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1. Supplementary Methods: Important aspects of the physical realisation

In this section we argue why the entanglement of the state as well as the leading sources of error follow the two-
dimensional kagome geometry introduced in the main text. For a full description and characterisation of the device
used in the experiment, see Ref. [1]. The ions are stored in a 1D ring, but their spatial ordering is dynamically and
repeatedly reconfigured during execution of a quantum circuit in order to bring arbitrary pairs together for applying
laser-driven two-qubit gates. These gates are the dominant source of error in the device, and operate with an average
fidelity of about 99.82%. Despite the storage of ions in a 1D ring, in the state preparation and braiding protocols they
are immutably assigned to the vertices of the 2D lattice defined by the Hamiltonian in Eq. (1), and all gates are local
in that 2D geometry. Moreover, the extremely long coherence times of trapped ion qubits and low cross-talk a↵orded
by the quantum charge coupled device architecture (and systematically characterized in Ref. [1]) ensure that the
dominant noise processes are local and uncorrelated errors attached to each two-qubit gate. Thus even the dominant
imperfections in our creation of these states respect the 2D geometry defined by Eq. (1).

2. Supplementary Discussion: Proof of (5) and colour algebra

Here we prove the relationship (5) between the star and logical operators, reproduced here for convenience:

Y

s2red A

As = (�1)
1�ZGH

2
1�ZBV

2 ⇥ (�1)
1�ZGV

2
1�ZBH

2 (A1)

For ease of notation, one of the three colours is singled out but it is understood that equivalent statements hold for all
permutations of colours and directions. By linearity, it su�ces to show that the equation holds for all computational
basis states. Since we are working in the Bt = 1 subspace, strings of |1is of a given color must form closed loops on
the honeycomb superlattices of that color. These loops can either be contractible or wrap around the torus. Therefore
e.g., ZGH acts on computational basis states by counting the parity of strings of |1is on green qubits wrapping around
the torus in the vertical direction. The operator (1�ZGH)/2⇥ (1�ZBV )/2 projects into the space of computational
basis states that have an odd number of blue strings in the horizontal and green strings in the vertical direction. In
this space, there must be an odd number of stars where these strings cross (and these stars must necessarily be red).
On the other hand, the product of CZs within a red star is �1 if and only if the star is such a crossing star, as can be
verified by considering rotations of Extended Data Figure 2. Going through the same argument for the other colours
and torus directions concludes the proof.

Note that (5) implies the “color algebra” (that we note here for completeness)

Y

s2red A

AsXBH = ZGHXBH

Y

s2red A

As (A2)

which follows by using ZBHXBV = �XBV ZBH .

3. Supplementary Discussion: Uniqueness of the Z = 1 state and Ground State Degeneracy

Here we show the uniqueness of the ground state of (1) in a given logical sector, and show that there are exactly
22 logical sectors that contain ground states. These proofs hold for tori of arbitrary sizes, not just the 3 ⇥ 3-torus
implemented in the experiment. All of the statements in this section hold within the Bt = 1-subspace.

We start by fixing a logical sector through the specification of a set of zcd = ±1. Denote the set of kagome stars on
the lattice by S (in the experiment |S| = 9). Select one red (sR), one green (sG) and one blue star (sB). A counting
argument reveals that the subspace defined by

⇢
Zcd = zcd, Bt = 1, As = 1

����c 2 {R,G,B}, d 2 {H,V }, 8t, s 2 S \ {sR, sG, sB}
�

(A3)

has dimension one. There are 6 logical zcdZcd stabilisers and 2|S| triangular stabilisers, 2|S| � 3 of which are
independent due to

Q
t
Bt = 1 individually for each of the colors, leading to 2|S|+ 3 independent stabilisers that are

diagonal in the computational basis. The independence of these diagonal stabilisers follows from the same argument
as in the toric code (products of Z-plaquettes wrap around the torus an even number of times). The As operators are
independent from the logical and triangle operators since any product that does not involve all As of a given color
(including sR, sG or sB) contains o↵-diagonal terms. Finally, the As are mutually independent. To see this, pick any
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state in the correct logical sector with As = ±1. Then, this state can be transformed into a state with any other
pattern of As = ±1 by connecting the plaquettes which are to be toggled to sR, sG or sB , (depending on their color)
using strings of Z operators (similar to the cleanup step of the protocol in Fig. 3). These operations do not change
the Bt and logical operators. Since we have found 3|S| independent stabilizers on 3|S| qubits (and they commute in
the Bt = +1 space) the common +1-eigenspace is exactly one-dimensional.

The state |zcdi in this one-dimensional space can now either be a ground state or a state with energy 2, 4 or 6 above
the ground state, depending on the value of AsR

, AsG
and AsB

. Their values now simply follow from equation (5)
since in the space defined above e.g.,

AsR
=

Y

s2red A

As

= (�1)
1�ZGH

2
1�ZBV

2 ⇥ (�1)
1�ZGV

2
1�ZBH

2 (A4)

Therefore,
Q

s2red A As =
Q

s2green A As =
Q

s2blue A As = +1 in the logical sectors with an even number of colour-pair
crossings, which, for completeness, is the set

(ZRH ,ZGH ,ZBH ,ZRV ,ZGV ,ZBV ) 2 {000000,
000001, 000010, 000011, 000100, 000101, 000110, 000111,

001000, 010000, 011000, 100000, 101000, 110000, 111000,

001001, 010010, 011011, 100100, 101101, 110110, 111111}.

where, for readability, we have labeled such bit strings with the values of the projectors (1 + Z)/2 instead of Z (i.e.,
0 or 1 instead of ±1).

In the absence of an analytic proof, the measurement-based protocol would also allow for an experimental detection
of the ground state degeneracy. To this end, a random state is first prepared on all data qubits. In a second and third
step the projections

Q
t
(1 +Bt)/2 and

Q
s
(1 +As)/2 are applied (in that order) via coupling to and measurement of

ancillary qubits. Finally the logical Z-operators are measured. Since, on average, random states have the same overlap
with all ground state sectors, we expect each of the 22 “allowed” bitstrings to appear with probability ⇠ (1�noise)/22,
while the 42 bitstrings “forbidden” bitstrings appear with much lower probability ⇠ noise/42. To produce initial
random states, approximate circuits may be su�cient, for example random Cli↵ord circuits, or even random one-
qubit unitaries, which have been shown to lead to reasonable result in the context of random measurements for the
determination of entanglement entropies.

4. Supplementary Methods: Fidelity Lower Bound

Here, we show how to bound the fidelity per site from the experimentally measured correlation functions. Specifically
we compute a lower bound on the the fidelity of the prepared state ⇢ with respect to the unique state that is the +1
eigenstate of the star, triangle and logical operators As, Bt and Zcd (Fig. 3). We introduce the projectors (not to be
confused with the braiding operators in the Borromean interferometry experiment)
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Y
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(A5)

Here, the products run over all stars of a given color except one (which can be chosen arbitrarily) and all triangles
inscribed in the stars of that color, where across all three operators one arbitrary triangle can be excluded from each
color. It follows that

[R,G] = [G,B] = [B,R] = 0 (A6)

| 0i h 0| = RGB (A7)
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We now seek to bound h 0|⇢| 0i by the measured expectation values hRi = Tr⇢R, hGi and hBi. Since R, G and B

are commuting projectors, there exists a common orthonormal eigenbasis | rgb

k
i with r, g, b 2 {0, 1} that fulfills

R | rgb

k
i = r | rgb

k
i

G | rgb

k
i = g | rgb

k
i

B | rgb

k
i = b | rgb

k
i

(A8)

and k is a degeneracy label. Expanding the prepared state in this basis

⇢ =
X

p
rgbk

r0g0b0k0 | rgb

k
i h r

0
g
0
b
0

k0 | (A9)

defines the coe�cients prgbk
r0g0b0k0 . Let us also introduce shorthand notation

P
rgb :=

X

k

p
rgbk

rgbk
(A10)

for the sum of the diagonal elements of ⇢ in a given sector in the basis chosen above. In this notation, the ground
state fidelity is simply h 0|⇢| 0i = P

111. We then have

hRi = P
111 + P

110 + P
101 + P

100 (A11a)

hGi = P
111 + P

110 + P
011 + P

010 (A11b)

hBi = P
111 + P

011 + P
101 + P

001 (A11c)

1 = P
000 + P

001 + P
010 + P

011 + P
100 + P

101 + P
110 + P

111 (A11d)

By considering (A11a)+(A11b)+(A11c)-2(A11d), we see that P 111 is minimized if P 100 = P
010 = P

001 = P
000 = 0.

In this case

P
111 = hRi+ hGi+ hBi � 2 (A12)

and this is the lower bound for the fidelity. We have measured

hRi = 0.90(1)

hGi = 0.85(1)

hBi = 0.89(1)

(A13)

leading to a lower bound on the global fidelity of the prepared state

h 0|⇢| 0i � 0.65(2). (A14)

The fidelity per qubit is

27
p
h 0|⇢| 0i � 0.984(1). (A15)

These measurements do not take into readout errors. If one wants to assess the quality of the prepared state
rather than the combined quality of state preparation and measurements, one must take into account the expectation
values of R, G and B after measurement error mitigation. Based on prior characterisation of the measurement error
transition matrix in the device, p(measure 0|qubit is 1) = 2.37 ⇥ 10�3, p(measure 1|qubit is 0) = 0.82 ⇥ 10�3, we
have computed the corrected values by writing the raw probability distribution as a matrix product state of bond
dimension nshots and applying the transition matrix inverse on each site (see Extended Data Figure 3 for a detailed
comparison). In principle, this correction accounts for both state preparation and measurement (SPAM) error. In
practice, however, measurement errors dominate state preparation errors in the device. We find

hRiSPAM error mitigated = 0.94(1)

hGiSPAM error mitigated = 0.89(1)

hBiSPAM error mitigated = 0.93(1)

(A16)
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We infer that the prepared state actually has a global fidelity of

h 0|⇢| 0iSPAM error mitigated � 0.75(2) (A17)

and a fidelity per qubit

27
p

h 0|⇢| 0iSPAM error mitigated � 0.990(1). (A18)

Using equation (A11), we can also bound the fidelity from above by noticing that

P
111  min

n
hRi, hGi, hBi

o
(A19)

We thus find

h 0|⇢| 0i 2 [0.65(2), 0.85(2)] (A20)
27
p

h 0|⇢| 0i 2 [0.984(1), 0.9940(7)] (A21)

without SPAM error mitigation and

h 0|⇢| 0iSPAM error mitigated 2 [0.75(2), 0.88(1)] (A22)

27
p
h 0|⇢| 0iSPAM error mitigated 2 [0.990(1), 0.9955(6)] (A23)

with SPAM error mitigation. This is compatible with the fact that the state preparation protocol uses 3 1/3 two-qubit
gates per qubit with fidelity 99.82% (99.82%3.3 ⇡ 99.4%) and the fact that gate errors typically dominate errors
arising from dephasing and measurement cross-talk in the trap.

5. Supplementary Discussion: Classification of the anyons

In the main text, the Hamiltonian corresponds to a gauged Z3
2 Symmetry-Protected Topological state [2] and

therefore is in the same family of models as the twisted quantum double D↵(Z3
2) [3–5]. This model exhibits the same

topological order as that of the quantum double of D(D4) [6, 7]. We elect to present the anyon content based on the
twisted quantum double. A mapping relating the two conventions can be found in Extended Data Table 2.

First, recall that in the usual toric code, anyons are generated by an Abelian charge e and an Abelian flux m where
e
2 = m

2 = 1. Both anyons are bosons, but they have -1 mutual statistics. The bound state em is an Abelian fermion.
For three copies, all anyons of the toric code are generated by eC and mC where C 2 {R,G,B} is a color index for
each copy.

The 22 anyons of the twisted quantum double D↵(Z3
2) can be labeled similar to that of three copies of the toric

code. Instead, all fluxes are non-Abelian.

1. Eight Abelian bosons generated by eR, eG, eB . Because they are Abelian, they obey the usual fusion rules i.e.
eR ⇥ eG = eRG.

2. Three non-Abelian bosons mR,mG,mB . They braid with the corresponding charge of the same color with a �1
phase. I.e., mR braids non-trivially with eR, but trivially with eG and eB .

3. Three non-Abelian fermions fR = mR ⇥ eR.

4. Three non-Abelian bosons mRG,mGB ,mRB . One can interpret these as fluxes that respond to two colors. That
is mRG braids with both eR and eG, but braids trivially with eB .

5. Three non-Abelian fermions fRG = mRG ⇥ eR = mRG ⇥ eG

6. A non-Abelian semion sRGB , which is a flux that responds to three colors. That is, it braids with eR, eG, and
eB .

7. A non-Abelian antisemion s̄RGB = sRBG ⇥ eRGB
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We summarize all the remaining fusion rules (up to permutation of colors and fusion of Abelian charges) in Extended
Data Table 1.For example, by permuting colors, one can infer the fusion rule mG⇥mG = (1+eR)(1+eB) by permuting
colors, and by the fusion rule fR ⇥mG = eR ⇥ (mR ⇥mG) = eR ⇥ (mRG + fRG) = fRG +mRG.

Next, we describe qualitatively why braiding mG around mB toggles the fusion outcome of each non-Abelian flux
pair to eR. The twisted quantum double realizes a gauged Symmetry-Protected Topological (SPT) phase given by
the cocycle ↵. Such SPT phase can be realized using a decorated domain wall construction [2, 8]. Specifically, the
SPT phase can be realized by a superposition of blue domain walls decorated by 1D cluster states, which itself forms
a 1D SPT state under the red and green symmetries. After gauging the symmetry, the blue domain wall is allowed
to end, forming the deconfined excitation mB . Furthermore, because the domain wall was decorated with a cluster
state, its end point mB now carries a two-dimensional projective representation inherited from the end point of the
cluster state, and therefore becomes a non-Abelian excitation due to this degeneracy.

The 1D cluster state protected by the red and green symmetries has the property that the ground state under
antiperiodic boundary conditions of the green symmetry is odd under the red symmetry. Such a boundary condition
can be enforced by introducing a single domain wall. Therefore, by braiding mG around mB , a green domain wall
cuts through the string operator of mB . Inheriting the property from the cluster state, the entire mB string is now
charged under the red gauge symmetry, which implies that fusing back the mB pair will result in a red gauge charge,
eR. By an identical argument, fusing the pair of mG back together will also result in eR.

We now provide more technical details on the derivation of the data corresponding to the twisted quantum double
[6]. Here, we consider the twisted quantum double D↵(Z3

2), where ↵ 2 H
3(Z3

2, U(1)) is a 3-cocycle. Conveniently, we
represent the generators of the group A = Z3

2 by order two elements R,G,B. Thus, any group element a 2 A can be
represented as a = R

⇢aG
�aB

�a for ⇢a, �a,�a 2 {0, 1}.
For the twisted quantum double of an Abelian group A, an anyon can be labeled by a pair (a,�) where a 2 A and �

is a choice of projective irreducible representation corresponding to a 2-cocycle !a. Such a representation ��

a
satisfies

��

a
(b)��

a
(c) = !a(b, c)�

�

a
(bc), (A24)

and the 2-cocycle !a is related to the input 3-cocycle ↵ via

!a(b, c) =
↵(a, b, c)↵(b, c, a)

↵(b, a, c)
. (A25)

In particular, our 3-cocycle of interest is given by

↵(a, b, c) = (�1)⇢a�b�c (A26)

which implies that

!a(b, c) = (�1)⇢a�b�c+�a⇢b�c+�a⇢b�c (A27)

We now discuss the possible anyons for each choice of group element a 2 A

1. a = 1 ((⇢a, �a,�a) = (0, 0, 0))). In this case, the 2-cocycle !a is trivial. Therefore, ��

1 corresponds to (linear)
irreducible representations of Z3

2, which correspond exactly to the choice of an element in A. We can therefore
label such choices as � 2 A. These correspond to the eight Abelian charges.

2. a = R ((⇢a, �a,�a) = (1, 0, 0))). We find the 2-cocycle !R(b, c) = (�1)�b�c . Eq. (A24) then implies that �R(G)
and �R(B) anticommute. There are two possible choices of �R, which we label by � = ±

�±
R
(R) = ±I, �±

R
(G) = X, �±

R
(B) = Z, (A28)

whereX,Y, Z are Pauli matrices and I is the 2⇥2 identity matrix. The two choices correspond to the non-Abelian
flux mR and fR, respectively. Similarly, by permutation of colors, we can define mG, fG,mB , fB corresponding
to the representation �+

G
,��

G
,�+

B
,��

B
, respectively where

�±
G
(R) = Z, �±

G
(G) = ±I, �±

G
(B) = X, (A29)

�±
B
(R) = X, �±

B
(G) = Z, �±

B
(B) = ±I. (A30)

3. a = RG ((⇢a, �a,�a) = (1, 1, 0))). We find the 2-cocycle cRG(b, c) = (�1)�b�c+⇢b�c , which means that
{�RG(R),�RG(B)} = {�RG(G),�rg(B)} = 0. There are two inequivalent choices given by

�±
RG

(R) = ±X, �±
RG

(G) = X, �±
RG

(B) = Z, (A31)

which correspond to mRG and fRG, respectively. Permuting the colors gives mGB , fGB and mRB , fRB .
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4. a = RGB ((⇢a, �a,�a) = (1, 1, 1))). We find the 2-cocycle !RG(b, c) = (�1)�b�c+⇢b�c+⇢b�c , which means that all
three pairs anticommute. There are two inequivalent choices given by

�±
RGB

(R) = ±X, �±
RGB

(G) = ±Y, �±
RGB

(B) = ±Z, (A32)

which correspond to sRGB and s̄RGB , respectively.

For an Abelian twisted quantum double, the S and T matrices can be computed via the formula [9]

S(a,�),(b,⌧) =
1

|A|�
�

a
(b)⇤�⌧

b
(a)⇤ T(a,�),(b,⌧) = �a,b��,⌧

�
�

a
(a)

��
a
(1)

(A33)

where ��

a
= Tr[��

a
] is the character of the corresponding representation. In particular, we find that

8S(a,�),(b,⌧) =

8
><

>:

1 ; a = b = 1,

2⇥ (�1)⇢a⇢⌧+�a�⌧+�a�⌧ ; a = 1, b 6= 1,

4⇥ �a,b(�1)⇢a�a�a+�⌧ ; a 6= 1, b 6= 1,

(A34)

diag T(a,�) =

(
1 ; a = 1,

(�1)� ⇥ i
⇢a�a�a a 6= 1.

(A35)

where we remind that � 2 A when a = 1 and � = ±1 for a 6= 1. For completeness, the full matrices are

1 eR eG eB eRG eGB eRB eRGB mR fR mG fG mB fB mRG fRG mGB fGB mRB fRB sRGB s̄RGB

diag T = (1 1 1 1 1 1 1 1 1 �1 1 �1 1 �1 1 �1 1 �1 1 �1 i �i)
(A36)

and

S =
1

8

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 �2 �2 2 2 2 2 �2 �2 2 2 �2 �2 �2 �2
1 1 1 1 1 1 1 1 2 2 �2 �2 2 2 �2 �2 �2 �2 2 2 �2 �2
1 1 1 1 1 1 1 1 2 2 2 2 �2 �2 2 2 �2 �2 �2 �2 �2 �2
1 1 1 1 1 1 1 1 �2 �2 �2 �2 2 2 2 2 �2 �2 �2 �2 2 2
1 1 1 1 1 1 1 1 2 2 �2 �2 �2 �2 �2 �2 2 2 �2 �2 2 2
1 1 1 1 1 1 1 1 �2 �2 2 2 �2 �2 �2 �2 �2 �2 2 2 2 2
1 1 1 1 1 1 1 1 �2 �2 �2 �2 �2 �2 2 2 2 2 2 2 �2 �2
2 �2 2 2 �2 2 �2 �2 4 �4 0 0 0 0 0 0 0 0 0 0 0 0
2 �2 2 2 �2 2 �2 �2 �4 4 0 0 0 0 0 0 0 0 0 0 0 0
2 2 �2 2 �2 �2 2 �2 0 0 4 �4 0 0 0 0 0 0 0 0 0 0
2 2 �2 2 �2 �2 2 �2 0 0 �4 4 0 0 0 0 0 0 0 0 0 0
2 2 2 �2 2 �2 �2 �2 0 0 0 0 4 �4 0 0 0 0 0 0 0 0
2 2 2 �2 2 �2 �2 �2 0 0 0 0 �4 4 0 0 0 0 0 0 0 0
2 �2 �2 2 2 �2 �2 2 0 0 0 0 0 0 4 �4 0 0 0 0 0 0
2 �2 �2 2 2 �2 �2 2 0 0 0 0 0 0 �4 4 0 0 0 0 0 0
2 2 �2 �2 �2 2 �2 2 0 0 0 0 0 0 0 0 4 �4 0 0 0 0
2 2 �2 �2 �2 2 �2 2 0 0 0 0 0 0 0 0 �4 4 0 0 0 0
2 �2 2 �2 �2 �2 2 2 0 0 0 0 0 0 0 0 0 0 4 �4 0 0
2 �2 2 �2 �2 �2 2 2 0 0 0 0 0 0 0 0 0 0 �4 4 0 0
2 �2 �2 �2 2 2 2 �2 0 0 0 0 0 0 0 0 0 0 0 0 �4 4
2 �2 �2 �2 2 2 2 �2 0 0 0 0 0 0 0 0 0 0 0 0 4 �4

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

(A37)

Using the S-matrix above, the fusion rules in Table 7 can be derived using the Verlinde formula [10]

N
K

IJ
=

X

L

SILSJLS
⇤
KL

S1L
(A38)

where N
K

IJ
are fusion multiplicities for the process I ⇥ J =

P
K
N

K

IJ
K, and I, J,K,L are anyons.

Next, let us demonstrate that by creating a pair of mG and mB anyons, braiding them and fusing each pair back
together, we are left with two eR’s as fusion outcomes. To be concrete, we will consider creating a pair of mG at
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positions 1 and 2 and a pair of mB at positions 3 and 4. We then perform a full braid of mG at position 2 and mB at
position 3, before fusing each pair back together. Note that because each flux has quantum dimension 2, the internal
state forms a qubit on which the representations � act on.

To create a pair of mG fluxes, we must ensure that the state transforms under the trivial representation of �+
G
⌦�+

G
.

From Eq. A29, we see that the symmetry action of red, green and blue on the two sites given by Z1Z2, I1I2, X1X2,
respectively. Therefore, the “singlet” state under this symmetry action is stabilized Z1Z2 and X1X2 (i.e. the Bell
state 1p

2
(|"1"2i+ |#1#2i). Similarly, a pair of mB anyons created from the vacuum is stabilized by X3X4 and Z3Z4.

In general, the full braid of an anyon (a,�) around (b, ⌧) is given by the unitary operation ��(b)a ⇥ �⌧

b
(a). In this

case, we have (a,�) = (G,+) and (b, ⌧) = (B,+). Therefore, the braiding operation on sites 2 and 3 is implemented via
�+
G
(B)⇥�+

B
(G) = X2Z3. Thus, we see qualitatively that we are toggling the fusion channel space of the mG pair by X,

as described in the main text. To see this explicitly, conjugating the original stabilizers, we see that the state after the
braiding is stabilized by �Z1Z2, X1X2, Z3Z4, �X3X4. In particular, the state satisfies �+

G
(R)1�

+
G
(R)2 = Z1Z2 = �1,

which means it is charged under the red symmetry action. This signifies that the fusion outcome of the two mG

anyons will result in eR. Similarly, �+
B
(R)3�

+
B
(R)4 = X3X4 = �1, implying that the two mB anyons also fuse into

eR.
We can also demonstrate that the Borromean ring braiding of mR, mG and mB results in a phase �1. The

Borromean ring braiding can be deformed topologically to the following process [11]

1. Create mR, mG, mB pairs at sites 1 and 2, 3 and 4, 5 and 6, respectively.

2. Braid sites 2 and 4 followed by 2 and 6

3. Braid (in the reverse direction) sites 2 and 4 followed by 2 and 6

4. Fuse each flux pair.

Braiding sites 2 and 4 is realized by the operation �+
R
(G)2�

+
G
(R)4 = X2Z4 while braiding sites 2 and 6 is realized by

�+
R
(B)2�

+
B
(R)6 = Z2X6. Therefore, the total braiding is realized by the operation

(Z2X6)
�1(X2Z4)

�1(Z2X6)(X2Z4) = �1 (A39)

6. Supplementary Discussion: Non-square degeneracy

We provide a simple argument that all Abelian anyon theories that admit a gapped boundary (which excludes for
example, chiral phases) have a perfect square ground state degeneracy on a torus. If there exists a gapped boundary,
then there exists a Lagrangian subgroup K of bosons which have trivial mutual braiding statistics and braids non-
trivially with all other anyons outside this group. For Abelian anyon theories, |K|2 is equal to the the total number
of anyons (see e.g. [12]), which is also equal to the ground state degeneracy on a torus.

7. Supplementary Methods: Qubit Reuse and Circuit Optimization Techniques

Here we describe the steps we need to realize theD4 topological order on the H2 trapped ion device. The construction
requires a total of 27 + 3 = 30 physical qubits to create 27-qubit states. During the procedure 9 ancillas need to be
measured for a layer of feed-forward. It is crucial to reuse some of those ancilla qubits to fit the protocol into the
maximal qubit capacity (32) of the device. We begin by rewriting Eq. (2) as

| 0i =
Y

v

Hv h+|
P

Y

hv,pi

CZv,p

Y

hp,p̃, ˜̃pi

e
± i⇡

8 ZpZp̃Z ˜̃p |+i
P
|+i

V
, (A40)

where |+iP = |+iP |+iP |+iP and |+iV = |+iV |+iV |+iV denote plaquette and vertex qubits over the red, green and
blue sublattices. Moreover, the product over CZs also spans over three sublattices which can be decoupled, i.e,

Y

hv,pi

CZv,p =
Y

hv,pi

CZv,p

Y

hv,pi

CZv,p

Y

hv,pi

CZv,p.
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We can rearrange Eq. (A40) as

| 0i=
Y

v

Hvh+|
P

Y

hv,pi

CZv,p |+i
V
h+|

P
h+|

P

Y

hp,p̃, ˜̃pi

e
± i⇡

8 ZpZp̃Z ˜̃p |+iP

0

@
Y

hv,pi

CZv,p|+iP |+i
V

1

A

0

@
Y

hv,pi

CZv,p|+iP |+i
V

1

A.

| {z }
step 1

(A41)

The construction is divided into two steps. In step 1, we act on the vertex qubits of the green and blue sublattices
only, and all the plaquette qubits of all three sublattices. In total, we use (9 + 9) = 18 vertex and (3 + 3 + 3) = 9
plaquette qubits during step 1. At the end of step 1, we measure (3 + 3) = 6 plaquette qubits of the green and blue
sublattices. During step 2, we reuse the 6 measured qubits as vertex qubits of the red sublattice and act with CZ

gates before also measuring the plaquette qubits of the red sublattice.
During step 1, we choose to first implement the CZ gates between the vertices and plaquette qubit. For a given

color, we have 3 + 3 = 6 CZ gates between 3 vertex and 2 plaquette qubits (e.g., we have 3 CZs between v1, v2, v3,
and p1, and 3 CZs between the same vertices and p2). Since CZ gates for the blue and green sublattices act on qubits
in the |+i state, the action of the later 3 CZ gates can be implemented by a single two-qubit gate. This can be seen
by the state-vector identity for e.g., the blue sublattice,

=

=

(A42)

Similar identities also holds for the green sublattice. This leads to a reduction from 3⇥ 6⇥ 2 = 36 to 3⇥ 4⇥ 2 = 24
two-qubit gates for the products of CZ on the blue and green sublattices.

The exp(± i⇡

8 ZpZp̃Z ˜̃p) gate that acts on 3 plaquette qubits of distinct colors is decomposed as

e
± i⇡

8 ZpZp̃Z ˜̃p = (A43)
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This decomposition uses the parametrised entangling gate ZZPhase(✓) = e
�i✓/2Z⌦Z which is the native entangling

gate on the device. Without any optimization, we need 18 ⇥ 3 = 54 gates to realize the action of exp(± i⇡

8 ZpZp̃Z ˜̃p)

gates. Since the order of qubits in (A43) does not matter, we notice that the stacked action of exp(+ i⇡

8 Z0Z1Z2) and
exp(� i⇡

8 Z1Z2Z3) requires not 6 but 4 two-qubit gates (Extended Data Fig. 1). By using this ‘squared’ implementation
of the triangular exp(± i⇡

8 ZpZp̃Z ˜̃p) gates we reduce the number of two-qubits gates for this step from 54 to 9⇥4 = 36.
By using these circuit optimizations, we reduce the gate count to 18 + 12 + 12 = 42 two qubit gates for the

‘CZ-chains’ and 36 two-qubit gates for the exp(± i⇡

8 ZpZp̃Z ˜̃p) gates which give us a total of 42 + 36 = 78 two-qubit
gates.

We used TKET for compiling circuits into native gates [13]. The resulting circuit (for state preparation only)
consisted of 165 one-qubit gates, 60 ZZMax = e

�i⇡/4Z⌦Z and 18 ZZPhase gates, while the depth of the native circuit
is 56.
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