Observation of the decay
B
0
!
þ
c
p
0
B. Aubert,
1
Y. Karyotakis,
1
J. P. Lees,
1
V. Poireau,
1
E. Prencipe,
1
X. Prudent,
1
V. Tisserand,
1
J. Garra Tico,
2
E. Grauges,
2
M. Martinelli,
3a,3b
A. Palano,
3a,3b
M. Pappagallo,
3a,3b
G. Eigen,
4
B. Stugu,
4
L. Sun,
4
M. Battaglia,
5
D. N. Brown,
5
B. Hooberman,
5
L. T. Kerth,
5
Yu. G. Kolomensky,
5
G. Lynch,
5
I. L. Osipenkov,
5
K. Tackmann,
5
T. Tanabe,
5
C. M. Hawkes,
6
N. Soni,
6
A. T. Watson,
6
H. Koch,
7
T. Schroeder,
7
D. J. Asgeirsson,
8
C. Hearty,
8
T. S. Mattison,
8
J. A. McKenna,
8
M. Barrett,
9
A. Khan,
9
A. Randle-Conde,
9
V. E. Blinov,
10
A. D. Bukin,
10,
*
A. R. Buzykaev,
10
V. P. Druzhinin,
10
V. B. Golubev,
10
A. P. Onuchin,
10
S. I. Serednyakov,
10
Yu. I. Skovpen,
10
E. P. Solodov,
10
K. Yu. Todyshev,
10
M. Bondioli,
11
S. Curry,
11
I. Eschrich,
11
D. Kirkby,
11
A. J. Lankford,
11
P. Lund,
11
M. Mandelkern,
11
E. C. Martin,
11
D. P. Stoker,
11
H. Atmacan,
12
J. W. Gary,
12
F. Liu,
12
O. Long,
12
G. M. Vitug,
12
Z. Yasin,
12
V. Sharma,
13
C. Campagnari,
14
T. M. Hong,
14
D. Kovalskyi,
14
M. A. Mazur,
14
J. D. Richman,
14
T. W. Beck,
15
A. M. Eisner,
15
C. A. Heusch,
15
J. Kroseberg,
15
W. S. Lockman,
15
A. J. Martinez,
15
T. Schalk,
15
B. A. Schumm,
15
A. Seiden,
15
L. Wang,
15
L. O. Winstrom,
15
C. H. Cheng,
16
D. A. Doll,
16
B. Echenard,
16
F. Fang,
16
D. G. Hitlin,
16
I. Narsky,
16
P. Ongmongkolkul,
16
T. Piatenko,
16
F. C. Porter,
16
R. Andreassen,
17
G. Mancinelli,
17
B. T. Meadows,
17
K. Mishra,
17
M. D. Sokoloff,
17
P. C. Bloom,
18
W. T. Ford,
18
A. Gaz,
18
J. F. Hirschauer,
18
M. Nagel,
18
U. Nauenberg,
18
J. G. Smith,
18
S. R. Wagner,
18
R. Ayad,
19,
†
W. H. Toki,
19
E. Feltresi,
20
A. Hauke,
20
H. Jasper,
20
T. M. Karbach,
20
J. Merkel,
20
A. Petzold,
20
B. Spaan,
20
K. Wacker,
20
M. J. Kobel,
21
R. Nogowski,
21
K. R. Schubert,
21
R. Schwierz,
21
D. Bernard,
22
E. Latour,
22
M. Verderi,
22
P. J. Clark,
23
S. Playfer,
23
J. E. Watson,
23
M. Andreotti,
24a,24b
D. Bettoni,
24a
C. Bozzi,
24a
R. Calabrese,
24a,24b
A. Cecchi,
24a,24b
G. Cibinetto,
24a,24b
E. Fioravanti,
24a,24b
P. Franchini,
24a,24b
E. Luppi,
24a,24b
M. Munerato,
24a,24b
M. Negrini,
24a,24b
A. Petrella,
24a,24b
L. Piemontese,
24a
V. Santoro,
24a,24b
R. Baldini-Ferroli,
25
A. Calcaterra,
25
R. de Sangro,
25
G. Finocchiaro,
25
S. Pacetti,
25
P. Patteri,
25
I. M. Peruzzi,
25,
‡
M. Piccolo,
25
M. Rama,
25
A. Zallo,
25
R. Contri,
26a,26b
E. Guido,
26a,26b
M. Lo Vetere,
26a,26b
M. R. Monge,
26a,26b
S. Passaggio,
26a
C. Patrignani,
26a,26b
E. Robutti,
26a
S. Tosi,
26a,26b
M. Morii,
27
A. Adametz,
28
J. Marks,
28
S. Schenk,
28
U. Uwer,
28
F. U. Bernlochner,
29
H. M. Lacker,
29
T. Lueck,
29
A. Volk,
29
P. D. Dauncey,
30
M. Tibbetts,
30
P. K. Behera,
31
M. J. Charles,
31
U. Mallik,
31
J. Cochran,
32
H. B. Crawley,
32
L. Dong,
32
V. Eyges,
32
W. T. Meyer,
32
S. Prell,
32
E. I. Rosenberg,
32
A. E. Rubin,
32
Y. Y. Gao,
33
A. V. Gritsan,
33
Z. J. Guo,
33
N. Arnaud,
34
A. D’Orazio,
34
M. Davier,
34
D. Derkach,
34
J. Firmino da Costa,
34
G. Grosdidier,
34
F. Le Diberder,
34
V. Lepeltier,
34
A. M. Lutz,
34
B. Malaescu,
34
P. Roudeau,
34
M. H. Schune,
34
J. Serrano,
34
V. Sordini,
34,
x
A. Stocchi,
34
G. Wormser,
34
D. J. Lange,
35
D. M. Wright,
35
I. Bingham,
36
J. P. Burke,
36
C. A. Chavez,
36
J. R. Fry,
36
E. Gabathuler,
36
R. Gamet,
36
D. E. Hutchcroft,
36
D. J. Payne,
36
C. Touramanis,
36
A. J. Bevan,
37
C. K. Clarke,
37
F. Di Lodovico,
37
R. Sacco,
37
M. Sigamani,
37
G. Cowan,
38
S. Paramesvaran,
38
A. C. Wren,
38
D. N. Brown,
39
C. L. Davis,
39
A. G. Denig,
40
M. Fritsch,
40
W. Gradl,
40
A. Hafner,
40
K. E. Alwyn,
41
D. Bailey,
41
R. J. Barlow,
41
G. Jackson,
41
G. D. Lafferty,
41
T. J. West,
41
J. I. Yi,
41
J. Anderson,
42
C. Chen,
42
A. Jawahery,
42
D. A. Roberts,
42
G. Simi,
42
J. M. Tuggle,
42
C. Dallapiccola,
43
E. Salvati,
43
R. Cowan,
44
D. Dujmic,
44
P. H. Fisher,
44
S. W. Henderson,
44
G. Sciolla,
44
M. Spitznagel,
44
R. K. Yamamoto,
44
M. Zhao,
44
P. M. Patel,
45
S. H. Robertson,
45
M. Schram,
45
P. Biassoni,
46a,46b
A. Lazzaro,
46a,46b
V. Lombardo,
46a
F. Palombo,
46a,46b
S. Stracka,
46a,46b
L. Cremaldi,
47
R. Godang,
47,
k
R. Kroeger,
47
P. Sonnek,
47
D. J. Summers,
47
H. W. Zhao,
47
X. Nguyen,
48
M. Simard,
48
P. Taras,
48
H. Nicholson,
49
G. De Nardo,
50a,50b
L. Lista,
50a
D. Monorchio,
50a,50b
G. Onorato,
50a,50b
C. Sciacca,
50a,50b
G. Raven,
51
H. L. Snoek,
51
C. P. Jessop,
52
K. J. Knoepfel,
52
J. M. LoSecco,
52
W. F. Wang,
52
L. A. Corwin,
53
K. Honscheid,
53
H. Kagan,
53
R. Kass,
53
J. P. Morris,
53
A. M. Rahimi,
53
S. J. Sekula,
53
N. L. Blount,
54
J. Brau,
54
R. Frey,
54
O. Igonkina,
54
J. A. Kolb,
54
M. Lu,
54
R. Rahmat,
54
N. B. Sinev,
54
D. Strom,
54
J. Strube,
54
E. Torrence,
54
G. Castelli,
55a,55b
N. Gagliardi,
55a,55b
M. Margoni,
55a,55b
M. Morandin,
55a
M. Posocco,
55a
M. Rotondo,
55a
F. Simonetto,
55a,55b
R. Stroili,
55a,55b
C. Voci,
55a,55b
P. del Amo Sanchez,
56
E. Ben-Haim,
56
G. R. Bonneaud,
56
H. Briand,
56
J. Chauveau,
56
O. Hamon,
56
Ph. Leruste,
56
G. Marchiori,
56
J. Ocariz,
56
A. Perez,
56
J. Prendki,
56
S. Sitt,
56
L. Gladney,
57
M. Biasini,
58a,58b
E. Manoni,
58a,58b
C. Angelini,
59a,59b
G. Batignani,
59a,59b
S. Bettarini,
59a,59b
G. Calderini,
59a,59b,
{
M. Carpinelli,
59a,59b,
**
A. Cervelli,
59a,59b
F. Forti,
59a,59b
M. A. Giorgi,
59a,59b
A. Lusiani,
59a,59c
M. Morganti,
59a,59b
N. Neri,
59a,59b
E. Paoloni,
59a,59b
G. Rizzo,
59a,59b
J. J. Walsh,
59a
D. Lopes Pegna,
60
C. Lu,
60
J. Olsen,
60
A. J. S. Smith,
60
A. V. Telnov,
60
F. Anulli,
61a
E. Baracchini,
61a,61b
G. Cavoto,
61a
R. Faccini,
61a,61b
F. Ferrarotto,
61a
F. Ferroni,
61a,61b
M. Gaspero,
61a,61b
P. D. Jackson,
61a
L. Li Gioi,
61a
M. A. Mazzoni,
61a
S. Morganti,
61a
G. Piredda,
61a
F. Renga,
61a,61b
C. Voena,
61a
M. Ebert,
62
T. Hartmann,
62
H. Schro
̈
der,
62
R. Waldi,
62
T. Adye,
63
B. Franek,
63
E. O. Olaiya,
63
F. F. Wilson,
63
S. Emery,
64
L. Esteve,
64
G. Hamel de Monchenault,
64
W. Kozanecki,
64
G. Vasseur,
64
Ch. Ye
`
che,
64
M. Zito,
64
M. T. Allen,
65
D. Aston,
65
D. J. Bard,
65
R. Bartoldus,
65
J. F. Benitez,
65
R. Cenci,
65
J. P. Coleman,
65
M. R. Convery,
65
J. C. Dingfelder,
65
J. Dorfan,
65
G. P. Dubois-Felsmann,
65
W. Dunwoodie,
65
R. C. Field,
65
PHYSICAL REVIEW D
82,
031102(R) (2010)
RAPID COMMUNICATIONS
1550-7998
=
2010
=
82(3)
=
031102(8)
031102-1
Ó
2010 The American Physical Society
M. Franco Sevilla,
65
B. G. Fulsom,
65
A. M. Gabareen,
65
M. T. Graham,
65
P. Grenier,
65
C. Hast,
65
W. R. Innes,
65
J. Kaminski,
65
M. H. Kelsey,
65
H. Kim,
65
P. Kim,
65
M. L. Kocian,
65
D. W. G. S. Leith,
65
S. Li,
65
B. Lindquist,
65
S. Luitz,
65
V. Luth,
65
H. L. Lynch,
65
D. B. MacFarlane,
65
H. Marsiske,
65
R. Messner,
65,
*
D. R. Muller,
65
H. Neal,
65
S. Nelson,
65
C. P. O’Grady,
65
I. Ofte,
65
M. Perl,
65
B. N. Ratcliff,
65
A. Roodman,
65
A. A. Salnikov,
65
R. H. Schindler,
65
J. Schwiening,
65
A. Snyder,
65
D. Su,
65
M. K. Sullivan,
65
K. Suzuki,
65
S. K. Swain,
65
J. M. Thompson,
65
J. Va’vra,
65
A. P. Wagner,
65
M. Weaver,
65
C. A. West,
65
W. J. Wisniewski,
65
M. Wittgen,
65
D. H. Wright,
65
H. W. Wulsin,
65
A. K. Yarritu,
65
C. C. Young,
65
V. Ziegler,
65
X. R. Chen,
66
H. Liu,
66
W. Park,
66
M. V. Purohit,
66
R. M. White,
66
J. R. Wilson,
66
M. Bellis,
67
P. R. Burchat,
67
A. J. Edwards,
67
T. S. Miyashita,
67
S. Ahmed,
68
M. S. Alam,
68
J. A. Ernst,
68
B. Pan,
68
M. A. Saeed,
68
S. B. Zain,
68
A. Soffer,
69
S. M. Spanier,
70
B. J. Wogsland,
70
R. Eckmann,
71
J. L. Ritchie,
71
A. M. Ruland,
71
C. J. Schilling,
71
R. F. Schwitters,
71
B. C. Wray,
71
B. W. Drummond,
72
J. M. Izen,
72
X. C. Lou,
72
F. Bianchi,
73a,73b
D. Gamba,
73a,73b
M. Pelliccioni,
73a,73b
M. Bomben,
74a,74b
L. Bosisio,
74a,74b
C. Cartaro,
74a,74b
G. Della Ricca,
74a,74b
L. Lanceri,
74a,74b
L. Vitale,
74a,74b
V. Azzolini,
75
N. Lopez-March,
75
F. Martinez-Vidal,
75
D. A. Milanes,
75
A. Oyanguren,
75
J. Albert,
76
Sw. Banerjee,
76
B. Bhuyan,
76
H. H. F. Choi,
76
K. Hamano,
76
G. J. King,
76
R. Kowalewski,
76
M. J. Lewczuk,
76
I. M. Nugent,
76
J. M. Roney,
76
R. J. Sobie,
76
T. J. Gershon,
77
P. F. Harrison,
77
J. Ilic,
77
T. E. Latham,
77
G. B. Mohanty,
77
E. M. T. Puccio,
77
H. R. Band,
78
X. Chen,
78
S. Dasu,
78
K. T. Flood,
78
Y. Pan,
78
R. Prepost,
78
C. O. Vuosalo,
78
and S. L. Wu
78
(
B
A
B
AR
Collaboration)
1
Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Universite
́
de Savoie,
CNRS/IN2P3, F-74941 Annecy-Le-Vieux, France
2
Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
3a
INFN Sezione di Bari, I-70126 Bari, Italy
3b
Dipartimento di Fisica, Universita
`
di Bari, I-70126 Bari, Italy
4
University of Bergen, Institute of Physics, N-5007 Bergen, Norway
5
Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
6
University of Birmingham, Birmingham, B15 2TT, United Kingdom
7
Ruhr Universita
̈
t Bochum, Institut fu
̈
r Experimentalphysik 1, D-44780 Bochum, Germany
8
University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
9
Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
10
Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
11
University of California at Irvine, Irvine, California 92697, USA
12
University of California at Riverside, Riverside, California 92521, USA
13
University of California at San Diego, La Jolla, California 92093, USA
14
University of California at Santa Barbara, Santa Barbara, California 93106, USA
15
University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
16
California Institute of Technology, Pasadena, California 91125, USA
17
University of Cincinnati, Cincinnati, Ohio 45221, USA
18
University of Colorado, Boulder, Colorado 80309, USA
19
Colorado State University, Fort Collins, Colorado 80523, USA
20
Technische Universita
̈
t Dortmund, Fakulta
̈
t Physik, D-44221 Dortmund, Germany
21
Technische Universita
̈
t Dresden, Institut fu
̈
r Kern- und Teilchenphysik, D-01062 Dresden, Germany
22
Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France
23
University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
24a
INFN Sezione di Ferrara, I-44100 Ferrara, Italy
24b
Dipartimento di Fisica, Universita
`
di Ferrara, I-44100 Ferrara, Italy
25
INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
26a
INFN Sezione di Genova, I-16146 Genova, Italy
26b
Dipartimento di Fisica, Universita
`
di Genova, I-16146 Genova, Italy
27
Harvard University, Cambridge, Massachusetts 02138, USA
28
Universita
̈
t Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
29
Humboldt-Universita
̈
t zu Berlin, Institut fu
̈
r Physik, Newtonstr. 15, D-12489 Berlin, Germany
30
Imperial College London, London, SW7 2AZ, United Kingdom
31
University of Iowa, Iowa City, Iowa 52242, USA
32
Iowa State University, Ames, Iowa 50011-3160, USA
33
Johns Hopkins University, Baltimore, Maryland 21218, USA
B. AUBERT
et al.
PHYSICAL REVIEW D
82,
031102(R) (2010)
RAPID COMMUNICATIONS
031102-2
34
Laboratoire de l’Acce
́
le
́
rateur Line
́
aire, IN2P3/CNRS et Universite
́
Paris-Sud 11,
Centre Scientifique d’Orsay, B. P. 34, F-91898 Orsay Cedex, France
35
Lawrence Livermore National Laboratory, Livermore, California 94550, USA
36
University of Liverpool, Liverpool L69 7ZE, United Kingdom
37
Queen Mary, University of London, London, E1 4NS, United Kingdom
38
University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
39
University of Louisville, Louisville, Kentucky 40292, USA
40
Johannes Gutenberg-Universita
̈
t Mainz, Institut fu
̈
r Kernphysik, D-55099 Mainz, Germany
41
University of Manchester, Manchester M13 9PL, United Kingdom
42
University of Maryland, College Park, Maryland 20742, USA
43
University of Massachusetts, Amherst, Massachusetts 01003, USA
44
Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
45
McGill University, Montre
́
al, Que
́
bec, Canada H3A 2T8
46a
INFN Sezione di Milano, I-20133 Milano, Italy
46b
Dipartimento di Fisica, Universita
`
di Milano, I-20133 Milano, Italy
47
University of Mississippi, University, Mississippi 38677, USA
48
Universite
́
de Montre
́
al, Physique des Particules, Montre
́
al, Que
́
bec, Canada H3C 3J7
49
Mount Holyoke College, South Hadley, Massachusetts 01075, USA
50a
INFN Sezione di Napoli, I-80126 Napoli, Italy
50b
Dipartimento di Scienze Fisiche, Universita
`
di Napoli Federico II, I-80126 Napoli, Italy
51
NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
52
University of Notre Dame, Notre Dame, Indiana 46556, USA
53
Ohio State University, Columbus, Ohio 43210, USA
54
University of Oregon, Eugene, Oregon 97403, USA
55a
INFN Sezione di Padova, I-35131 Padova, Italy
55b
Dipartimento di Fisica, Universita
`
di Padova, I-35131 Padova, Italy
56
Laboratoire de Physique Nucle
́
aire et de Hautes Energies, IN2P3/CNRS, Universite
́
Pierre et Marie Curie-Paris6,
Universite
́
Denis Diderot-Paris7, F-75252 Paris, France
57
University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
58a
INFN Sezione di Perugia, I-06100 Perugia, Italy
58b
Dipartimento di Fisica, Universita
`
di Perugia, I-06100 Perugia, Italy
59a
INFN Sezione di Pisa, I-56127 Pisa, Italy
59b
Dipartimento di Fisica, Universita
`
di Pisa, I-56127 Pisa, Italy
59c
Scuola Normale Superiore di Pisa, I-56127 Pisa, Italy
60
Princeton University, Princeton, New Jersey 08544, USA
61a
INFN Sezione di Roma, I-00185 Roma, Italy
61b
Dipartimento di Fisica, Universita
`
di Roma La Sapienza, I-00185 Roma, Italy
62
Universita
̈
t Rostock, D-18051 Rostock, Germany
63
Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
64
CEA, Irfu, SPP, Centre de Saclay, F-91191 Gif-sur-Yvette, France
65
SLAC National Accelerator Laboratory, Stanford, California 94309 USA
66
University of South Carolina, Columbia, South Carolina 29208, USA
67
Stanford University, Stanford, California 94305-4060, USA
68
State University of New York, Albany, New York 12222, USA
69
Tel Aviv University, School of Physics and Astronomy, Tel Aviv, 69978, Israel
70
University of Tennessee, Knoxville, Tennessee 37996, USA
71
University of Texas at Austin, Austin, Texas 78712, USA
72
University of Texas at Dallas, Richardson, Texas 75083, USA
73a
INFN Sezione di Torino, I-10125 Torino, Italy
73b
Dipartimento di Fisica Sperimentale, Universita
`
di Torino, I-10125 Torino, Italy
74a
INFN Sezione di Trieste, I-34127 Trieste, Italy
74b
Dipartimento di Fisica, Universita
`
di Trieste, I-34127 Trieste, Italy
{
Also with Laboratoire de Physique Nucle
́
aire et de Hautes Energies, IN2P3/CNRS, Universite
́
Pierre et Marie Curie-Paris6,
Universite
́
Denis Diderot-Paris7, F-75252 Paris, France.
k
Now at University of South Alabama, Mobile, Alabama 36688, USA.
x
Also with Universita
`
di Roma La Sapienza, I-00185 Roma, Italy.
†
Now at Temple University, Philadelphia, Pennsylvania 19122, USA.
**
Also with Universita
`
di Sassari, Sassari, Italy.
*
Deceased.
‡
Also with Universita
`
di Perugia, Dipartimento di Fisica, Perugia, Italy.
OBSERVATION OF THE DECAY
...
PHYSICAL REVIEW D
82,
031102(R) (2010)
RAPID COMMUNICATIONS
031102-3
75
IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
76
University of Victoria, Victoria, British Columbia, Canada V8W 3P6
77
Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
78
University of Wisconsin, Madison, Wisconsin 53706, USA
(Received 12 July 2010; published 25 August 2010)
In a sample of
467
10
6
B
B
pairs collected with the
BABAR
detector at the PEP-II collider at SLAC
we have observed the decay
B
0
!
þ
c
p
0
and measured the branching fraction to be
ð
1
:
94
0
:
17
0
:
14
0
:
50
Þ
10
4
, where the uncertainties are statistical, systematic, and the uncertainty on the
þ
c
!
pK
þ
branching fraction, respectively. We determine an upper limit of
1
:
5
10
6
at 90% C.L. for the
product branching fraction
B
ð
B
0
!
þ
c
ð
2455
Þ
p
Þ
B
ð
þ
c
!
pK
þ
Þ
. Furthermore, we observe an
enhancement at the threshold of the invariant mass of the baryon-antibaryon pair.
DOI:
10.1103/PhysRevD.82.031102
PACS numbers: 13.25.Hw, 13.60.Rj
Although approximately 7% of
B
-meson decays have
baryons in the final state, presently the sum of all measured
branching fractions of exclusive baryonic
B
decays is only
about 1% [
1
].
B
mesons decay dominantly via
b
!
c
transitions, hence decays to baryons should be dominated
by charm baryon production or a charmed meson accom-
panied by noncharmed baryons. Both types of decays have
been observed [
2
,
3
], and are found to have comparable
branching fractions for decays to final states with the same
multiplicity.
In baryonic
B
decays and in baryon production in gen-
eral, enhancements at the threshold for the baryon-
antibaryon invariant mass have been observed [
3
,
4
]. This
may indicate resonances near threshold or another mecha-
nism for enhanced production of baryon-antibaryon pairs.
This threshold enhancement may also explain the increase
in branching fraction with final-state multiplicity and the
apparent suppression of two-body decays to baryons [
1
,
5
].
The mechanisms of baryon production in heavy meson
decays are poorly understood, and studies of exclusive
decays may provide insight into different decay mecha-
nisms. As will be discussed below, isospin relations will
also help distinguish different primary processes.
In this paper, we present a study of the decay
B
0
!
þ
c
p
0
[
6
] and measure its branching fraction. The CLEO
collaboration previously set an upper limit of
B
ð
B
0
!
þ
c
p
0
Þ
<
5
:
9
10
4
based on an integrated luminosity
of
2
:
39 fb
1
[
7
]. For the isospin-related decay,
B
!
þ
c
p
, several measurements of the branching fraction
have been performed [
8
,
9
]. The recent
BABAR
measure-
ment gives
ð
3
:
38
0
:
12
0
:
12
0
:
88
Þ
10
4
[
10
], a
value that is significantly higher than earlier measurements
(
4
:
3
deviation). The last and dominant error is due to the
uncertainty in the
þ
c
!
pK
þ
branching fraction, com-
mon to all measurements.
While the
B
!
þ
c
p
final-state can only have an
isospin
I
of
3
=
2
,
B
0
!
þ
c
p
0
can also have
I
¼
1
=
2
.If
both decays proceed via the same weak decay mechanism,
I
¼
3
=
2
, the ratio of the partial decay widths of
B
0
to
B
should be
2
=
3
. However, it is also possible that the decay
mechanisms are different. Thus a deviation of the ratio of
partial decay widths from
2
=
3
would suggest a contribution
from the
I
¼
1
=
2
final-state to the
B
0
!
þ
c
p
0
decay or
a contribution from the decay process where the
is
coming from the
W
in the
B
!
þ
c
p
decay.
This analysis is based on a data set of about
426 fb
1
corresponding to
467
10
6
B
B
pairs. These data were
collected with the
BABAR
detector at the PEP-II
asymmetric-energy
e
þ
e
collider with a center-of-mass
energy,
ffiffiffi
s
p
, at the
ð
4
S
Þ
resonance mass. An additional
sample of
44
:
5fb
1
, collected 40 MeV below the mass of
the
ð
4
S
Þ
resonance, are used to study the continuum
background
e
þ
e
!
q
q
, where
q
¼
u
,
d
,
s
,or
c
.
The signal efficiency is determined using a detailed
GEANT4
[
11
] Monte Carlo (MC) simulation of the
BABAR
detector that generates MC events uniformly in
the
þ
c
p
0
phase space. MC events are also used to study
the background contributions.
The
BABAR
detector is described in detail elsewhere
[
12
]. Charged particles are distinguished and their mo-
menta measured in the tracking system consisting of a
five-layer double-sided silicon vertex tracker (SVT) and a
40-layer drift chamber (DCH). An internally reflecting ring
imaging Cherenkov detector (DIRC) is also used to dis-
tinguish charged particles and a CsI(Tl) electromagnetic
calorimeter (EMC) is used to detect photons.
Likelihood ratios based on information from SVT, DCH
and DIRC are used to identify protons and kaons. The
efficiency for the kaon selection is around 90% while the
rate for misidentifying pions and protons as kaons varies
between 5% and 10%, depending on track momentum. The
identification efficiency for the proton selection is greater
than 90% while the misidentification rate of identifying
kaons and pions as protons varies between 3% and 15%,
depending on track momentum.
Two photons are selected as electromagnetic showers in
the EMC with the expected shape and are combined to
form a
0
candidate, where the photon with the lower
energy must have an energy greater than 60 MeV, while
the second photon must have an energy greater than
100 MeV. The invariant mass of the
combination is
required to be between
120 MeV
=c
2
and
145 MeV
=c
2
.
B. AUBERT
et al.
PHYSICAL REVIEW D
82,
031102(R) (2010)
RAPID COMMUNICATIONS
031102-4
The
þ
c
candidates are reconstructed in the decay mode
þ
c
!
pK
þ
, and a fit with geometric constraint applied
to the common vertex must have a
2
probability greater
than 0.1%. The invariant
pK
þ
mass must be within
2
:
5
of the fitted peak of the mass distribution,
2
:
276
<
m
ð
pK
þ
Þ
<
2
:
296 GeV
=c
2
. The
þ
c
and
0
candidates
are then combined with a
p
candidate in a fit using kine-
matic constraints to form a
B
0
candidate. In the fit, the mass
of the
pK
þ
candidate is constrained to the mass of the
þ
c
and the mass of the
combination to the mass of the
0
[
1
]. The
2
probability of this fit must be greater than
0.1%.
The analysis makes use of two almost independent kine-
matic variables,
E
and
m
ES
, where
E
¼
E
B
ffiffiffi
s
p
=
2
is
the difference of the reconstructed energy
E
B
and half of
ffiffiffi
s
p
in the
e
þ
e
center-of-mass frame (CMS). The other
variable is
m
ES
¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
s=
2
þ
p
0
p
B
Þ
2
=E
2
0
p
2
B
q
where
ð
E
0
;
p
0
Þ
is the four momentum of the
e
þ
e
system and
p
B
is the
B
candidate momentum, both measured in the
laboratory frame. The
m
ES
distribution for signal events
peaks at the
B
mass and the distribution of
E
for signal
events is centered around zero. Candidates arising from
other
B
decays, with more final-state particles, such as
B
0
!
þ
c
p
þ
, are shifted to negative values of
E
.
Conversely, candidates arising from
B
decays with fewer
final-state particles, such as
B
0
!
þ
c
p
, are shifted to
positive values. To suppress these decays, only candidates
with
50 MeV
<
E<
40 MeV
are selected.
A considerable background comes from
B
!
þ
c
p
decays, and, in particular, from the
B
!
0
c
ð
2455
Þ
p
,
0
c
ð
2455
Þ!
þ
c
decays, in which the
þ
c
p
pair from
B
decay is combined with a
0
from the decay of the
B
þ
meson. To suppress this background, we reconstruct
B
!
þ
c
p
, and reject the event if
j
E
j
<
50 MeV
and
m
ES
>
5
:
27 GeV
=c
2
for such a
B
candidate, or if the
condition
2400 MeV
=c
2
<m
ð
þ
c
Þ
<
2465 MeV
=c
2
is
satisfied (veto cuts). These two requirements keep 98% of
the signal, while they remove 85% of
B
!
0
c
ð
2455
Þ
p
events. The remaining 15% of the background events do
not peak in the signal
E
m
ES
region.
The continuum background is reduced by a requirement
on the thrust value of the event
T<
0
:
75
, where we include
both charged particles and photons in this calculation. The
thrust is defined as
T
¼
P
i
j
^
T
p
i
j
P
i
j
p
i
j
;
(1)
where
^
T
is the thrust axis defined as the direction which
maximizes the sum of the longitudinal momenta of the
particles, and
p
i
the momentum vector of the
i
-th particle
in the CMS. This selection keeps 83% of the signal but
only 25% of the continuum background, as determined
from MC simulation and continuum data collected
40 MeV below the
ð
4
S
Þ
energy.
To further reduce the background from continuum and
B
B
events, mainly coming from
combinations of low
energy, only one
B
0
candidate per event is selected. In
events with more than one candidate (about 10% of the
events), first the candidate(s) with the invariant mass
m
ð
Þ
closest to the
0
nominal mass are selected. For
events with multiple candidates containing the same
0
,
the candidate with the
pK
þ
mass closest to the nominal
c
mass is retained. If there are still multiple
B
candidates,
the candidate with the highest probability of the kinematic
vertex fit is used. Figure
1
shows a comparison between the
E
distribution of candidates reconstructed in data and in
signal MC events, in which signal events are obtained by a
fit to the
m
ES
distribution in every
E
bin, as described
below.
The number of reconstructed signal candidates is deter-
mined from a binned
2
fit to the observed
m
ES
distribution
shown in Fig.
2
. The sum of two Gaussian distributions
with different means is used to describe the signal. The
parameters of the two Gaussians are fixed to the
values obtained from a fit to signal MC events. The back-
ground is described by the function [
13
]
f
bg
¼
n
m
ES
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
ð
m
ES
=m
0
Þ
2
p
e
c
ð
1
ð
m
ES
=m
0
Þ
2
Þ
, where
m
0
¼
5
:
289 GeV
=c
2
is the kinematic end-point value,
c
a shape
parameter left free in the fit, and
n
is the normalization.
There are
273
23
signal candidates seen in data and the
significance of this observation is more than
10
.
The number of produced signal events used to measure
the branching fraction is determined by a fit to the
efficiency-corrected
m
ES
distribution using the same pa-
rametrization as before. The events are weighted with the
inverse of the efficiency as a function of the invariant mass
E [GeV]
∆
-0.1
-0.05
0
0.05
0.1
Events/ 8MeV
-5
0
5
10
15
20
25
30
35
40
FIG. 1 (color online).
E
distribution for data signal events
after all selection cuts (data points) and signal MC events
(histogram) normalized to the number of data signal events;
signal events are obtained from binwise
m
ES
fits; dashed lines
show the range used for
m
ES
distributions.
OBSERVATION OF THE DECAY
...
PHYSICAL REVIEW D
82,
031102(R) (2010)
RAPID COMMUNICATIONS
031102-5
m
ð
þ
c
0
Þ
. To compute the efficiency, the signal MC sam-
ple is divided in 10 intervals of
m
ð
þ
c
0
Þ
. For each interval
the
m
ES
distribution is fitted to extract the signal MC yield.
The efficiency for each interval is computed dividing the
yield by the number of events generated in this interval.
The resulting efficiency distribution is then fitted by a 4th
order polynomial. The averaged signal efficiency is 6.0%.
The weighted data
m
ES
distribution is shown in Fig.
3
,
and the fit found
4528
403
signal events (
N
signal
). The
branching fraction is then calculated as
B
ð
B
0
!
þ
c
p
0
Þ¼
N
signal
B
ð
þ
c
!
pK
þ
Þ
2
N
B
0
B
0
¼ð
1
:
94
0
:
17
Þ
10
4
;
(2)
where the uncertainty is statistical only from the fit, and
B
ð
þ
c
!
pK
þ
Þ¼ð
0
:
050
0
:
013
Þ
[
1
]. The quantity
N
B
0
B
0
¼ð
233
:
6
2
:
6
Þ
10
6
is the number of
B
0
B
0
pairs
and
B
ð
ð
4
S
Þ!
B
0
B
0
Þ¼
0
:
5
is assumed.
To check for peaking background from other
B
decays
and random
combinations, the analysis is repeated for
selected samples without mass constraints on the
0
and
þ
c
mass. The signal yields after subtraction of background
obtained from the invariant mass distributions of the
0
and
þ
c
are found to be consistent with the default analysis.
The systematic uncertainties are mainly derived from
studies of data control samples and by comparison of data
and MC events. The main systematic uncertainty arises
from differences between data and MC events in the
E
distribution seen in Fig.
1
. The difference between the cut
efficiency in MC and data, relative to the MC one, is used
as the systematic uncertainty (4.6%). Other systematic
uncertainties arise from the veto cuts (3.4%), the
0
re-
construction efficiency (3.0%), the particle identification
(1.2%), the number of
B
0
B
0
pairs (1.1%) and the recon-
struction efficiency of charged tracks (0.9%). To determine
the uncertainty from the MC model we use to generate
signal events, these signal events are reweighted depending
on
m
ð
p
0
Þ
, and a new efficiency function is calculated.
The data
m
ES
distribution is then corrected for reconstruc-
tion efficiencies with this function and fitted as before. The
difference in the number of signal events we use as the
systematic uncertainty of the specific MC model (2.2%).
The systematic uncertainty due to the fit is determined by
changing the cut-off value of the background function by
1 MeV
=c
2
(0.50%). The individual contributions to the
systematic uncertainty are added in quadrature, resulting
in the total of 7.1%.
In Fig.
4
, the measured
m
ð
þ
c
p
Þ
distribution is com-
pared with a MC simulated one, generated with a phase
space distribution for the decay to
þ
c
p
0
and normalized
to the number of data events. To extract the signal distri-
bution events, the
m
ES
distribution is fitted in every bin of
m
ð
þ
c
p
Þ
. There is a clear difference in shape between data
and simulation, with a clear enhancement at low mass, with
]
2
[GeV/c
ES
m
5.2
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.3
2
Events/1 MeV/c
0
200
400
600
800
1000
1200
/ ndf = 82 / 86
2
χ
FIG. 3. Efficiency-corrected
m
ES
distribution for
B
0
!
þ
c
p
0
(data points). The result of the fit (solid line) and the
background estimate (dashed line) is shown.
]
2
) [GeV/c
p
+
c
Λ
m(
3.2
3.4
3.6
3.8
4
4.2
4.4
4.6
4.8
5
5.2
2
Events/ 200MeV/c
0
200
400
600
800
1000
1200
FIG. 4 (color online). Efficiency corrected distribution of the
invariant mass
m
ð
þ
c
p
Þ
; points are signal data events; histogram
shows signal MC events assuming phase space distribution
normalized to the number of data events.
]
2
[GeV/c
ES
m
5.2
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.3
2
Events/1 MeV/c
0
10
20
30
40
50
60
/ ndf = 76 / 86
2
χ
FIG. 2. Fitted
m
ES
distribution without efficiency correction
(data points); the result of the fit (solid line) and the background
estimate (dashed line) is shown.
B. AUBERT
et al.
PHYSICAL REVIEW D
82,
031102(R) (2010)
RAPID COMMUNICATIONS
031102-6
a significance of
5
for the first bin, assuming Gaussian
statistics. Such an enhancement is seen in many other
baryonic
B
decays and also in baryon production, such as
e
þ
e
!
[
14
], which proceeds through different
short-distance processes.
In Fig.
5
, the invariant mass of the
þ
c
0
combination is
shown, fitted by a Gaussian function for a possible
þ
c
ð
2455
Þ
signal and by the function
n
ð
m
ð
þ
c
0
Þ
½
m
ð
þ
c
Þþ
m
ð
0
ÞÞ
c
to describe the nonresonant fraction
of the signal and background using a likelihood fit. The
shape parameters for the Gaussian are fixed to the parame-
ters obtained from simulated events. The fit returns
N
þ
c
ð
2455
Þ
¼
3
3
signal events. Therefore, there is no
evidence for
B
0
!
þ
c
ð
2455
Þ
p
. The reconstruction effi-
ciency for
B
0
!
þ
c
ð
2455
Þ
p
is
ð
1
:
70
0
:
05
Þ
%
.
Integrating the likelihood function of the fit parameter
N
þ
c
ð
2455
Þ
0
, we obtain a Bayesian upper limit at 90%
confidence level (C.L.) of
B
ð
B
0
!
þ
c
ð
2455
Þ
p
Þ
B
ð
þ
c
!
K
p
þ
Þ
<
1
:
5
10
6
.
In conclusion, we have observed the decay
B
0
!
þ
c
p
0
and measured the branching fraction as:
B
ð
B
0
!
þ
c
p
0
Þ¼ð
1
:
94
0
:
17
0
:
14
0
:
50
Þ
10
4
;
(3)
where the uncertainties are statistical, systematic, and from
the
þ
c
branching fraction,
þ
c
!
pK
þ
. The ratio of
the partial decay width measured here to the
BABAR
measurement of the decay
B
!
þ
c
p
[
10
]is
B
ð
B
0
!
þ
c
p
0
Þ
B
ð
B
!
þ
c
p
Þ
B
B
0
¼
0
:
61
0
:
09
;
(4)
where
B
and
B
0
are the lifetimes of the
B
mesons. This
ratio is consistent with the isospin expectation of
2
=
3
.
Given that we do not have evidence for a
B
0
!
þ
c
p
contribution, we also compare our
B
0
!
þ
c
p
0
measure-
ment with only the nonresonant contribution to the
B
!
þ
c
p
decay. We find
B
ð
B
0
!
þ
c
p
0
Þ
B
ð
B
!
þ
c
p
Þ
nonresonant
B
B
0
¼
0
:
80
0
:
11
;
(5)
which is also consistent with the isospin expectation of
2
=
3
.
For the resonant subchannel we calculate a 90% upper
limit of
B
ð
B
0
!
þ
c
ð
2455
Þ
p
Þ
B
ð
þ
c
!
K
p
Þ
<
1
:
5
10
6
:
(6)
The 90% C.L. Bayesian upper limit for the ratio of the
branching fractions
B
ð
B
0
!
þ
c
ð
2455
Þ
p
Þ
and
B
!
0
c
ð
2455
Þ
p
[
10
]is
B
ð
B
0
!
þ
c
ð
2455
Þ
p
Þ
B
ð
B
!
0
c
ð
2455
Þ
p
Þ
B
B
0
<
0
:
73
;
(7)
which we compute by integrating the likelihood profile for
the ratio of branching fractions over the positive range. It is
also consistent with the isospin expectation of
2
=
3
.
We are grateful for the excellent luminosity and machine
conditions provided by our PEP-II colleagues, and for the
substantial dedicated effort from the computing organiza-
tions that support
BABAR
. The collaborating institutions
wish to thank SLAC for its support and kind hospitality.
This work is supported by DOE and NSF (USA), NSERC
(Canada), CEA and CNRS-IN2P3 (France), BMBF and
DFG (Germany), INFN (Italy), FOM (The Netherlands),
NFR (Norway), MES (Russia), MICIIN (Spain), STFC
(United Kingdom). Individuals have received support
from the Marie Curie EIF (European Union), the A. P.
Sloan Foundation and the Binational Science Foundation.
[1] C. Amsler
et al.
(Particle Data Group),
Phys. Lett. B
667
,1
(2008)
.
[2] K. Abe
et al.
(Belle Collaboration),
Phys. Rev. Lett.
89
,
151802 (2002)
.
[3] B. Aubert
et al.
(
BABAR
Collaboration),
Phys. Rev. D
74
,
051101 (2006)
.
[4] B. Aubert
et al.
(
BABAR
Collaboration),
Phys. Rev. D
72
,
051101 (2005)
.
[5] W.-S. Hou and A. Soni,
Phys. Rev. Lett.
86
, 4247 (2001)
.
[6] Throughout this paper charge conjugate modes are always
]
2
) [GeV/c
0
π
+
c
Λ
m(
2.42
2.44
2.46
2.48
2.5
2.52
2.54
2.56
2.58
2.6
2
Events/ 5MeV/c
0
1
2
3
4
5
6
7
FIG. 5. Distribution of the invariant mass of the
þ
c
0
system
in the region where the
þ
c
ð
2455
Þ
resonance is expected; points
are for data with
m
ES
>
5
:
272 GeV
=c
2
, the curve shows the fit.
OBSERVATION OF THE DECAY
...
PHYSICAL REVIEW D
82,
031102(R) (2010)
RAPID COMMUNICATIONS
031102-7
implied.
[7] X. Fu
et al.
(CLEO Collaboration),
Phys. Rev. Lett.
79
,
3125 (1997)
.
[8] S. A. Dytman
et al.
(CLEO Collaboration),
Phys. Rev. D
66
, 091101 (2002)
.
[9] N. Gabyshev
et al.
(Belle Collaboration),
Phys. Rev. Lett.
97
, 242001 (2006)
.
[10] B. Aubert
et al.
(
BABAR
Collaboration),
Phys. Rev. D
78
,
112003 (2008)
.
[11] S. Agostinelli
et al.
(GEANT4 Collaboration),
Nucl.
Instrum. Methods Phys. Res., Sect. A
506
, 250 (2003)
.
[12] B. Aubert
et al.
(
BABAR
Collaboration),
Nucl. Instrum.
Methods Phys. Res., Sect. A
479
, 1 (2002)
.
[13] H. Albrecht
et al.
(ARGUS Collaboration),
Phys. Lett. B
241
, 278 (1990)
.
[14] B. Aubert
et al.
(
BABAR
Collaboration),
Phys. Rev. D
76
,
092006 (2007)
.
B. AUBERT
et al.
PHYSICAL REVIEW D
82,
031102(R) (2010)
RAPID COMMUNICATIONS
031102-8