MNRAS
000
, 116 (2021)
Preprint 24 February 2022
Compiled using MNRAS L
A
T
E
X style le v3.0
MeqSilhouette v2: Spectrally-resolved polarimetric synthetic data
generation for the Event Horizon Telescope
Iniyan Natarajan
1
2
3
★
, Roger Deane
1
4
, Iván Martí-Vidal
5
6
, Freek Roelofs
7
8
9
,
Michael Janssen
10
9
, Maciek Wielgus
8
7
10
, Lindy Blackburn
8
7
, Tariq Blecher
3
2
,
Simon Perkins
2
, Oleg Smirnov
3
2
, Jordy Davelaar
11
12
9
, Monika Moscibrodzka
9
,
Andrew Chael
13
, Katherine L. Bouman
14
, Jae-Young Kim
10
15
, Gianni Bernardi
16
3
2
,
Ilse van Bemmel
17
, Heino Falcke
9
, Feryal Özel
18
, Dimitrios Psaltis
18
1
Wits Centre for Astrophysics, School of Physics, University of the Witwatersrand, Private Bag 3, 2050, Johannesburg, South Africa
2
South African Radio Astronomy Observatory, Observatory 7925, Cape Town, South Africa
3
Centre for Radio Astronomy Techniques and Technologies, Department of Physics and Electronics, Rhodes University, Makhanda 6140,
South Africa
4
Department of Physics, University of Pretoria, Hateld, Pretoria, 0028, South Africa
5
Departament d'Astronomia i Astrofísica, Universitat de València, C. Dr. Moliner 50, E-46100 Burjassot, València, Spain
6
Observatori Astronòmic, Universitat de València, C. Catedràtico José Beltrán 2, E-46980 Paterna, València, Spain
7
Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA
8
Black Hole Initiative at Harvard University, 20 Garden Street, Cambridge, MA 02138, USA
9
Department of Astrophysics, Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), Radboud University, PO Box 9010,
6500 GL N¼megen, The Netherlands
10
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn, Germany
11
Department of Astronomy and Columbia Astrophysics Laboratory, Columbia University, 550 W 120th Street, New York, NY 10027, USA
12
Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, USA
13
Princeton Center for Theoretical Science, Jadwin Hall, Princeton University, Princeton, NJ 08544, USA
14
California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
15
Korea Astronomy and Space Science Institute, Daedeok-daero 776, Yuseong-gu, Daejeon 34055, Republic of Korea
16
INAF-Istituto di Radioastronomia, via Gobetti 101, 40129 Bologna, Italy
17
Joint Institute for VLBI ERIC, Oude Hoogeveensed¼k 4, 7991 PD Dwingeloo, Netherlands
18
Department of Astronomy and Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA
Accepted XXX. Received YYY; in original form ZZZ
ABSTRACT
We present MeqSilhouette v2.0 (MeqSv2), a fully polarimetric, time-and frequency-resolved
synthetic data generation software for simulating millimetre (mm) wavelength very long base-
line interferometry (VLBI) observations with heterogeneous arrays. Synthetic data are a critical
component in understanding real observations, testing calibration and imaging algorithms, and
predicting performance metrics of existing or proposed sites. MeqSv2 applies physics-based
instrumental and atmospheric signal corruptions constrained by empirically-derived site and
station parameters to the data. The new version is capable of applying instrumental polarization
eects and various other spectrally-resolved eects using the Radio Interferometry Measure-
ment Equation (RIME) formalism and produces synthetic data compatible with calibration
pipelines designed to process real data. We demonstrate the various corruption capabilities
of MeqSv2 using dierent arrays, with a focus on the eect of complex bandpass gains on
closure quantities for the EHT at 230 GHz. We validate the frequency-dependent polarization
leakage implementation by performing polarization self-calibration of synthetic EHT data us-
ing PolSolve. We also note the potential applications for cm-wavelength VLBI array analysis
and design and future directions.
Key words:
techniques: interferometric techniques: high angular resolution
★
E-mail: iniyan.natarajan@wits.ac.za
©
2021 The Authors
arXiv:2202.11478v1 [astro-ph.IM] 23 Feb 2022
2
Natarajan et al.
1 INTRODUCTION
Very long baseline interferometry (VLBI) enables the highest angu-
lar resolution in astronomy, on the order of milli-arcseconds (mas)
to micro-arcseconds (
휇
as), by operating radio antennas separated
by thousands of kilometres synchronously using atomic clocks. The
Event Horizon Telescope (EHT, Event Horizon Telescope Collabo-
ration et al. 2019b) is a global mm-VLBI array whose principal goal
is to spatially resolve the supermassive black holes at the cores of
the Milky Way galaxy (Sgr A
) and M87, and image their
shadows
,
the depression in observed intensity inside the apparent bound-
ary of the black hole (e.g. Falcke et al. 2000; Dexter et al. 2012;
Psaltis et al. 2015; Mo±cibrodzka et al. 2016), together with a bright
crescent-shaped emission ring (e.g. Bromley et al. 2001; Broder-
ick & Loeb 2009; Kamruddin & Dexter 2013; Lu et al. 2014).
The EHT 2017 campaign has yielded total intensity images of the
shadow of the black hole at the centre of M87 at 230 GHz (Event
Horizon Telescope Collaboration et al. 2019a,d,f). Assuming statis-
tically preferred geometric crescent models and general-relativistic
magnetohydrodynamic (GRMHD) models, measurements of phys-
ical properties such as the diameter of the shadow (
42
3
μ
as) and
angular size of one gravitational radius (
3
8
0
4
μ
as) have been
obtained (Event Horizon Telescope Collaboration et al. 2019d,e,f).
These measurements correspond to a mass of
6
5
0
7
10
9
M
at
the estimated distance
16
8
̧
0
8