of 13
Measurement of time-dependent
CP
asymmetry in
B
0
!
c

cK
ðÞ
0
decays
B. Aubert,
1
Y. Karyotakis,
1
J. P. Lees,
1
V. Poireau,
1
E. Prencipe,
1
X. Prudent,
1
V. Tisserand,
1
J. Garra Tico,
2
E. Grauges,
2
L. Lopez,
3a,3b
A. Palano,
3a,3b
M. Pappagallo,
3a,3b
G. Eigen,
4
B. Stugu,
4
L. Sun,
4
M. Battaglia,
5
D. N. Brown,
5
L. T. Kerth,
5
Yu. G. Kolomensky,
5
G. Lynch,
5
I. L. Osipenkov,
5
K. Tackmann,
5
T. Tanabe,
5
C. M. Hawkes,
6
N. Soni,
6
A. T. Watson,
6
H. Koch,
7
T. Schroeder,
7
D. J. Asgeirsson,
8
B. G. Fulsom,
8
C. Hearty,
8
T. S. Mattison,
8
J. A. McKenna,
8
M. Barrett,
9
A. Khan,
9
A. Randle-Conde,
9
V. E. Blinov,
10
A. D. Bukin,
10,
*
A. R. Buzykaev,
10
V. P. Druzhinin,
10
V. B. Golubev,
10
A. P. Onuchin,
10
S. I. Serednyakov,
10
Yu. I. Skovpen,
10
E. P. Solodov,
10
K. Yu. Todyshev,
10
M. Bondioli,
11
S. Curry,
11
I. Eschrich,
11
D. Kirkby,
11
A. J. Lankford,
11
P. Lund,
11
M. Mandelkern,
11
E. C. Martin,
11
D. P. Stoker,
11
S. Abachi,
12
C. Buchanan,
12
H. Atmacan,
13
J. W. Gary,
13
F. Liu,
13
O. Long,
13
G. M. Vitug,
13
Z. Yasin,
13
L. Zhang,
13
V. Sharma,
14
C. Campagnari,
15
T. M. Hong,
15
D. Kovalskyi,
15
M. A. Mazur,
15
J. D. Richman,
15
T. W. Beck,
16
A. M. Eisner,
16
C. A. Heusch,
16
J. Kroseberg,
16
W. S. Lockman,
16
A. J. Martinez,
16
T. Schalk,
16
B. A. Schumm,
16
A. Seiden,
16
L. O. Winstrom,
16
C. H. Cheng,
17
D. A. Doll,
17
B. Echenard,
17
F. Fang,
17
D. G. Hitlin,
17
I. Narsky,
17
T. Piatenko,
17
F. C. Porter,
17
R. Andreassen,
18
G. Mancinelli,
18
B. T. Meadows,
18
K. Mishra,
18
M. D. Sokoloff,
18
P. C. Bloom,
19
W. T. Ford,
19
A. Gaz,
19
J. F. Hirschauer,
19
M. Nagel,
19
U. Nauenberg,
19
J. G. Smith,
19
S. R. Wagner,
19
R. Ayad,
20,
A. Soffer,
20,
W. H. Toki,
20
R. J. Wilson,
20
E. Feltresi,
21
A. Hauke,
21
H. Jasper,
21
M. Karbach,
21
J. Merkel,
21
A. Petzold,
21
B. Spaan,
21
K. Wacker,
21
M. J. Kobel,
22
R. Nogowski,
22
K. R. Schubert,
22
R. Schwierz,
22
A. Volk,
22
D. Bernard,
23
G. R. Bonneaud,
23
E. Latour,
23
M. Verderi,
23
P. J. Clark,
24
S. Playfer,
24
J. E. Watson,
24
M. Andreotti,
25a,25b
D. Bettoni,
25a
C. Bozzi,
25a
R. Calabrese,
25a,25b
A. Cecchi,
25a,25b
G. Cibinetto,
25a,25b
P. Franchini,
25a,25b
E. Luppi,
25a,25b
M. Negrini,
25a,25b
A. Petrella,
25a,25b
L. Piemontese,
25a
V. Santoro,
25a,25b
R. Baldini-Ferroli,
26
A. Calcaterra,
26
R. de Sangro,
26
G. Finocchiaro,
26
S. Pacetti,
26
P. Patteri,
26
I. M. Peruzzi,
26,
x
M. Piccolo,
26
M. Rama,
26
A. Zallo,
26
R. Contri,
27a,27b
E. Guido,
27b
M. Lo Vetere,
27a,27b
M. R. Monge,
27a,27b
S. Passaggio,
27a
C. Patrignani,
27a,27b
E. Robutti,
27a
S. Tosi,
27a,27b
K. S. Chaisanguanthum,
28
M. Morii,
28
A. Adametz,
29
J. Marks,
29
S. Schenk,
29
U. Uwer,
29
F. U. Bernlochner,
30
V. Klose,
30
H. M. Lacker,
30
D. J. Bard,
31
P. D. Dauncey,
31
M. Tibbetts,
31
P. K. Behera,
32
X. Chai,
32
M. J. Charles,
32
U. Mallik,
32
J. Cochran,
33
H. B. Crawley,
33
L. Dong,
33
W. T. Meyer,
33
S. Prell,
33
E. I. Rosenberg,
33
A. E. Rubin,
33
Y. Y. Gao,
34
A. V. Gritsan,
34
Z. J. Guo,
34
N. Arnaud,
35
J. Be
́
quilleux,
35
A. D’Orazio,
35
M. Davier,
35
J. Firmino da Costa,
35
G. Grosdidier,
35
F. Le Diberder,
35
V. Lepeltier,
35
A. M. Lutz,
35
S. Pruvot,
35
P. Roudeau,
35
M. H. Schune,
35
J. Serrano,
35
V. Sordini,
35,
k
A. Stocchi,
35
G. Wormser,
35
D. J. Lange,
36
D. M. Wright,
36
I. Bingham,
37
J. P. Burke,
37
C. A. Chavez,
37
J. R. Fry,
37
E. Gabathuler,
37
R. Gamet,
37
D. E. Hutchcroft,
37
D. J. Payne,
37
C. Touramanis,
37
A. J. Bevan,
38
C. K. Clarke,
38
F. Di Lodovico,
38
R. Sacco,
38
M. Sigamani,
38
G. Cowan,
39
S. Paramesvaran,
39
A. C. Wren,
39
D. N. Brown,
40
C. L. Davis,
40
A. G. Denig,
41
M. Fritsch,
41
W. Gradl,
41
A. Hafner,
41
K. E. Alwyn,
42
D. Bailey,
42
R. J. Barlow,
42
G. Jackson,
42
G. D. Lafferty,
42
T. J. West,
42
J. I. Yi,
42
J. Anderson,
43
C. Chen,
43
A. Jawahery,
43
D. A. Roberts,
43
G. Simi,
43
J. M. Tuggle,
43
C. Dallapiccola,
44
E. Salvati,
44
S. Saremi,
44
R. Cowan,
45
D. Dujmic,
45
P. H. Fisher,
45
S. W. Henderson,
45
G. Sciolla,
45
M. Spitznagel,
45
R. K. Yamamoto,
45
M. Zhao,
45
P. M. Patel,
46
S. H. Robertson,
46
M. Schram,
46
A. Lazzaro,
47a,47b
V. Lombardo,
47a
F. Palombo,
47a,47b
S. Stracka,
47b
J. M. Bauer,
48
L. Cremaldi,
48
R. Godang,
48,
{
R. Kroeger,
48
D. J. Summers,
48
H. W. Zhao,
48
M. Simard,
49
P. Taras,
49
H. Nicholson,
50
G. De Nardo,
51a,51b
L. Lista,
51a
D. Monorchio,
51a,51b
G. Onorato,
51a,51b
C. Sciacca,
51a,51b
G. Raven,
52
H. L. Snoek,
52
C. P. Jessop,
53
K. J. Knoepfel,
53
J. M. LoSecco,
53
W. F. Wang,
53
L. A. Corwin,
54
K. Honscheid,
54
H. Kagan,
54
R. Kass,
54
J. P. Morris,
54
A. M. Rahimi,
54
J. J. Regensburger,
54
S. J. Sekula,
54
Q. K. Wong,
54
N. L. Blount,
55
J. Brau,
55
R. Frey,
55
O. Igonkina,
55
J. A. Kolb,
55
M. Lu,
55
R. Rahmat,
55
N. B. Sinev,
55
D. Strom,
55
J. Strube,
55
E. Torrence,
55
G. Castelli,
56a,56b
N. Gagliardi,
56a,56b
M. Margoni,
56a,56b
M. Morandin,
56a
M. Posocco,
56a
M. Rotondo,
56a
F. Simonetto,
56a,56b
R. Stroili,
56a,56b
C. Voci,
56a,56b
P. del Amo Sanchez,
57
E. Ben-Haim,
57
H. Briand,
57
J. Chauveau,
57
O. Hamon,
57
Ph. Leruste,
57
J. Ocariz,
57
A. Perez,
57
J. Prendki,
57
S. Sitt,
57
L. Gladney,
58
M. Biasini,
59a,59b
E. Manoni,
59a,59b
C. Angelini,
60a,60b
G. Batignani,
60a,60b
S. Bettarini,
60a,60b
G. Calderini,
60a,60b,
**
M. Carpinelli,
60a,60b,
††
A. Cervelli,
60a,60b
F. Forti,
60a,60b
M. A. Giorgi,
60a,60b
A. Lusiani,
60a,60c
G. Marchiori,
60a,60b
M. Morganti,
60a,60b
N. Neri,
60a,60b
E. Paoloni,
60a,60b
G. Rizzo,
60a,60b
J. J. Walsh,
60a
D. Lopes Pegna,
61
C. Lu,
61
J. Olsen,
61
A. J. S. Smith,
61
A. V. Telnov,
61
F. Anulli,
62a
E. Baracchini,
62a,62b
G. Cavoto,
62a
R. Faccini,
62a,62b
F. Ferrarotto,
62a
F. Ferroni,
62a,62b
M. Gaspero,
62a,62b
P. D. Jackson,
62a
L. Li Gioi,
62a
M. A. Mazzoni,
62a
S. Morganti,
62a
G. Piredda,
62a
F. Renga,
62a,62b
C. Voena,
62a
M. Ebert,
63
T. Hartmann,
63
H. Schro
̈
der,
63
R. Waldi,
63
T. Adye,
64
B. Franek,
64
E. O. Olaiya,
64
F. F. Wilson,
64
S. Emery,
65
L. Esteve,
65
G. Hamel de Monchenault,
65
W. Kozanecki,
65
G. Vasseur,
65
Ch. Ye
`
che,
65
M. Zito,
65
X. R. Chen,
66
H. Liu,
66
W. Park,
66
M. V. Purohit,
66
R. M. White,
66
J. R. Wilson,
66
M. T. Allen,
67
D. Aston,
67
R. Bartoldus,
67
J. F. Benitez,
67
R. Cenci,
67
J. P. Coleman,
67
M. R. Convery,
67
PHYSICAL REVIEW D
79,
072009 (2009)
1550-7998
=
2009
=
79(7)
=
072009(13)
072009-1
Ó
2009 The American Physical Society
J. C. Dingfelder,
67
J. Dorfan,
67
G. P. Dubois-Felsmann,
67
W. Dunwoodie,
67
R. C. Field,
67
A. M. Gabareen,
67
M. T. Graham,
67
P. Grenier,
67
C. Hast,
67
W. R. Innes,
67
J. Kaminski,
67
M. H. Kelsey,
67
H. Kim,
67
P. Kim,
67
M. L. Kocian,
67
D. W. G. S. Leith,
67
S. Li,
67
B. Lindquist,
67
S. Luitz,
67
V. Luth,
67
H. L. Lynch,
67
D. B. MacFarlane,
67
H. Marsiske,
67
R. Messner,
67,
*
D. R. Muller,
67
H. Neal,
67
S. Nelson,
67
C. P. O’Grady,
67
I. Ofte,
67
M. Perl,
67
B. N. Ratcliff,
67
A. Roodman,
67
A. A. Salnikov,
67
R. H. Schindler,
67
J. Schwiening,
67
A. Snyder,
67
D. Su,
67
M. K. Sullivan,
67
K. Suzuki,
67
S. K. Swain,
67
J. M. Thompson,
67
J. Va’vra,
67
A. P. Wagner,
67
M. Weaver,
67
C. A. West,
67
W. J. Wisniewski,
67
M. Wittgen,
67
D. H. Wright,
67
H. W. Wulsin,
67
A. K. Yarritu,
67
K. Yi,
67
C. C. Young,
67
V. Ziegler,
67
P. R. Burchat,
68
A. J. Edwards,
68
T. S. Miyashita,
68
S. Ahmed,
69
M. S. Alam,
69
J. A. Ernst,
69
B. Pan,
69
M. A. Saeed,
69
S. B. Zain,
69
S. M. Spanier,
70
B. J. Wogsland,
70
R. Eckmann,
71
J. L. Ritchie,
71
A. M. Ruland,
71
C. J. Schilling,
71
R. F. Schwitters,
71
B. W. Drummond,
72
J. M. Izen,
72
X. C. Lou,
72
F. Bianchi,
73a,73b
D. Gamba,
73a,73b
M. Pelliccioni,
73a,73b
M. Bomben,
74a,74b
L. Bosisio,
74a,74b
C. Cartaro,
74a,74b
G. Della Ricca,
74a,74b
L. Lanceri,
74a,74b
L. Vitale,
74a,74b
V. Azzolini,
75
N. Lopez-March,
75
F. Martinez-Vidal,
75
D. A. Milanes,
75
A. Oyanguren,
75
J. Albert,
76
Sw. Banerjee,
76
B. Bhuyan,
76
H. H. F. Choi,
76
K. Hamano,
76
G. J. King,
76
R. Kowalewski,
76
M. J. Lewczuk,
76
I. M. Nugent,
76
J. M. Roney,
76
R. J. Sobie,
76
T. J. Gershon,
77
P. F. Harrison,
77
J. Ilic,
77
T. E. Latham,
77
G. B. Mohanty,
77
E. M. T. Puccio,
77
H. R. Band,
78
X. Chen,
78
S. Dasu,
78
K. T. Flood,
78
Y. Pan,
78
R. Prepost,
78
C. O. Vuosalo,
78
and S. L. Wu
78
(
B
A
B
AR
Collaboration)
1
Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Universite
́
de Savoie,
CNRS/IN2P3, F-74941 Annecy-Le-Vieux, France
2
Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
3a
INFN Sezione di Bari, I-70126 Bari, Italy
3b
Dipartmento di Fisica, Universita
`
di Bari, I-70126 Bari, Italy
4
University of Bergen, Institute of Physics, N-5007 Bergen, Norway
5
Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
6
University of Birmingham, Birmingham, B15 2TT, United Kingdom
7
Ruhr Universita
̈
t Bochum, Institut fu
̈
r Experimentalphysik 1, D-44780 Bochum, Germany
8
University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
9
Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
10
Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
11
University of California at Irvine, Irvine, California 92697, USA
12
University of California at Los Angeles, Los Angeles, California 90024, USA
13
University of California at Riverside, Riverside, California 92521, USA
14
University of California at San Diego, La Jolla, California 92093, USA
15
University of California at Santa Barbara, Santa Barbara, California 93106, USA
16
University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
17
California Institute of Technology, Pasadena, California 91125, USA
18
University of Cincinnati, Cincinnati, Ohio 45221, USA
19
University of Colorado, Boulder, Colorado 80309, USA
20
Colorado State University, Fort Collins, Colorado 80523, USA
21
Technische Universita
̈
t Dortmund, Fakulta
̈
t Physik, D-44221 Dortmund, Germany
22
Technische Universita
̈
t Dresden, Institut fu
̈
r Kern- und Teilchenphysik, D-01062 Dresden, Germany
23
Laboratoire Leprince-Ringuet, CNRS/IN2P3 , Ecole Polytechnique, F-91128 Palaiseau, France
24
University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
25a
INFN Sezione di Ferrara, I-44100 Ferrara, Italy
25b
Dipartimento di Fisica, Universita
`
di Ferrara, I-44100 Ferrara, Italy
26
INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
27a
INFN Sezione di Genova, I-16146 Genova, Italy
27b
Dipartimento di Fisica, Universita
`
di Genova, I-16146 Genova, Italy
28
Harvard University, Cambridge, Massachusetts 02138, USA
29
Universita
̈
t Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
30
Humboldt-Universita
̈
t zu Berlin, Institut fu
̈
r Physik, Newtonstr. 15, D-12489 Berlin, Germany
31
Imperial College London, London, SW7 2AZ, United Kingdom
32
University of Iowa, Iowa City, Iowa 52242, USA
33
Iowa State University, Ames, Iowa 50011-3160, USA
34
Johns Hopkins University, Baltimore, Maryland 21218, USA
B. AUBERT
et al.
PHYSICAL REVIEW D
79,
072009 (2009)
072009-2
35
Laboratoire de l’Acce
́
le
́
rateur Line
́
aire, IN2P3/CNRS et Universite
́
Paris-Sud 11,
Centre Scientifique d’Orsay, B. P. 34, F-91898 Orsay Cedex, France
36
Lawrence Livermore National Laboratory, Livermore, California 94550, USA
37
University of Liverpool, Liverpool L69 7ZE, United Kingdom
38
Queen Mary, University of London, London, E1 4NS, United Kingdom
39
University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
40
University of Louisville, Louisville, Kentucky 40292, USA
41
Johannes Gutenberg-Universita
̈
t Mainz, Institut fu
̈
r Kernphysik, D-55099 Mainz, Germany
42
University of Manchester, Manchester M13 9PL, United Kingdom
43
University of Maryland, College Park, Maryland 20742, USA
44
University of Massachusetts, Amherst, Massachusetts 01003, USA
45
Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
46
McGill University, Montre
́
al, Que
́
bec, Canada H3A 2T8
47a
INFN Sezione di Milano, I-20133 Milano, Italy
47b
Dipartimento di Fisica, Universita
`
di Milano, I-20133 Milano, Italy
48
University of Mississippi, University, Mississippi 38677, USA
49
Universite
́
de Montre
́
al, Physique des Particules, Montre
́
al, Que
́
bec, Canada H3C 3J7
50
Mount Holyoke College, South Hadley, Massachusetts 01075, USA
51a
INFN Sezione di Napoli, I-80126 Napoli, Italy
51b
Dipartimento di Scienze Fisiche, Universita
`
di Napoli Federico II, I-80126 Napoli, Italy
52
NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
53
University of Notre Dame, Notre Dame, Indiana 46556, USA
54
Ohio State University, Columbus, Ohio 43210, USA
55
University of Oregon, Eugene, Oregon 97403, USA
56a
INFN Sezione di Padova, I-35131 Padova, Italy
56b
Dipartimento di Fisica, Universita
`
di Padova, I-35131 Padova, Italy
57
Laboratoire de Physique Nucle
́
aire et de Hautes Energies, IN2P3/CNRS, Universite
́
Pierre et Marie Curie-Paris6,
Universite
́
Denis Diderot-Paris7, F-75252 Paris, France
58
University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
59a
INFN Sezione di Perugia, I-06100 Perugia, Italy
59b
Dipartimento di Fisica, Universita
`
di Perugia, I-06100 Perugia, Italy
60a
INFN Sezione di Pisa, I-56127 Pisa, Italy
60b
Dipartimento di Fisica, Universita
`
di Pisa, I-56127 Pisa, Italy
60c
Scuola Normale Superiore di Pisa, I-56127 Pisa, Italy
61
Princeton University, Princeton, New Jersey 08544, USA
62a
INFN Sezione di Roma, I-00185 Roma, Italy
62b
Dipartimento di Fisica, Universita
`
di Roma La Sapienza, I-00185 Roma, Italy
63
Universita
̈
t Rostock, D-18051 Rostock, Germany
64
Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
65
CEA, Irfu, SPP, Centre de Saclay, F-91191 Gif-sur-Yvette, France
66
University of South Carolina, Columbia, South Carolina 29208, USA
67
SLAC National Accelerator Laboratory, Stanford, California 94309, USA
68
Stanford University, Stanford, California 94305-4060, USA
69
State University of New York, Albany, New York 12222, USA
70
University of Tennessee, Knoxville, Tennessee 37996, USA
71
University of Texas at Austin, Austin, Texas 78712, USA
72
University of Texas at Dallas, Richardson, Texas 75083, USA
73a
INFN Sezione di Torino, I-10125 Torino, Italy
73b
Dipartimento di Fisica Sperimentale, Universita
`
di Torino, I-10125 Torino, Italy
74a
INFN Sezione di Trieste, I-34127 Trieste, Italy
74b
Dipartimento di Fisica, Universita
`
di Trieste, I-34127 Trieste, Italy
{
Now at University of South Alabama, Mobile, AL 36688, USA.
††
Also with Universita
`
di Sassari, Sassari, Italy.
k
Also with Universita
`
di Roma La Sapienza, I-00185 Roma, Italy.
x
Also with Universita
`
di Perugia, Dipartimento di Fisica, Perugia, Italy.
Now at Tel Aviv University, Tel Aviv, 69978, Israel.
Now at Temple University, Philadelphia, PA 19122, USA.
**
Also with Laboratoire de Physique Nucle
́
aire et de Hautes Energies, IN2P3/CNRS, Universite
́
Pierre et Marie Curie-Paris 6,
Universite
́
Denis Diderot-Paris7, F-75252 Paris, France.
*
Deceased.
MEASUREMENT OF TIME-DEPENDENT
CP
ASYMMETRY
...
PHYSICAL REVIEW D
79,
072009 (2009)
072009-3
75
IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
76
University of Victoria, Victoria, British Columbia, Canada V8W 3P6
77
Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
78
University of Wisconsin, Madison, Wisconsin 53706, USA
(Received 10 February 2009; published 29 April 2009)
We present updated measurements of time-dependent
CP
asymmetries in fully reconstructed neutral
B
decays containing a charmonium meson. The measurements reported here use a data sample of
ð
465

5
Þ
10
6

ð
4
S
Þ!
B

B
decays collected with the
BABAR
detector at the PEP-II asymmetric energy
e
þ
e

storage rings operating at the SLAC National Accelerator Laboratory. The time-dependent
CP
asymmetry
parameters measured from
J
c
K
0
S
,
J
c
K
0
L
,
c
ð
2
S
Þ
K
0
S
,

c
K
0
S
,

c
1
K
0
S
, and
J=
c
K

ð
892
Þ
0
decays are:
C
f
¼
0
:
024

0
:
020
ð
stat
Þ
0
:
016
ð
syst
Þ
and


f
S
f
¼
0
:
687

0
:
028
ð
stat
Þ
0
:
012
ð
syst
Þ
.
DOI:
10.1103/PhysRevD.79.072009
PACS numbers: 13.25.Hw, 11.30.Er, 12.15.Hh
I. INTRODUCTION
The standard model (SM) of electroweak interactions
describes
CP
violation as a consequence of an irreducible
phase in the three-family Cabibbo-Kobayashi-Maskawa
(CKM) quark-mixing matrix [
1
]. In the CKM framework,
tree-diagram processes dominate neutral
B
decays to
CP
eigenstates containing a charmonium and a
K
ðÞ
0
meson.
These provide a direct measurement of
sin2

[
2
], where
the angle

is defined in terms of the CKM matrix elements
V
ij
for quarks
i
,
j
as
arg
½ð
V
cd
V

cb
Þ
=
ð
V
td
V

tb
Þ
.
We identify (tag) the initial flavor of the reconstructed
B
candidate,
B
rec
, using information from the other
B
meson,
B
tag
, in the event. The decay rate
g
þ
ð
g

Þ
for a neutral
B
meson to a
CP
eigenstate
f
accompanied by a
B
0
ð

B
0
Þ
tag,
before taking into account detector resolution effect, can be
expressed as
g

ð

t
Þ¼
e
j

t
j
=
B
0
4

B
0
1


w
Þð
1

2
w
Þ
S
f
sin
ð

m
d

t
Þ
C
f
cos
ð

m
d

t
Þg
;
(1)
where
S
f
¼
2
I
m
f
1
þj

f
j
2
;C
f
¼
1
j

f
j
2
1
þj

f
j
2
;

t

t
rec

t
tag
is the difference between the proper decay
times of
B
rec
and
B
tag
,

B
0
is the neutral
B
lifetime, and

m
d
is the mass difference between the
B
meson mass
eigenstates determined from
B
0
-

B
0
oscillations [
3
]. Here,

f
¼ð
q=p
Þð

A
f
=A
f
Þ
[
4
], where
q
and
p
are complex con-
stants that relate the
B
-meson flavor eigenstates to the mass
eigenstates, and

A
f
=A
f
is the ratio of the

B
0
and
B
0
decay
amplitudes to the final state
f
. We assume that the corre-
sponding decay-width difference

d
is zero. The average
mistag probability
w
describes the effect of incorrect tags
and

w
is the difference between the mistag probabilities
for
B
0
and

B
0
mesons. The sine term in Eq. (
1
) results from
the interference between direct decay and decay after
B
0
-

B
0
oscillation. A nonzero cosine term arises from the
interference between decay amplitudes with different weak
and strong phases (direct
CP
violation
j

A
f
=A
f
j

1
)or
from
CP
violation in
B
0
-

B
0
mixing (
j
q=p
j

1
). In the
SM,
CP
violation in mixing and direct
CP
violation are
both negligible in
b
!
c

cs
decays [
4
]. Under these as-
sumptions,

f
¼

f
e

2
i
, where

f
¼þ
1
ð
1
Þ
is the
CP
eigenvalue for a
CP
-even (odd) final state, implying
C
f
¼
0
. Thus, the time-dependent
CP
-violating asymmetry is
A
CP
ð

t
Þ
g
þ
ð

t
Þ
g

ð

t
Þ
g
þ
ð

t
Þþ
g

ð

t
Þ
¼ð
1

2
w
Þ
S
f
sin
ð

m
d

t
Þ
;
(2)
and
S
f
¼

f
sin2

. If the assumption that
C
f
¼
0
is
relaxed, then
S
f
¼

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

C
2
f
q
sin2

.
In a previous publication [
5
], we reported time-
dependent
CP
asymmetries in terms of the parameters
sin2

and
j

f
j
. In this paper, we report results in terms
of
S
f
and
C
f
to be consistent with other time-dependent
CP
asymmetry measurements. We reconstruct
B
0
decays
to the final states
J
c
K
0
S
,
J
c
K
0
L
,
c
ð
2
S
Þ
K
0
S
,

c
1
K
0
S
,

c
K
0
S
,
and
J=
c
K

ð
892
Þ
0
with
K

ð
892
Þ
0
!
K
0
S

0
[
6
]. The
J
c
K
0
L
final state is
CP
-even and the
J=
c
K

0
final state is an
admixture of
CP
-even and
CP
-odd amplitudes. The re-
maining final states are
CP
-odd. The
CP
-even and odd
amplitudes in
B
0
!
J=
c
K

0
decays can be separated in an
angular analysis [
7
]. In this analysis, we average over the
angular information resulting in a dilution of the measured
CP
asymmetry by a factor
1

2
R
?
, where
R
?
is the
fraction of the
L
¼
1
contribution. In Ref. [
7
] we have
measured
R
?
¼
0
:
233

0
:
010
ð
stat
Þ
0
:
005
ð
syst
Þ
, which
gives an effective

f
¼
0
:
504

0
:
033
after acceptance
corrections for
f
¼
J=
c
K

0
. In addition to measuring a
combined
S
f
and
C
f
for the
CP
modes described above,
we measure
S
f
and
C
f
for each final state
f
individually.
We split the
J=
c
K
0
S
mode into samples with either
K
0
S
!

þ


or

0

0
. We also combined the
J=
c
K
0
channel
with
K
0
, either a
K
0
S
or
K
0
L
. Compared to our previous
publication [
5
], the current analysis contains
82

10
6
additional
B

B
decays and improved track reconstruction
algorithms have been applied to the entire data set.
B. AUBERT
et al.
PHYSICAL REVIEW D
79,
072009 (2009)
072009-4
II. THE DATA SET AND
BABAR
DETECTOR
The results presented in this paper are based on data
collected with the
BABAR
detector at the PEP-II asymmet-
ric energy
e
þ
e

storage rings [
8
] operating at the SLAC
National Accelerator Laboratory. At PEP-II, 9.0 GeVelec-
trons and 3.1 GeV positrons collide at a center-of-mass
energy of 10.58 GeV, which corresponds to the mass of the

ð
4
S
Þ
resonance. The asymmetric energies result in a
boost from the center-of-mass (CM) frame to the labora-
tory of


0
:
56
. The data set analyzed has an integrated
luminosity of
425
:
7fb

1
corresponding to
ð
465

5
Þ
10
6
B

B
pairs recorded at the

ð
4
S
Þ
resonance.
The
BABAR
detector is described in detail elsewhere [
9
].
Surrounding the interaction point is a five-layer, double-
sided silicon vertex tracker (SVT), which measures the
impact parameters of charged particle tracks in both the
plane transverse to, and along the beam direction. A 40-
layer drift chamber surrounds the silicon vertex tracker and
provides measurements of the momenta for charged parti-
cles. Charged hadron identification is achieved through
measurements of particle energy loss in the tracking sys-
tem and the Cherenkov angle obtained from a detector of
internally reflected Cherenkov light. A CsI(Tl) electromag-
netic calorimeter (EMC) provides photon detection, elec-
tron identification, and

0
reconstruction. The
aforementioned components are enclosed by a solenoid
magnet, which provides a 1.5 T magnetic field. Finally,
the flux return of the magnet (IFR) is instrumented in order
to allow discrimination of muons from pions. For the most
recent
211
:
7fb

1
of data, a portion of the resistive plate
chambers in the IFR has been replaced by limited streamer
tubes [
10
].
We use a right-handed coordinate system with the
z
axis
along the electron beam direction and the
y
axis upward.
Unless otherwise stated, kinematic quantities are calcu-
lated in the laboratory rest frame. We use Monte Carlo
(MC) simulated events generated with the
BABAR
simula-
tion based on GEANT4 [
11
] for detector responses and
EvtGen [
12
] for event kinematics to determine signal and
background characteristics, optimize selection criteria, and
evaluate efficiencies.
III. RECONSTRUCTION OF
B
CANDIDATES
We select two samples of events in order to measure the
time-dependent
CP
asymmetry parameters
S
f
and
C
f
:a
sample of signal events used in the extraction of the
CP
parameters (
B
CP
) and a sample of fully reconstructed
B
meson decays to flavor eigenstates (
B
flav
). The
B
CP
sample
consists of
B
0
decays to
J=
c
K
0
S
,
J=
c
K
0
L
,
c
ð
2
S
Þ
K
0
S
,

c
K
0
S
,

c
1
K
0
S
, and
J=
c
K

ð
892
Þ
0
, where
K

0
decays to
K
0
S

0
. The
B
flav
sample consists of
B
0
decays to
D
ðÞ
ð

þ
;
þ
;a
þ
1
Þ
final states. We use the
B
flav
sample to determine the
dilution (mistag probability) and the resolution function,
discussed in Sec.
V
. We assume that the interference be-
tween the
CP
side and the tag side reconstruction is
negligible and therefore that the dilution and resolution
parameters are the same for the
B
flav
and
B
CP
samples. We
also select a sample of fully reconstructed charged
B
meson decays to
J=
c
K
þ
,
c
ð
2
S
Þ
K
þ
,

c
1
K
þ
,

c
K
þ
, and
J=
c
K

ð
892
Þ
þ
, where
K
decays to
K
þ

0
or
K
0
S

þ
,to
use as a control sample.
The event selection is unchanged from that described in
Ref. [
5
].
J=
c
and
c
ð
2
S
Þ
mesons are reconstructed via their
decays to
e
þ
e

or
þ

final states. At least one of the
leptons is required to pass a likelihood particle identifica-
tion algorithm based on the information provided by the
EMC, the IFR, and from ionization energy loss measured
in the tracking system. We require the invariant mass of the
muon pair
m
ð
þ

Þ
to be in the mass range
3
:
06
3
:
14 GeV
=c
2
for
J=
c
or
3
:
636
3
:
736 GeV
=c
2
for
c
ð
2
S
Þ
candidates. For
J=
c
!
e
þ
e

and
c
ð
2
S
Þ!
e
þ
e

decays, where the electron may have radiated bremsstrah-
lung photons, part of the missing energy is recovered
by identifying neutral clusters with more than 30 MeV
lying within 35 mrad in the polar angle and 50 mrad
in azimuth of the electron direction projected onto the
EMC. The invariant mass of
e
þ
e

pairs is required to be
within
2
:
95
3
:
14 GeV
=c
2
for
J=
c
candidates, or
3
:
436
3
:
736 GeV
=c
2
for
c
ð
2
S
Þ
candidates.
We also construct
c
ð
2
S
Þ
mesons in the
J=
c

þ


final
state, where the
J=
c
candidate is combined with a pair of
oppositely-charged tracks assumed as pions with no parti-
cle identification applied, and the pion pair-invariant mass
between
400 MeV
=c
2
and
600 MeV
=c
2
. Candidates with
3
:
671 GeV
=c
2
<m
ð
J=
c

þ


Þ
<
3
:
701 GeV
=c
2
are
retained.
The

c
1
candidates are reconstructed in the
J=
c

final
state. The photon candidates are required to have an energy
greater than 100 MeV but less than 2 GeV, and,
when combined with other photons, not to form a

0
candidate with invariant mass
120 MeV
=c
2
<m
ð

Þ
<
150 MeV
=c
2
. The invariant mass of the

c
1
candidate is
required to be between
3
:
477 GeV
=c
2
and
3
:
577 GeV
=c
2
.
Mass constraints are applied in the fits to improve the
determinations of the energies and momenta of the
J=
c
,
c
ð
2
S
Þ
, and

c
1
candidates.
We reconstruct the
B
0
!

c
K
0
S
mode using the

c
!
K
0
S
K
þ


decay. We exploit the fact that the

c
decays
predominantly through a
K
resonance at around
1
:
43 GeV
=c
2
and a
K
0
S
K
resonance close to the threshold.
We require that
m
ð
K
0
S


Þ
or
m
ð
K
þ


Þ
is within the mass
range of
1
:
26 GeV
=c
2
and
1
:
63 GeV
=c
2
,or
1
:
0 GeV
=c
2
<
m
ð
K
þ
K
0
S
Þ
<
1
:
4 GeV
=c
2
.
The decay channels
K
þ


,
K
þ



0
,
K
þ

þ




,
and
K
0
S

þ


are used to reconstruct

D
0
, while
D

can-
didates are selected in the
K
þ




and
K
0
S


modes. We
require that the

D
0
and
D

candidate invariant mass is
within

3
of their respective nominal mass, where
is
the uncertainty calculated for each candidate. A mass-
MEASUREMENT OF TIME-DEPENDENT
CP
ASYMMETRY
...
PHYSICAL REVIEW D
79,
072009 (2009)
072009-5
constrained fit is then applied to the

D
0
and
D

candidates
satisfying these requirements. We form
D

candidates in
the decay
D

!

D
0


by combining a

D
0
with a pion
that has momentum greater than
70 MeV
=c
. The
D

candidates are required to have
m
ð

D
0


Þ
within

1
:
1 MeV
=c
2
of the nominal
D

mass for the

D
0
!
K
þ



0
mode and

0
:
8 MeV
=c
2
for all other modes.
For the
J=
c
K
0
S
decay, we use both
K
0
S
!

þ


and
K
0
S
!

0

0
decays; for other
B
decay modes we only use
K
0
S
!

þ


. Candidates in the
K
0
S
!

þ


mode are
selected by requiring an invariant

þ


mass, computed
at the vertex of the two oppositely-charged tracks, between
472
:
67 MeV
=c
2
and
522
:
67 MeV
=c
2
. We further apply a
mass constraint fit to the
K
0
S
candidates before combining
them with charmonium candidates to form
B
0
candidates.
Neutral pion candidates, in the mass range
100
155 MeV
=c
2
, are formed from two

candidates
from the EMC. Pairs of

0
are combined to construct
K
0
S
!

0

0
candidates. The minimum energy is required
to be 30 MeV for

, 200 MeV for

0
, and 800 MeV for
K
0
S
candidates. To select
K
0
S
candidates, the

0

0
invariant
mass is restricted to the region between
470 MeV
=c
2
and
550 MeV
=c
2
.
Candidates for
K
0
L
are identified in the EMC and IFR
detectors as reconstructed clusters that cannot be associ-
ated with any charged track in the event. As the energy of
K
0
L
cannot be measured well, the laboratory momentum of
the
K
0
L
is determined by its flight direction and the con-
straint that the invariant mass of the
J=
c
K
0
L
system has the
known
B
0
mass. For events with multiple
J=
c
K
0
L
candi-
dates, a hierarchy is imposed where the highest energy
EMC cluster for multiple EMC combinations, or the IFR
cluster with the largest number of layers for multiple IFR
combinations, is selected. In case both EMC and IFR
combinations are found, the EMC combination is chosen
because of its better angular resolution.
We reconstruct
K

0
candidates in the
K
0
S

0
mode, while
K
candidates are reconstructed in the
K
þ

0
and
K
0
S

þ
modes. The invariant mass of the two daughters is required
to be within

100 MeV
=c
2
of the nominal
K

mass.
The
þ
candidates are reconstructed in the

þ

0
final
state, where the

þ

0
mass is required to lie within

150 MeV
=c
2
of the nominal
þ
mass. Candidates in
the decay mode
a
þ
1
!

þ



þ
are reconstructed by
combining three charged tracks with pion mass assump-
tion, and restricting the three-pion invariant mass to lie
between 1.0 and
1
:
6 GeV
=c
2
.
Events that pass the selection requirements are refined
using kinematic variables. For the
J=
c
K
0
L
mode, the dif-
ference

E
between the candidate’s CM energy and the
beam energy in the CM frame,
E

beam
, is required to satisfy
j

E
j
<
80 MeV
. For all other categories of events, we
require
j

E
j
<
20 MeV
and the beam-energy substituted
mass
m
ES
¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
E

beam
Þ
2
p

B
Þ
2
q
to be greater than
5
:
2 GeV
=c
2
, where
p

B
is the
B
momentum in the CM
frame. When multiple
B
candidates (with
m
ES
>
5
:
2 GeV
=c
2
) are found in the same event, the candidate
with the smallest value of
j

E
j
is selected.
We calculate the proper time difference

t
between the
two
B
decays from the measured separation

z
between
the decay vertices of
B
rec
and
B
tag
along the collision (
z
)
axis [
13
]. The
z
position of the
B
rec
vertex is determined
from the charged daughter tracks. The
B
tag
decay vertex is
determined by fitting tracks not belonging to the
B
rec
candidate to a common vertex, including constraints from
the beam spot location and the
B
rec
momentum [
13
].
Events are accepted if the calculated

t
uncertainty is
less than 2.5 ps and
j

t
j
is less than 20 ps. The fraction
of signal MC events satisfying such a requirement is 95%.
IV.
B
MESON FLAVOR TAGGING
A key ingredient in the measurement of time-dependent
CP
asymmetries is the determination of whether the
B
rec
was a
B
0
or a

B
0
at the time of

t
¼
0
. This ‘‘flavor
tagging’’ is achieved with the analysis of the decay prod-
ucts of the recoiling
B
meson
B
tag
. The overwhelming
majority of
B
mesons decay to a final state that is flavor-
specific, i.e., only accessible from either a
B
0
or a

B
0
. The
purpose of the flavor-tagging algorithm is to determine the
flavor of
B
tag
with the highest efficiency
tag
and lowest
probability
w
of assigning the wrong flavor. It is not
necessary to fully reconstruct
B
tag
in order to determine
its flavor.
The figure of merit for the performance of the tagging
algorithm is the effective tagging efficiency
Q
¼
tag
ð
1

2
w
Þ
2
;
(3)
which is related to the statistical uncertainty
S
and
C
in
the coefficients
S
f
and
C
f
through
S;C
/
1
ffiffiffiffi
Q
p
:
(4)
The tagging algorithm we employ [
5
,
13
] analyzes tracks
on the tag side to assign a flavor and associated probability
to
B
tag
. The flavor of
B
tag
is determined from a combination
of nine different tag signatures, such as isolated primary
leptons, kaons, and pions from
B
decays to final states
containing
D

mesons, and high momentum charged par-
ticles from
B
decays. The properties of those signatures are
used as inputs to a single neural network that is trained to
assign the correct flavor to
B
tag
. The output of this neural
network then is divided into seven mutually exclusive
categories. These are (in order of decreasing signal purity)
Lepton, Kaon I, Kaon II, KaonPion, Pion, Other
, and
Notag
. The events with the neural network output
j
NN
j
>
0
:
8
are defined as a
Lepton
category, if they are also
accompanied by an isolated primary lepton; otherwise
they are categorized as a
Kaon I
tag. For the other five
tag categories (
Kaon II, KaonPion, Pion, Other
, and
B. AUBERT
et al.
PHYSICAL REVIEW D
79,
072009 (2009)
072009-6
Notag
) the outputs of the neutral network are required to
satisfy:
0
:
6
<
j
NN
j
<
0
:
8
,
0
:
4
<
j
NN
j
<
0
:
6
,
0
:
2
<
j
NN
j
<
0
:
4
,
0
:
1
<
j
NN
j
<
0
:
2
, and
j
NN
j
<
0
:
1
,
respectively.
The performance of this algorithm is evaluated using the
B
flav
sample. The final state of the
B
flav
sample can be
classified as mixed or unmixed depending on whether the
reconstructed flavor eigenstate
B
flav
has the same or oppo-
site flavor as the tagging
B
. After taking the mistag proba-
bility into account, the decay rate
g

;B
0
(
g

;

B
0
) for a neutral
B
meson to decay to a flavor eigenstate accompanied by a
B
0
(

B
0
) tag can be expressed as
g

;B
0
ð

t
Þ/½ð
1


w
i
Þð
1

2
w
i
Þ
cos
ð

m
d

t
Þ
;
g

;

B
0
ð

t
Þ/½ð
1
þ

w
i
Þð
1

2
w
i
Þ
cos
ð

m
d

t
Þ
;
(5)
where the

sign in the index refers to mixed (

) and
unmixed (
þ
) events; the index
i
denotes the
i
th tagging
category. The performance of the tagging algorithm is
summarized in Table
I
. The events in the
Notag
category
contain no flavor information, so carry no weight in the
time-dependent analysis. They are excluded from further
analysis. The total effective tagging efficiency is measured
to be
ð
31
:
2

0
:
3
Þ
%
.
V. LIKELIHOOD FIT METHOD
We determine the composition of our final sample by
performing simultaneous fits to the
m
ES
distributions for
the full
B
CP
and
B
flav
samples, except for the
J=
c
K
0
L
sample for which we extract the
K
0
L
momentum by using
the
B
0
mass constraint and fit the

E
distribution. We then
perform a simultaneous maximum likelihood fit to the

t
distribution of the tagged
B
CP
and
B
flav
samples to measure
S
f
and
C
f
.
We define a signal region of
5
:
27
<m
ES
<
5
:
29 GeV
=c
2
(
j

E
j
<
10 MeV
for
J=
c
K
0
L
), which con-
tains 15 481 candidate events of a
B
CP
sample that satisfy
the tagging and vertexing requirements (see Table
II
). The
signal
m
ES
distribution for the full
B
CP
and
B
flav
samples,
except for the
J=
c
K
0
L
sample, is described by a Gaussian
function. The background
m
ES
distribution is modeled by
an ARGUS threshold function [
14
], where a shape parame-
ter is allowed to vary in the fit. For the decay modes of
J=
c
K
0
S
,
c
2
sK
0
S
,

c
1
K
0
S
,
J=
c
K

0
, and
B
flav
, we use simu-
lated events to estimate the fractions of background events
that peak in the
m
ES
signal region (
m
ES
>
5
:
27 GeV
=c
2
)
due to cross feed from other decay modes. We describe this
component with a Gaussian function having the same mean
and width as the signal and refer to it as the peaking
background because if neglected, it would lead to an over-
estimate of the signal yield. The peaking background is
less than 1% in the decay of
B
0
!
J=
c
K
0
S
, and at the level
of a few percent in most other decay modes. The only
exception is the decay of
B
0
!
J=
c
K

0
, where the peak-
ing background level is about 13%. MC simulations show
that it consists of 44% of
B
þ
decays, 32% of
B
0
!

c
K
0
S
decays, and 24% of other
B
0
decays. For the

c
K
0
S
mode,
the cross feed fraction is determined from a fit to the
m
KK
and
m
ES
distributions in data. For the
J=
c
K
0
L
decay mode,
the signal

E
distribution is determined from MC simu-
lated events. The sample composition, effective

f
, and

E
distribution of the individual background sources are
determined either from simulation (for
B
!
J=
c
X
)or
from the
m
þ

sidebands in data (for non-
J=
c
back-
ground). Figure
1
shows the distributions of
m
ES
obtained
TABLE I. Efficiencies
i
, average mistag fractions
w
i
, mistag
fraction differences between
B
0
and

B
0
tagged events

w
i
, and
effective tagging efficiency
Q
i
extracted for each tagging cate-
gory
i
from the
B
flav
sample.
Category
i
(%)
w
i
(%)

w
i
(%)
Q
i
(%)
Lepton
8
:
96

0
:
07 2
:
8

0
:
30
:
3

0
:
57
:
98

0
:
11
Kaon I
10
:
82

0
:
07 5
:
3

0
:
3

0
:
1

0
:
68
:
65

0
:
14
Kaon II
17
:
19

0
:
09 14
:
5

0
:
30
:
4

0
:
68
:
68

0
:
17
KaonPion
13
:
67

0
:
08 23
:
3

0
:
4

0
:
7

0
:
73
:
91

0
:
12
Pion
14
:
18

0
:
08 32
:
5

0
:
45
:
1

0
:
71
:
73

0
:
09
Other
9
:
54

0
:
07 41
:
5

0
:
53
:
8

0
:
80
:
27

0
:
04
All
74
:
37

0
:
10
31
:
2

0
:
3
TABLE II. Number of events
N
tag
and signal purity
P
in the
signal region after tagging and vertexing requirements, and
results of fitting for
CP
asymmetries in the
B
CP
sample and
various subsamples. Fit results for the
B
flav
and
B
þ
control
samples are also shown here. Errors are statistical only.
Sample
N
tag
P
(%)


f
S
f
C
f
Full
CP
sample 15 481 76
0
:
687

0
:
028 0
:
024

0
:
020
J=
c
K
0
S
ð

þ


Þ
5426 96
0
:
662

0
:
039 0
:
017

0
:
028
J=
c
K
0
S
ð

0

0
Þ
1324 87
0
:
625

0
:
091 0
:
091

0
:
063
c
ð
2
S
Þ
K
0
S
861 87
0
:
897

0
:
100 0
:
089

0
:
076

c
1
K
0
S
385 88
0
:
614

0
:
160 0
:
129

0
:
109

c
K
0
S
381 79
0
:
925

0
:
160 0
:
080

0
:
124
J=
c
K
0
L
5813 56
0
:
694

0
:
061

0
:
033

0
:
050
J=
c
K

0
1291 67
0
:
601

0
:
239 0
:
025

0
:
083
J=
c
K
0
S
6750 95
0
:
657

0
:
036 0
:
026

0
:
025
J=
c
K
0
12 563 77
0
:
666

0
:
031 0
:
016

0
:
023

f
¼
1
8377 93
0
:
684

0
:
032 0
:
037

0
:
023
1999–2002 data 3079 78
0
:
732

0
:
061 0
:
020

0
:
045
2003–2004 data 4916 77
0
:
720

0
:
050 0
:
045

0
:
036
2005–2006 data 4721 76
0
:
632

0
:
052 0
:
027

0
:
037
2007 data
2765 75
0
:
663

0
:
071

0
:
023

0
:
049
Lepton
1740 83
0
:
732

0
:
052 0
:
074

0
:
038
Kaon I
2187 78
0
:
615

0
:
053

0
:
046

0
:
039
Kaon II
3630 76
0
:
688

0
:
056 0
:
068

0
:
039
KaonPion
2882 74
0
:
741

0
:
086 0
:
013

0
:
061
Pion
3053 76
0
:
711

0
:
132 0
:
016

0
:
090
Other
1989 74
0
:
766

0
:
347

0
:
176

0
:
236
B
flav
sample 166 276 83
0
:
021

0
:
009 0
:
012

0
:
006
B
þ
sample
36 082 94
0
:
021

0
:
016 0
:
013

0
:
011
MEASUREMENT OF TIME-DEPENDENT
CP
ASYMMETRY
...
PHYSICAL REVIEW D
79,
072009 (2009)
072009-7