Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published May 1996 | metadata_only
Journal Article

Three-dimensional reconstruction of color doppler flow convergence regions and regurgitant jets: An in vitro quantitative study


Objectives. This study sought to investigate the applicability of a current implementation of a three-dimensional echocardiographic reconstruction method for color Doppler flow convergence and regurgitant jet imaging. Background. Evaluation of regurgitant flow events, such as flow convergences or regurgitant jets, using two-dimensional imaging ultrasound color flow Doppler systems may not be robust enough to characterize these spatially complex events. Methods. We studied two in vitro models using steady flow to optimize results. In the first constant-flow model, two different orifices were each mounted to produce flow convergences and free jets—a circular orifice and a rectangular orifice with orifice area of 0.24 cm^2. In another flow model, steady flows through a circular orifice were directed toward a curved surrounding wall to produce wall adherent jets. Video composite data of color Doppler flow images from both free jet and wall jet models were reconstructed and analyzed after computer-controlled 180° rotational acquisition using a TomTec computer. Results. For the free jet model there was an excellent relation between actual flow rates and three-dimensional regurgitant jet volumes for both circular and rectangular orifices (r = 0.99 and r = 0.98, respectively). However, the rectangular orifice produced larger jet volumes than the circular orifice, even at the same flow rates (p < 0.0001). Calculated flow rates by the hemispheric model using one axial measurement of the flow convergence isovelocity surface from two-dimensional color flow images under-estimated actual flow rate by 35% for the circular orifice and by 44% for the rectangular orifice, whereas a hemielliptic method implemented using three axial measurements of the flow convergence zone derived using three-dimensional reconstruction correlated well with and underestimated actual flow rate to a lesser degree (22% for the circular orifice, 32% for the rectangular orifice). In the wall jet model, the jets were flattened against and spread along the wall and had reduced regurgitant jet volumes compared with free jets (p < 0.01). Conclusions. Three-dimensional reconstruction of flow imaged by color Doppler may add quantitative spatial information to aid computation methods that have been used for evaluating valvular regurgitation, especially where they relate to complex geometric flow events.

Additional Information

© 1996 by the American College of Cardiology. Manuscript received August 28, 1995; revised manuscript received December 5, 1995; accepted December 14, 1995. This work was supported by Grant HL 43287 from the National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland.

Additional details

August 20, 2023
August 20, 2023