), gradients in gas particle density that are created by
thermal creep between the walls induce a pressure gradient. This generates a secondary
Poiseuille flow (in the opposite direction) superimposed on the thermal creep flow: this
is referred to as thermal transpiration (Ohwada et al. 1989b; Williams 1971).

We consider two cases: (i) temperature gradients at each wall are identical (referred
to as the symmetric problem); and (ii) these temperature gradients are equal in
magnitude but opposite in sign (the antisymmetric problem). A linear combination of
these canonical flow problems enables the solution for arbitrary temperature gradients
to be calculated.

From the governing bulk flow equations in table 1, it is evident that unsteady effects
manifest themselves at first order for thermally driven flows. Consequently, both the
symmetric and antisymmetric problems will be calculated correct to first order, i.e.
n 6 1.

Temperature gradients at the walls are in the x-direction, and are of magnitude A.
The oscillation frequency is ω and the geometric length scale is the separation between
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x

y

z

FIGURE 1. Schematic showing infinite parallel walls where temperature gradients are applied
in the x-direction. Gas is confined between the walls.

the walls L. In accord with the above theory, the oscillation frequency ω is taken to
be much smaller than the molecular collision frequency ν, and the wall separation L
greatly exceeds the mean free path λ.

4.1. Symmetric problem
We first consider the symmetric case where temperature gradients at the walls are
identical. Governing equations for the leading- and first-order mean velocity fields,
v̄
(0)
H|i and v̄

(1)
H|i, and temperature distributions, τ (0)H and τ

(1)
H , are given in table 1, with

associated boundary conditions in table 2. The flow is driven by the leading-order
temperature boundary condition, which for this symmetric problem is

τ
(0)
H |y=±1/2 = xε, (4.1)

where ε ≡ AL/T0; T0 is the equilibrium temperature of the gas. Solution to the
resulting system at leading order yields the trivial result for the mean velocity,

v̄
(0)
H|i = 0, (4.2)

whereas the leading-order temperature distribution satisfies the classical heat diffusion
equation, and is given by

τ
(0)
H = xε

cosh (yδ)

cosh
(
δ

2

) , (4.3)

with δ =√−iβ. The leading-order pressure is gradient-free, i.e. it is spatially invariant.
The first-order mean normal velocity at the walls is zero, in accord with the no-

penetration condition, while the mean tangential velocity satisfies the slip boundary
conditions (see table 2)

v̄
(1)
H|x|y=±1/2 =−K1ε. (4.4)

The slip at the walls is thus identical to the usual steady problem.
The first-order mean velocity is calculated by seeking a solution of the form

v̄
(1)
H|x =−

x2

2
g′(y)+ h(y), (4.5a)

v̄
(1)
H|y = xg(y)+ xf (y), (4.5b)
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where the functions g(y), f (y) and h(y) are to be determined. The first terms in v̄(1)H|x
and v̄(1)H|y provide a divergence-free contribution to the velocity field. The function xf (y)
is chosen to ensure that the divergence of the velocity field varies linearly in x (see
table 1 and (4.3)), whereas h(y) is included for generality.

Substituting (4.5) into the first-order continuity and momentum equations in table 1,
and applying the associated boundary conditions, leads to the unique solution

g(y)=−
δε tanh

(
δ

2

)
δ cosh

(
δ

2

)
− 2 sinh

(
δ

2

) [(y− 1
2

)
δ cosh

(
δ

2

)

+
(

sinh
(
δ

2

)
− sinh (yδ)

)]
, (4.6a)

h(y)= ε

8
[
δ cosh

(
δ

2

)
− 2 sinh

(
δ

2

)] [2yδ sech
(
δ

2

)(
2 sinh

(
δ

2

)
sinh (yδ)

− yδ sinh (δ))+ cosh (yδ)

(
δ − 2 tanh

(
δ

2

))(
δ tanh

(
δ

2

)
− 8K1

)]
, (4.6b)

f (y)= δε
2

sinh (δy)− sinh
(
δ

2

)
cosh

(
δ

2

)
 , (4.6c)

where the slip coefficient K1 = −0.383161 . . . < 0. This yields the required mean
velocity field, pressure and temperature distributions at first order (n= 1):

P(1)H = C, (4.7a)

τ
(1)
H =−xd1εδ tanh

(
δ

2

)
cosh (yδ)

cosh
(
δ

2

) + 2
5

C

1− cosh (yδ)

cosh
(
δ

2

)
 , (4.7b)

v̄
(1)
H|y = xδ2ε

sinh (yδ)− 2y sinh
(
δ

2

)
2δ cosh

(
δ

2

)
− 4 sinh

(
δ

2

) , (4.7c)

v̄
(1)
H|x =−εK1

cosh (yδ)

cosh
(
δ

2

) + ε

2δ cosh
(
δ

2

)
− 4 sinh

(
δ

2

)
×
(

x2δ2 tanh
(
δ

2

)[
cosh

(
δ

2

)
− cosh (yδ)

]
+ δ cosh (yδ)

4

[
2sech2

(
δ

2

)
− 2+ δ tanh

(
δ

2

)]
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+ tanh
(
δ

2

)[
y sinh

(
δ

2

)
− y2δ cosh

(
δ

2

)])
, (4.7d)

P(2)H =
xδ2ε

2δ cosh
(
δ

2

)
− 4 sinh

(
δ

2

) [y2δ2 sinh
(
δ

2

)
− x2δ2

3
sinh

(
δ

2

)

+ cosh (yδ)

(
2 tanh

(
δ

2

)
− δ
)]
+ D. (4.7e)

Note that closure of the leading-order pressure P(0)H is achieved at first order, and gives
P(0)H = 0. The constants C and D in the first- and second-order pressures can also
evaluated at subsequent order, i.e. n= 2 and 3, respectively.

The corresponding Knudsen layer corrections are then obtained by substituting (4.2)
and (4.3) into table 2,

τ
(1)
K =−xδε tanh

(
δ

2

)Θ1


1
2
− y

k

+Θ1


1
2
+ y

k


 , (4.8a)

v̄
(1)
K|x =−

ε

2

Y1


1
2
− y

k

+ Y1


1
2
+ y

k


 , (4.8b)

where the functions Θ1(η) and Y1(η) are defined in (3.8), with associated coefficients
cn given in appendix B.

Interestingly, the spatial dependence of the tangential velocity correction, v̄(1)K|x, is
independent of the oscillation frequency, i.e. independent of β. As such, it is identical
to the corresponding result for steady flow; see Sone (2000). To explicate the effect
of unsteadiness on classical thermal creep flow, we thus focus our analysis on the
bulk flow results in (4.2), (4.3) and (4.7). Together with (4.8), these give the complete
solution to O(k).

4.1.1. Physical analysis of the flow
To study the flow, plots of the real and imaginary components and the magnitude

of τ
(0)
H /(xε) are given in figure 2. Note that the true (physical) solution of

this time-varying flow is given by a weighted superposition between the real
and imaginary components. For example, if the true temperature at the wall
is Ttrue = Re{T exp(−iωt)}, then all true flow/temperature variables are given by
Xtrue = Re{X exp(−iωt)} = Re{X} cos(ωt) − Im{X} sin(ωt), for any variable X. Thus,
the solution periodically alternates between the real and imaginary components, as
time evolves.

In the limit of infinitesimal β, the temperature distribution is purely real and
coincides with the steady solution of Sone (1966). The temperature distribution
thus precisely follows the time variation in the wall temperature, i.e. it is in phase.
From figure 2, it is clear that as β increases, a non-zero imaginary component arises
representing a time lag in the gas temperature response. For large β, thermal boundary
layers form in the immediate vicinity of the walls, where gas temperature variations
are confined. Exponential decay in the temperature is observed away from the walls.
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FIGURE 2. Scaled leading-order temperature perturbation of symmetric problem τ
(0)
H /(xε).

(a) Real component; (b) imaginary component; (c) magnitude. Results given for β = 1
(short dashes), β = 10 (medium dashes), β = 30 (long dashes), β = 100 (dot-dashed line),
β = 1000 (dotted line), β = 10 000 (solid line).

Next, we calculate the average velocity uy normal to the walls, in the upper half-
channel,

uy = 2
∫ 1/2

0
v̄
(1)
H|y dy=−xδε

δ sinh
(
δ

2

)
− 8sinh2

(
δ

4

)
4
[
δ cosh

(
δ

2

)
− 2 sinh

(
δ

2

)] . (4.9)

Note that the normal velocity v̄
(1)
H|y is antisymmetric in y. The small- and large-β

asymptotics of uy are

uy = xε


iβ
32
− β2

3840
, β� 1,

−1+ i
4

√
β

2
+ 1

2
, β� 1.

(4.10)

Comparison of the full solution in (4.9) and the asymptotic formulae in (4.10) is given
in figure 3, where excellent agreement is observed.
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FIGURE 3. Scaled average normal velocity of symmetric problem uy/(xε). (a) Real
component; (b) imaginary component. Exact solution, equation (4.9) (solid line). Asymptotic
solutions, equation (4.10): β� 1 (long dashes); β� 1 (dotted line).
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FIGURE 4. Scaled average tangential velocity of symmetric problem ux/ε at x = 1. (a)
Real component; (b) imaginary component. Exact solution, equation (4.11) (solid line).
Asymptotic solutions, equation (4.12): β� 1 (long dashes); β� 1 (dotted line).

The corresponding average tangential velocity ux is given by

ux =
ε sech

(
δ

2

)
tanh

(
δ

2

)
48δ

[
δ cosh

(
δ

2

)
− 2 sinh

(
δ

2

)] (δ [24− (48K1 + δ2
[
1− 12x2

])
(1+ cosh (δ))

]
+ 6

[
16K1 − 4+ (1− 4x2

)]
sinh (δ)

)
. (4.11)

The asymptotic results for this expression are

ux = ε


−K1 − iβ

240

(
9+ 20K1 + 60x2

)+ β2

33 600

(
279+ 280K1 + 700x2

)
, β� 1,

−1+ i
24

√
β

2

(
1− 12x2

)+ 1
6
, β� 1,

(4.12)

where the slip coefficient K1 = −0.383161 . . . < 0. Once more, comparison of (4.11)
and (4.12) in figure 4 shows excellent agreement between the full solution and the
corresponding low and high inertia asymptotics.
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We now explore the physical mechanisms driving the thermal creep flow in the zero,
small, intermediate and high inertia limits. These observations are then reconciled with
the asymptotic forms of the average velocity as inertia is increased; see (4.10) and
(4.12), and the corresponding mean velocities in the gas, v̄(1)H|y and v̄(1)H|x, in (4.6).
Zero inertia (β = 0). In the limit of zero inertia, temperature gradients at the wall

generate a velocity slip given in (4.4), and thus a thermal creep in the tangential
direction to the walls (Sone 1966). This gives the first term in ux for β � 1 in (4.12),
with the corresponding mean velocity

v̄
(1)
H|x,sym =−K1ε, v̄

(1)
H|y,sym = 0, (4.13)

where the subscript ‘sym’ is used to identify this as the symmetric solution for zero
inertia.
Small inertia (β � 1). In the limit of small inertia, the oscillatory (time-varying)

pressure, temperature and density perturbations all drive a mean flow, in addition to
the usual thermal creep (at zero inertia). This additional flow is out of phase with
the thermal creep by 90◦, which is evident from the small-β asymptotics in (4.10)
and (4.12). Near the reference point of zero temperature (x = 0), gas compressibility
is negligible, leading to a divergence-free velocity field. This directly leads to the
O(β) component in the average tangential velocity ux that is independent of x; see
(4.12). Away from this point, gas compressibility becomes significant and introduces
an additional term that is proportional to x2 in ux.

Plots of the mean normal velocity v̄
(1)
H|y at low inertia are given in figure 5.

From (4.13), the steady mean normal velocity is zero, and thus the solution in
(4.7) is directly driven by unsteady effects. The solution is proportional to x, and
is appropriately scaled in figure 5 for simplicity. These results highlight the no-
penetration condition at the walls. They also demonstrate that the low-β asymptotic
solution for uy holds over a wide range of values, β . 30.

Corresponding plots for the tangential component v̄(1)H|x are given in figure 6. To
identify contributions from unsteady motion of the walls, results are given for the
difference between v̄

(1)
H|x and the classical thermal creep solution from (4.13): this is

termed the unsteady correction. The unsteady correction must satisfy no-slip at the
walls; this is because slip along the walls is independent of β (see (4.4)). We now
examine the nature of the flow and its dominant mechanism, as a function of inertia β
and position x along the channel. We remind the reader that the classical thermal creep
solution in (4.13) is purely real.

First, consider flow near the reference point at x = 0. Gradients in the pressure
P(2)H and the temperature τ (0)H are both capable of driving the flow. For small β, the
tangential pressure gradient between the walls is given by

∂PH2

∂x
= iβε

2

(
1+ 6x2 − 6y2

)+ β2ε

80

(−5+ 4x2 + 16y2
)
, (4.14)

whereas the tangential temperature gradient is

∂τH0

∂x
= ε − iβε

8

(
4y2 − 1

)− β2ε

384

(
16y4 − 24y2 − 5

)
. (4.15)

For small β, this temperature gradient is constant to leading order. Coupled with
the no-slip condition, this directly leads to the parabolic profile observed in the real
component of the unsteady correction for β = 10−4 at x = 0; see figure 6(a). The
imaginary component, however, exhibits significantly different behaviour. Interestingly,
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FIGURE 5. Scaled mean normal velocity of symmetric problem v̄
(1)
H|y/(xβ

lε), where l is
chosen to match dominant asymptotic behaviour in β. Real (l = 2), imaginary and magnitude
(l = 1). (a) Real component; (b) imaginary component; (c) magnitude. Results given for
β = 10−4 (solid line), β = 10 (medium dashes), β = 30 (long dashes).

the pressure gradient varies quadratically with the normal coordinate y, and switches
sign across the channel, i.e. as y is varied. This pressure gradient directly drives the
imaginary component of the flow, and combined with the no-slip condition at the
walls, leads to the observed variations in convexity in the imaginary component of the
unsteady correction to v̄(1)H|x, at low β; see figure 6(b) for β = 10−4. Since the classical
thermal creep is purely real, the imaginary component of the unsteady correction to
the mean tangential velocity is identical to the imaginary component of the complete
bulk mean tangential velocity v̄(1)H|x.

The imaginary component of v̄(1)H|x at x= 0 also vanishes twice at finite distance from
the walls. Since the mean normal velocity v̄(1)H|y is proportional to x, this ensures that
two critical points (saddle nodes) exist in the imaginary component of the velocity
field at finite distance from the walls, at x = 0. For β = 10−4, they occur at the points
(x, y)= (0,±yc), where

yc = 0.341817 . . . . (4.16)

The extensional flow leading to this critical point is evident in the streamline plot
of the complete bulk flow in figure 7(b), and highlighted in figure 8. We note that
the complete bulk flow is the sum of the classical thermal creep in (4.13), and the
unsteady correction. All streamlines presented in this article are streamlines of the
complete flow.
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FIGURE 6. Scaled unsteady correction to the mean tangential velocity of symmetric problem
(v̄
(1)
H|x − v̄(1)H|x,sym)/(β

lε), where l is chosen to match dominant asymptotic behaviour in β.
Real (l = 2); imaginary and magnitude (l = 1). At x = 0: (a) real component; (b) imaginary
component; (c) magnitude. At x = 1: (d) real component, (e) imaginary component; (f )
magnitude. Results given for β = 10−4 (solid line), β = 10 (medium dashes), β = 30 (long
dashes).

Away from the reference point at x = 0, the pressure gradient grows in x and
dominates the temperature gradient which is independent of x; see (4.14) and (4.15).
For large x, the pressure gradient is independent of y to leading order, and together
with the no-slip condition, drives a parabolic flow; see figure 6(d–f ) for β = 10−4.
Intermediate inertia (β ∼ 1). As β increases, the real component of the temperature

gradient decreases; see real components of (4.15). This leads to a reduction in the real
component of the unsteady correction to the tangential velocity; see figure 6(a) for
β = 10. The opposite behaviour is observed for the imaginary component, with the
temperature gradient increasing. This alters the convexity of the imaginary component
of v̄(1)H|x, as illustrated in figure 6(b) for β = 10, and extinguishes the critical points that
were observed for low β.
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FIGURE 7. Streamlines of symmetric problem for β = 10−4. Flow centred at x= 0: (a) real;
(b) imaginary. Flow centred at x= 10: (c) real; (d) imaginary.
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FIGURE 8. Streamlines of symmetric problem for β = 10−4. Flow centred at x= 0. Zoomed
image of figure 7(b) for −0.25 6 x/L 6 0.25 and 0.25 6 y/L 6 0.45.
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As β increases further, both real and imaginary components of the temperature
and pressure gradients begin to balance. This inflects the unsteady correction to
the velocity profile at x = 0; see figure 6(a–c) for β = 30. For β > 30, the real
components of the temperature and pressure gradients identically oppose the classical
thermal creep flow at the origin (x, y) = (0, 0), which results in the formation of
a critical point in the real component of v̄

(1)
H|x, when the unsteady parameter β

equals the critical value

βc = 34.0487 . . . . (4.17)

This critical point then bifurcates to yield two symmetric critical points (centres)
about y = 0 in the real component of the mean velocity, for higher β. This
behaviour is illustrated in the streamlines of the complete bulk flow in figure 9(a)
for β = 50> βc. Consequently, the nature of these points is distinct from that observed
in the imaginary component for small β. The position of the critical point in the upper
half-channel (y > 0) as a function of β is given in figure 10. The classical thermal
creep flow is purely real. Hence, the formation of a critical point in the imaginary
components of the mean velocity only requires the pressure and temperature gradients
to balance. For intermediate β, these two effects do not exactly balance, and thus
no critical points are observed in the imaginary component of the mean velocity for
β = 50, except at the walls, due to the no-slip condition.

Away from the reference point at x = 0, similar flow profiles to those observed for
β = 10−4 are observed at intermediate inertia; see figure 6(d–f ) for β = 10 and β = 30.
In addition to the large pressure gradient for non-zero x, compressibility effects are
significant with increasing β, leading to convergence of the streamlines for x� 1; see
figure 9(c–d).
High inertia (β � 1). In the high inertia limit, perturbations to the temperature

are confined to thin boundary layers near the walls; see figure 2. This produces
large pressure gradients within the boundary layers, which dominate the flow and
drive strong variations in the velocity fields near the walls; see figures 11 and 12.
Perturbations to the gas temperature τ (0)H , and hence density σ (0)H , decay exponentially
away from the walls. This results in an incompressible flow for all x outside the
boundary layers; see the n = 1 continuity equation in table 1. Pressure gradients
remain significant outside the boundary layers and are thus the dominant force driving
the bulk flow.

The normal mean velocity v̄(1)H|y, plotted in figure 11, displays a linear dependence on
the normal coordinate y. This is consistent with the large β asymptotic result for the
pressure,

∂P(2)H

∂y
=√iβ3/2εxy, (4.18)

which is also proportional to y. Recall that the classical thermal creep solution has no
normal component to the walls, and thus the results in figure 11 are identical to the
unsteady correction.

In contrast, the unsteady correction to the mean tangential velocity v̄(1)H|x in figure 12
exhibits: (i) a parabolic distribution outside the boundary layers near the reference
point x = 0; and (ii) plug flow away from this point (e.g. at x = 1). These features are
also reconciled with the high-β asymptotic for the tangential pressure gradient:

∂P(2)H

∂x
=
√

iβ3/2ε

2

(
y2 − x2

)
. (4.19)
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FIGURE 9. Streamlines of symmetric problem for β = 50. Flow centred at x= 0: (a) real; (b)
imaginary. Flow centred at x= 10: (c) real; (d) imaginary.
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FIGURE 10. Position in the upper half-channel (0< y< 0.5) of the critical point at x= 0 in
the real mean tangential velocity of symmetric problem v̄

(1)
H|x. Position given as a function of β.
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FIGURE 11. Scaled mean normal velocity of symmetric problem v̄
(1)
H|y/(x

√
βε). (a) Real

component; (b) imaginary component; (c) magnitude. Results given for β = 10 (medium
dashes), β = 30 (long dashes), β = 100 (dot-dashed line), β = 1000 (dotted line), β = 10 000
(solid line).

This pressure gradient is dominated by a quadratic variation in y near the
reference point (x = 0), leading to the observed parabolic velocity distribution in this
incompressible flow; see figure 12(a–c). However, away from the reference point the
quadratic variation in x dominates and thus reverses the sign of the pressure gradient.
Since flow outside the boundary layers is always incompressible at high inertia (see
above), this feature leads to plug flow in the opposite direction to the parabolic flow
observed near the reference point; see figure 12(d–f ).

Streamlines of the complete bulk flow are illustrated in figure 13 at two points along
the walls, x = 0 and x = 10. The two critical points observed at intermediate inertia
in the real component of the mean velocity (see figure 9) approach the walls as β
increases. For high β, these critical points exist within the thermal boundary layers at
the walls: these are not visible within the resolution of the plots in figure 13(a). No
other critical points exist in the flow for finite β.

4.2. Antisymmetric problem

Next, we examine the antisymmetric case where temperature gradients at the walls are
equal in magnitude but opposite in sign. We now set τ (0)H on the lower plate to be
opposite in sign to that on the upper plate,

τ
(0)
H |y=±1/2 =±xε, (4.20)

where ε ≡ AL/T0 and T0 is the equilibrium temperature of the gas, as before.
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FIGURE 12. Scaled unsteady correction to mean tangential velocity of symmetric problem
(v̄
(1)
H|x − v̄

(1)
H|x,sym)/(

√
βε). At x = 0: (a) real component; (b) imaginary component; (c)

magnitude. At x = 1: (d) real component; (e) imaginary component; (f ) magnitude. Results
given for β = 10 (medium dashes), β = 30 (long dashes), β = 100 (dot-dashed line),
β = 1000 (dotted line), β = 10 000 (solid line).

We also recover the trivial solution for the leading-order mean velocity:

v̄
(0)
H|i = 0. (4.21)

The leading-order temperature distribution satisfies the classical heat diffusion
equation, where the solution is antisymmetric in y,

τ
(0)
H = xε

sinh (yδ)

sinh
(
δ

2

) , (4.22)

with δ =√−iβ. The leading-order pressure P(0)H is again gradient-free.
The first-order (n = 1) mean normal velocity must satisfy no-penetration at each

wall. The slip boundary conditions for the first-order mean tangential velocity are
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FIGURE 13. Streamlines of symmetric problem for β = 1000. Flow centred at x= 0: (a) real;
(b) imaginary. Flow centred at x= 10: (c) real; (d) imaginary.

identical to the corresponding steady problem, and take the form (see table 2)

v̄
(1)
H|x|y=±1/2 =∓K1ε. (4.23)

The unique solution to the first-order equations is

P(1)H = G, (4.24a)

τ
(1)
H =−xd1εδ

sinh (yδ)

tanh
(
δ

2

)
sinh

(
δ

2

) + 2
5

G

1− sinh(yδ)

cosh
(
δ

2

)
 (4.24b)

v̄
(1)
H|y =

xδε

2 sinh
(
δ

2

) [cosh (yδ)− cosh
(
δ

2

)]
, (4.24c)
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v̄
(1)
H|x = ε

−K1
sinh (yδ)

sinh
(
δ

2

) + δ

4 tanh
(
δ

2

)
 sinh (yδ)

sinh
(
δ

2

) − 2y


 , (4.24d)

P(2)H =
xδ2ε

2 sinh
(
δ

2

) [sinh (yδ)− yδ cosh
(
δ

2

)]
+ H. (4.24e)

Note that, as for the symmetric analysis, closure of the leading-order pressure is
achieved at the first-order analysis, and yields P(0)H = 0. The constants G and H in the
first- and second-order pressures can also be evaluated at subsequent order, i.e. n = 2
and n= 3, respectively.

The corresponding Knudsen layer corrections are then obtained by substituting
(4.21) and (4.22) into the formulae in table 2, yielding

τ
(1)
K =

xδε

tanh
(
δ

2

)
−Θ1


1
2
− y

k

+Θ1


1
2
+ y

k


 , (4.25a)

v̄
(1)
K|x =

1
2

−Y1


1
2
− y

k

+ Y1


1
2
+ y

k


 , (4.25b)

where the functions Θ1 and Y1 are defined in (3.8), with associated coefficients cn

given in appendix B.
As noted for the symmetric problem, the spatial dependence of the Knudsen layer

corrections in (4.25) is also independent of the oscillation frequency, i.e. independent
of β. The forms are thus identical to the corresponding steady flow equations. As such,
the following analysis focuses explicitly on the bulk flow results in (4.21), (4.22) and
(4.24). Together with (4.25), these give the complete solution to O(k).

4.2.1. Physical analysis of the flow
Plots of the real component, imaginary component, and the magnitude of τ (0)H /(xε)

are given in figure 14. As for the symmetric case, a shift in the phase of the gas
temperature response is observed as β increases. Boundary layers again form near the
walls in the high inertia limit, and the temperature perturbations decay exponentially
away from the walls.

The average normal velocity uy between the walls in the upper half-channel is

uy = 2
∫ 1/2

0
v̄
(1)
H|y dy=−xε

2

(
δ coth

(
δ

2

)
− 2
)
, (4.26)

with corresponding small- and large-β asymptotics

uy = xε


iβ
12
− β2

720
, β� 1,

−1+ i
2

√
β

2
+ 1, β� 1.

(4.27)
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FIGURE 14. Scaled leading-order temperature perturbation of antisymmetric problem
τ
(0)
H /(xε). (a) Real component; (b) imaginary component; (c) magnitude. Results given for
β = 1 (short dashes), β = 10 (medium dashes), β = 30 (long dashes), β = 100 (dot-dashed
line), β = 1000 (dotted line), β = 10 000 (solid line).

Analogously, the average tangential velocity ux is

ux = ε8

−δ coth
(
δ

2

)
+ 2

1−
8K1 tanh

(
δ

4

)
δ

+ tanh2

(
δ

4

)
 , (4.28)

with the small- and large-β asymptotic expansions of ux being

ux = ε


−K1

2
− iβ

192
(2K1 − 1)+ β2

(
7

23 040
+ K1

3840

)
, β� 1,

−1+ i
8

√
β

2
+ 1

2
, β� 1.

(4.29)

The slip coefficient K1 =−0.383161 . . . < 0, as before.
As for the symmetric case, the asymptotic formulae in (4.27) and (4.29) accurately

describe the behaviour of uy and ux in their appropriate limits, and can thus be used to
explore the underlying physics of the flow.
Zero inertia (β = 0). Temperature perturbations at the walls generate an

antisymmetric thermal creep in the tangential direction. This corresponds to the first
term in the low inertia asymptotic expansion for ux in (4.29), with corresponding mean
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FIGURE 15. Scaled mean normal velocity of antisymmetric problem v̄
(1)
H|y/(xβ

lε), where l is
chosen to match dominant asymptotic behaviour in β. Real (l = 2), imaginary and magnitude
(l = 1). (a) Real component; (b) imaginary component; (c) magnitude. Results given for
β = 10−4 (solid line), β = 10 (medium dashes), β = 30 (long dashes).

velocity

v̄
(1)
H|x,anti =−2yK1ε, v̄

(1)
H|y,anti = 0, (4.30)

where the subscript ‘anti’ is used to identify this as the antisymmetric solution for zero
inertia.
Small inertia (β � 1). For small inertia, the oscillatory (time-varying) temperature,

pressure and density perturbations all contribute to a mean flow in addition to the
usual thermal creep (at zero inertia). Near the reference point at x = 0, compressibility
is again negligible and the mean velocity is divergence-free. Unlike the symmetric
problem, however, the average tangential velocity ux is independent of x due to the
antisymmetric wall temperature gradients. Away from the reference point, x = 0, gas
compressibility becomes significant; this generates a non-zero average normal velocity
uy between the walls, but the average tangential velocity ux remains unchanged.

The mean normal velocity v̄(1)H|y is presented in figure 15. The solution is proportional
to x, and is appropriately scaled for simplicity. This figure clearly illustrates no-
penetration at the walls, and the range of validity of the low-β asymptotics for uy. This
solution represents both the unsteady correction and the complete bulk mean normal
velocity. This is because the classical thermal creep problem has an identically zero
mean normal velocity, from (4.30).
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FIGURE 16. Scaled unsteady correction to mean tangential velocity of antisymmetric
problem (v̄

(1)
H|x − v̄(1)H|x,anti)/(β

lε), where l is chosen to match dominant asymptotic behaviour
in β. Real (l = 2); imaginary and magnitude (l = 1). (a) Real component; (b) imaginary
component; (c) magnitude. Results given for β = 10−4 (solid line), β = 10 (medium dashes),
β = 30 (long dashes).

Plots for the unsteady correction to the mean tangential velocity v̄
(1)
H|x are given

in figure 16. We remind the reader that the unsteady correction is defined as the
difference between v̄

(1)
H|x and the classical thermal creep solution from (4.30). As in

the symmetric problem, this unsteady correction must satisfy no-slip at the walls;
velocity slip in the complete mean tangential velocity drives the steady component of
the thermal creep flow. Antisymmetry in temperatures at the walls generates tangential
pressure and temperature gradients in the gas that are independent of x. As discussed,
the mean tangential flow driven by these gradients is thus also x-independent. For
small β, the tangential pressure and temperature gradients are given by

∂τ
(0)
H

∂x
= 2yε − iβε

12

(
4y3 − y

)
,

∂P(2)H

∂x
= β2ε

(
y3

6
− y

6

)
− iβ3ε

5760

(
48y5 − 40y3 + 15y

)
,

β� 1,

 (4.31)

which are both antisymmetric in y. In the limit of small β, effects due to the
tangential temperature gradient in the gas dominate those from the tangential pressure
gradient. This temperature gradient, together with the no-slip condition on the unsteady
correction, leads to the flow profiles in figure 16 for β = 10−4. Streamlines of the
complete bulk flow at β = 10−4 are given in figure 17. A critical point at the origin is
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FIGURE 17. Streamlines of antisymmetric problem for β = 10−4. Flow centred at x= 0: (a)
real; (b) imaginary. Flow centred at x= 10: (c) real; (d) imaginary.

present in the real component (figure 17a), due to reversal of the velocity field across
the line y = 0. A critical point (saddle node) at the origin also clearly exists in the
imaginary component; see figure 17(b).
Intermediate inertia (β ∼ 1). As inertia increases, the tangential pressure gradient

in the gas increases; see (4.31). For β = 10, no significant change in the unsteady
correction profile is observed in figure 16. However, for β = 30, a significant pressure
gradient is present and leads directly to inflection in the real component of the
unsteady correction to the mean tangential velocity, as illustrated in figure 16(a). No
new critical points arise, despite the unsteady correction being zero away from the
origin: this is because the classical thermal creep solution in (4.30) is only zero at
the origin. No inflection is observed in the imaginary component, since the low-β
asymptotic in the pressure gradient is dominated by its real component; see (4.31) and
figure 16(b).

Streamlines for the complete bulk flow at β = 30 are given in figure 18; once
more, plots about the reference point x = 0, and x = 10, are included. The critical
point mentioned in the real component of the velocity for small β is now clearly
identified as a centre; see figure 18(a). This contrasts with the imaginary component
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FIGURE 18. Streamlines of antisymmetric problem for β = 30. Flow centred at x= 0: (a)
real; (b) imaginary. Flow centred at x= 10: (c) real; (d) imaginary.

in figure 18(b), where the critical saddle point observed for small β persists. As
we move away from the origin, the magnitude of the mean tangential velocity
remains unchanged because it is independent of x. However, the mean normal velocity
increases considerably in magnitude due to gas compressibility, resulting in a set
of almost vertical streamlines for large x: for example, see results for x = 10 in
figure 18(c–d).
High inertia (β� 1). Similar behaviour to the symmetric problem is observed in the

high inertia limit. Temperature perturbations are confined to the walls; see figure 14.
Pressure gradients within the thermal boundary layers are large, and these gradients
drive similarly large gradients in the mean velocity; see figures 19 and 20.

Flow is incompressible outside the boundary layers. However, the mean tangential
velocity v̄

(1)
H|x is independent of x everywhere, due to the antisymmetric boundary

temperature gradients; see (4.24). Since the flow is divergence-free outside the
boundary layers, it then immediately follows that the normal velocity outside the
thermal boundary layers is independent of y. This is clearly illustrated in figure 19.

Outside the boundary layers, a linear variation in the unsteady correction to the
mean tangential velocity v̄(1)H|x is, however, evident. This is consistent with the large-β
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FIGURE 19. Scaled mean normal velocity of antisymmetric problem v̄
(1)
H|y/(x

√
βε). (a) Real

component; (b) imaginary component; (c) magnitude. Results given for β = 10 (medium
dashes), β = 30 (long dashes), β = 100 (dot-dashed line), β = 1000 (dotted line), β = 10 000
(solid line).

asymptotic result for the pressure P(2)H ,

∂P(2)H

∂x
=−yβ3/2ε

2
√

2
(1+ i) , β� 1, (4.32)

which is proportional to y. The mean tangential flow outside the boundary layers
is thus driven by tangential pressure gradients in the gas. This is identical to the
conclusion drawn for the symmetric problem.

To elucidate the structure of the flow at high β, streamlines for the complete bulk
flow at β = 1000 about the reference point x = 0 are given in figure 21. Previously,
we observed two critical points at the origin (x, y) = (0, 0) for intermediate inertia: a
centre in the real component, and a saddle in the imaginary; see figure 18(a,b). As β
increases, the centre in the real component (figure 18a) bifurcates to yield two centres
along the line x = 0. The original centre directly at the origin thus becomes a saddle
point, as illustrated in figure 21(a) for β = 1000. This bifurcation occurs when the
unsteady parameter β equals the critical value

βc = 35.2392 . . . . (4.33)

As β increases above this critical value, the two centres then migrate towards the
walls, and at high β lie within the thermal boundary layers. These centres are
illustrated in figure 22 for β = 1000, and occur at x = 0 and y = ±0.486368L.
Physically, these critical points arise due to a balance between the pressure gradient
and velocity slip at the walls.
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FIGURE 20. Scaled unsteady correction to mean tangential velocity of antisymmetric
problem (v̄

(1)
H|x − v̄

(1)
H|x,anti)/(

√
βε). (a) Real component; (b) imaginary component; (c)

magnitude. Results given for β = 10 (medium dashes), β = 30 (long dashes), β = 100 (dot-
dashed line), β = 1000 (dotted line), β = 10 000 (solid line).
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FIGURE 21. Streamlines of antisymmetric problem for β = 1000. Flow centred at x= 0: (a)
real; (b) imaginary.

Away from x = 0, the streamlines are similar to those obtained for the β = 30 case
in figure 18(c–d), and are hence omitted for brevity.
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FIGURE 22. Streamlines of antisymmetric problem for β = 1000, with the upper boundary
layer. Flow centred at the critical point in the upper half-plane, (x, y) = (0, 0.486368L).
Zoomed image of figure 21(a) for −0.01 6 x/L 6 0.01 and −0.0002 6 yoffset/L 6 0.0002,
where yoffset = y− 0.486368L.

5. Conclusions
We have theoretically investigated the effect of oscillatory (time-varying) boundary

conditions and body forces on slightly rarefied gas flows. This generalizes the theory
proposed by Sone for steady and slightly rarefied flows over solid walls using the
BGK kinetic model (Sone 1969, 1974). Modern rarefied flows are distinctly oscillatory
and unsteady, and this article has addressed the effect of this motion on the governing
equations, slip models and Knudsen layer corrections. To second order in the Knudsen
number, we have shown that the well-known second-order tangential velocity slip
model and Knudsen layer correction remain unaltered by oscillatory motion. This
finding validates application of the conventional steady second-order slip boundary
condition to the analysis of oscillatory flows. This contrasts with all other second-
order slip components and Knudsen layer corrections, which are modified by unsteady
motion.

Application of this general theory was illustrated for oscillatory thermal creep
between two infinite and parallel walls. The leading-order effect of oscillatory motion,
for small Knudsen number, was calculated for two canonical problems: (i) where
the temperature gradients at the walls are symmetric; and (ii) where they are
antisymmetric. Linear superposition of these results directly gives the solution for
arbitrary symmetry between the walls. Time-varying temperature gradients were found
to not alter the classical (steady) thermal creep, but induce an additional (out-of-
phase) flow which is driven by perturbations to the gas temperature τ (0)H , pressure P(2)H ,
and density σ

(0)
H . For low inertia, incompressible bulk flow exists near the reference

point of zero temperature oscillations (x = 0), with gas compressibility dominating
away from this point. This contrasts with the high inertia limit where flow outside
the thermal boundary layers is incompressible throughout the channel. Qualitatively
different behaviours were observed for symmetric and antisymmetric wall temperature
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√
πv̄

(2)
K|it

1
i = L0

(
v̄
(2)
K|it

1
i (η)

)
−
(
v̄
(2)
H|i − V (2)

i

)
t1
i J0 − S(1)H|ijnit

1
j J1 + 1

2
∂τ

(1)
b

∂xi
t1
i

(
J2 − 1

2
J0

)
+ nj

∂S(0)H|ik
∂xj

nkt
1
i

(
J2 − 1

2
J0

)
+ ∂G(0)

H|i
∂xj

t1
i nj

(
C1

2
J0

)
+ κijt

1
j S(0)H|iknk

(
k0J1 + J2 − 1

2
J0

)
− κ̄S(0)H|ijnit

1
j

(√
π

∫ η

∞
Y0(η0) dη0 + J0

)
+ κijt

1
i G(0)

H|j

(
C1

2
J0 − 1

2
J3 +

(
K1 + 1

4

)
J1

)
− κ̄G(0)

H|it
1
i

(
J3 +
√
π

2

∫ η

∞
Y1(η0) dη0

)
√
πv̄

(2)
K|ini =

∫ ∞
0

[
σ
(2)
K J0 (|η − η0|)+ τ (2)K

(
J2 (|η − η0|)− 1

2
J0 (|η − η0|)

)]
sgn (η − η0) dη0

+ 2
∫ ∞

0
v̄
(2)
K|iniJ1 (|η − η0|) dη0 −

(
σ
(2)
H − σ (2)b

)
J1 − 2

(
v̄
(2)
H|i − V (2)

i

)
niJ2

−
(
τ
(2)
H − τ (2)b

)(
J3 − 1

2
J1

)
− G(1)

H|ini

(
J4 − 3

2
J2

)
+ 4

3

∂v̄
(1)
H|i
∂xi

(
J3 − 1

2
J1

)
+ ∂S(0)H|ij

∂xk
ninjnk

[
k0

2
J1 + 1

2
L3 [Y0(η)]

]
+ ∂G(0)

H|i
∂xj

ninj

[
K1J1 + 1

2
J3 − 1

4
J1

+ 1
2
L3 [Y1(η)]

]
+ ∂G(0)

H|i
∂xi

[
−K1J1 + J5 − 17

6
J3 + 2

3
J1 − 1

2
L3 [Y1(η)]

]
+ 2κ̄G(0)

H|ini

[
K1J1 − C1

(
J4 − 3

2
J2

)
− d1

(
J6 − 4J4 + 9

4
J2

)
+ J7 − 5J5

+ 17
4

J3 − 1
4

J1 + 1
2
L3 [Y1(η)]+

∫ ∞
0

(
Ω1

(
J3 (|η − η0|)− 3

2
J1 (|η − η0|)

)
+Θ1

(
J5 (|η − η0|)− 3J3 (|η − η0|)+ 3

4
J1 (|η − η0|)

))
dη0

]
+
(
κijκjiV

(0)
k nk

+
(

t1
k

∂

∂xk
+ g2

)t1
j

∂
(

V (0)
i ni

)
∂xj

+ (t2
k

∂

∂xk
− g1

)t2
j

∂
(

V (0)
i ni

)
∂xj

) [k0J1

− 2J4 + 3J2 + 2
∫ ∞

0
Y0(η0)

[
J2 (|η − η0|)− 1

2
J0 (|η − η0|)

]
sgn (η − η0) dη0

]
TABLE 4. Second-order Knudsen layer governing equations for the mean tangential

velocity,
√
πv̄

(2)
K|it

1
i , and mean normal velocity,

√
πv̄

(2)
K|ini.

distributions in these two inertial limits, and the physical mechanisms driving these
flows were explored.
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√
πσ

(2)
K = L1

[
σ
(2)
K (η), τ

(2)
K (η)

]
+ 2J0(η)Ξ1

[
σ
(2)
K (η), τ

(2)
K (η)

]
−
(
τ
(2)
H − τ (2)b

)
[J2 − J0]+ 4

3

∂v̄
(1)
H|i
∂xi

[J2 − J0]− G(1)
H|ini

[
J3 − 3

2
J1

]
+ ∂S(0)H|ij
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ninjnk

[√
π
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2
J1

]
+ ∂G(0)
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∂xi

[
J4 − 7
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J2 + 1

3
J0

]
+ 2κ̄G(0)

H|ini
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+ 1
2

J2 −
∫ ∞

0
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κijκjiV
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∂
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∂
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i ni
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∂xj
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)t2
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∂
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V (0)
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∂xj

[−2J3 + 2J1 +
√
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πτ
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[
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K (η)

]
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[
J2(η)− 1

2
J0(η)
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Ξ1
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K (η), τ
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K (η)

]
−
(
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H − τ (2)b

)[
J4 − 3

2
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2
J0

]
+ ∂v̄

(1)
H|i
∂xi

[
4
3
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6

J0

]
−G(1)

H|ini

[
J5 − 2J3 + 7

4
J1
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+ ∂S(0)H|ij

∂xk
ninjnk

[√
π
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(
J2 − 1

2
J0

)
− 1

2
J3 + 1
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J1
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+ ∂G(0)

H|i
∂xi
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J6 − 17
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J2 − J0
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+ κ̄G(0)

H|ini
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4J3Ξ1 [Ω1(η),Θ1(η)] − 4

(
J2 − 1

2
J0

)
Ξ7 [Ω1(η),Θ1(η)]

+ d1J3 − 2J6 + 2J4 − 3J2 − 1
4

J0 + 2
∫ ∞

0
Ω1J2 (|η − η0|) sgn (η − η0) dη0

−√π
∫ η

∞
Ω1 dη0 + 3

√
π

2

∫ η

∞
Θ1 dη0

]

+
κijκjiV

(0)
k nk +

(
t1
k

∂

∂xk
+ g2

)t1
j

∂
(

V (0)
i ni
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∂xj


+
(

t2
k

∂

∂xk
− g1

)t2
j

∂
(

V (0)
i ni

)
∂xj

[−2J5 + 3J3 +
√
π

2

(
J2 − 1

2
J0

)]

TABLE 5. Second-order Knudsen layer governing equations for the density perturbation,√
πσ

(2)
K , and temperature perturbation, (3/2)

√
πτ

(2)
K .
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Appendix A. Second-order Knudsen layer equations and ancillary relations

In this appendix, we list the set of second-order Knudsen layer governing equations;
see tables 4 and 5. All bulk flow quantities are evaluated at the wall. Abramowitz
functions (see (3.9)) that are presented with no argument, Jn, implicitly take an
argument of η, i.e. Jn(η). We have made use of the definitions and formulae in
tables 6 and 7 in defining the equations in tables 4 and 5.

Appendix B. Slip and Knudsen layer function coefficients

The solutions to the Knudsen layer equations in tables 4 and 5 are given in table 3.
Tables 8–11 summarize the associated slip coefficients and Knudsen layer function
coefficients cn that appear in these solutions. The complete set of bulk flow slip
coefficients are given in table 8. The Knudsen layer correction coefficients cn are given
in tables 9–11. The Knudsen layer correction coefficients cn are provided to ensure at
least 4 significant figure accuracy in the resulting functions; omitted coefficients are
not required for this level of accuracy.

The coefficients of the function Ya1 are omitted in the presentation, since

Ya1(η)=−Y1(η). (B 1)

L0 [f (η)]=
∫ ∞

0
f (η0)J−1 (|η − η0|) dη0,

L3 [f (η)]=
∫ ∞

0
f (η0) [2J2 (|η − η0|)− J0 (|η − η0|)] sgn (η − η0) dη0,

L1 [f (η),w(η)] =
∫ ∞

0

[
f (η0)J−1 (|η − η0|)+ w(η0)

(
J1 (|η − η0|)

− 1
2

J−1 (|η − η0|)
)]

dη0,

L2 [f (η),w(η)] =
∫ ∞

0

[
f (η0)

(
J1 (|η − η0|)− 1

2
J−1 (|η − η0|)

)
+ w(η0)(

J3 (|η − η0|)− J1 (|η − η0|)+ 5
4

J−1 (|η − η0|)
)]

dη0,

Ξ1 [f (η),w(η)]=
∫ ∞

0

[
f (η0)J0 (η0)+ w(η0)

(
J2 (η0)− 1

2
J0 (η0)

)]
dη0,

Ξ7 [f (η),w(η)] =
∫ ∞

0

[
f (η0)

(
J3 (η0)− 3

2
J1 (η0)

)
+ w(η0) (J5 (η0)

− 3J3 (η0)+ 3
4

J1 (η0)

)]
dη0.

TABLE 6. Definitions used in the Knudsen layer analysis.
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C1 = d1

2
− 2Ξ1 [Ω1(η),Θ1(η)] ,

∂S(0)H|ij
∂xk

ninjt
a
k =−2κijS

(0)
H|jknkt

a
i ,

S(0)H|ijt
a
i tb

j = 0,

S(0)H|ijninj = 0,

∂S(0)H|ij
∂xj

ni = 1
2

∂S(0)H|ij
∂xk

ninjnk −
κijκjiV

(0)
k nk +

(
t1
k

∂

∂xk
+ g2

)t1
j

∂
(

V (0)
i ni

)
∂xj


+
(

t2
k

∂

∂xk
− g1

)t2
j

∂
(

V (0)
i ni

)
∂xj

 ,
S(1)H|ijninj = −k0

∂S(0)H|ij
∂xk

ninjnk − 2K1

(
∂G(0)

H|i
∂xj

ninj + 2κ̄G(0)
H|ini − ∂G(0)

H|i
∂xi

)

− 2
∂v̄

(1)
H|i
∂xi
− 2k0

κijκjiV
(0)
k nk +

(
t1
k

∂

∂xk
+ g2

)t1
j

∂
(

V (0)
i ni

)
∂xj


+
(

t2
k

∂

∂xk
− g1

)t2
j

∂
(

V (0)
i ni

)
∂xj

 .
TABLE 7. Useful formulae for the Knudsen layer analysis. The superscripts a and b take

the values 1, 2.

Coefficient Value

k0 −1.0161913030643512
K1 −0.3831612186208458
a1 0.7663223775399685
a2 0.5000011658656275
a3 −0.2663209722255849
a4 0.27921841900479466
a5 0.26692722726049706
a6 −0.766438720268546
b1 0.11683882258660261
b2 0.26692698991326624
d1 1.3027154398248846
d4 0.1116873776627049
d5 1.821808451903212
d8 2.2765385604509154
d9 −1.427325823117843
d10 −0.06842936408468211

TABLE 8. Knudsen layer slip coefficients.
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QIAN, Y-H., D’HUMIÈRES, D. & LALLEMAND, P. 1992 Lattice BGK models for Navier–Stokes
equation. Europhys. Lett. 17 (6), 479.

RADTKE, G. A., HADJICONSTANTINOU, N. G. & WAGNER, W. 2011 Low-noise Monte Carlo
simulation of the variable hard sphere gas. Phys. Fluids 23 (3), 030606.

RAMANATHAN, S. & KOCH, D. L. 2009 An efficient direct simulation Monte Carlo method for low
Mach number noncontinuum gas flows based on the Bhatnagar–Gross–Krook model. Phys.
Fluids 21 (3), 033103.

RAMANATHAN, S., KOCH, D. L. & BHILADVALA, R. B. 2010 Noncontinuum drag force on a
nanowire vibrating normal to a wall: simulations and theory. Phys. Fluids 22 (10), 103101.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

30
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.302


248 J. Nassios and J. E. Sader

REYNOLDS, O. 1879 On certain dimensional properties of matter in the gaseous state. Part 1.
Experimental researches on thermal transpiration of gases through porous plates and on the
laws of transpiration and impulsion, including an experimental proof that gas is not a
continuous plenum. Phil. Trans. R. Soc. Lond. 170, 727–845.

REYNOLDS, O. 1883 An experimental investigation of the circumstances which determine whether
the motion of water shall be direct or sinuous, and of the law of resistance in parallel
channels. Proc. R. Soc. Lond. 35 (224–226), 84.

REYNOLDS, O. 1895 On the dynamical theory of incompressible viscous fluids and the determination
of the criterion. Phil. Trans. R. Soc. Lond. A 186, 123–164.

SADER, J. E. 1998 Frequency response of cantilever beams immersed in viscous fluids with
applications to the atomic force microscope. J. Appl. Phys. 84 (1), 64.

SCHLICHTING, H. 1960 Boundary-Layer Theory. McGraw-Hill.
SHARIPOV, F. & KALEMPA, D. 2007 Gas flow near a plate oscillating longitudinally with an

arbitrary frequency. Phys. Fluids 19 (1), 017110.
SHARIPOV, F. & KALEMPA, D. 2008 Oscillatory Couette flow at arbitrary oscillation frequency over

the whole range of the Knudsen number. Microfluid. Nanofluid. 4 (5), 363–374.
SHAVALIYEV, M. S. 1993 Super-Burnett corrections to the stress tensor and the heat flux in a gas of

Maxwellian molecules. J. Appl. Math. Mech. 57 (3), 573–576.
SHEN, S., CHEN, G., CRONE, R. M. & ANAYA-DUFRESNE, M. 2007 A kinetic-theory based first

order slip boundary condition for gas flow. Phys. Fluids 19 (8), 086101.
SHI, Y., BROOKES, P., YAP, Y. & SADER, J. E. 2011 Accuracy of the lattice Boltzmann method for

low-speed noncontinuum flows. Phys. Rev. E 83 (4), 2–5.
SHI, Y. & SADER, J. E. 2010 Lattice Boltzmann method for oscillatory Stokes flow with

applications to micro- and nanodevices. Phys. Rev. E 81 (3), 1–14.
SODERHOLM, L. H. 2007 Hybrid Burnett equations: a new method of stabilizing. Transp. Theory

Stat. Phys. 36 (4), 495–512.
SONE, Y. 1964 Kinetic theory analysis of linearized Rayleigh problem. J. Phys. Soc. Japan 19 (8),

1463–1473.
SONE, Y. 1965 Effect of sudden change of wall temperature in rarefied gas. J. Phys. Soc. Japan 20

(2), 222–229.
SONE, Y. 1966 Thermal creep in rarefied gas. J. Phys. Soc. Japan 21, 1836–1837.
SONE, Y. 1968a Asymptotic behaviour of diffusion of tangential velocity discontinuity in rarefied gas.

Phys. Fluids 11, 1935.
SONE, Y. 1968b Flow of rarefied gas through a circular pipe. Phys. Fluids 11, 1672.
SONE, Y. 1969 Asymptotic theory of flow of rarefied gas over a smooth boundary. Part 1. In

Rarefied Gas Dynamics (ed. L. Trilling & H. Y. Wachman), pp. 243–253. Academic.
SONE, Y. 1974 Asymptotic theory of flow of rarefied gas over a smooth boundary. Part 2. Trans.

Japan Soc. Aeronaut. Space Sci. 17, 113–122.
SONE, Y. 2000 Kinetic Theory and Fluid Dynamics. Birkhäuser.
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