Prospects for Observing and Localizing Gravitational-Wave
Transients with Advanced LIGO and Advanced Virgo
B. P. Abbott,
1
R. Abbott,
1
T. D. Abbott,
2
M. R. Abernathy,
1
F. Acernese,
3
,
4
K. Ackley,
5
C. Adams,
6
T. Adams,
7
P. Addesso,
8
R. X. Adhikari,
1
V. B. Adya,
9
C. Affeldt,
9
M. Agathos,
10
K. Agatsuma,
10
N. Aggarwal,
11
O. D. Aguiar,
12
A. Ain,
13
P. Ajith,
14
B. Allen,
9
,
15
,
16
A. Allocca,
17
,
18
P. A. Altin,
19
D. V. Amariutei,
5
S. B. Anderson,
1
W. G. Anderson,
15
K. Arai,
1
M. C. Araya,
1
C. C. Arceneaux,
20
J. S. Areeda,
21
N. Arnaud,
22
K. G. Arun,
23
G. Ashton,
24
M. Ast,
25
S. M. Aston,
6
P. Astone,
26
P. Aufmuth,
16
C. Aulbert,
9
S. Babak,
27
P. T. Baker,
28
F. Baldaccini,
29
,
30
G. Ballardin,
31
S. W. Ballmer,
32
J. C. Barayoga,
1
S. E. Barclay,
33
B. C. Barish,
1
D. Barker,
34
F. Barone,
3
,
4
B. Barr,
33
L. Barsotti,
11
M. Barsuglia,
35
D. Barta,
36
J. Bartlett,
34
I. Bartos,
37
R. Bassiri,
38
A. Basti,
17
,
18
J. C. Batch,
34
C. Baune,
9
V. Bavigadda,
31
M. Bazzan,
39
,
40
B. Behnke,
27
M. Bejger,
41
C. Belczynski,
42
A. S. Bell,
33
C. J. Bell,
33
B. K. Berger,
1
J. Bergman,
34
G. Bergmann,
9
C. P. L. Berry,
43
D. Bersanetti,
44
,
45
A. Bertolini,
10
J. Betzwieser,
6
S. Bhagwat,
32
R. Bhandare,
46
I. A. Bilenko,
47
G. Billingsley,
1
J. Birch,
6
R. Birney,
48
S. Biscans,
11
A. Bisht,
9
,
16
M. Bitossi,
31
C. Biwer,
32
M. A. Bizouard,
22
J. K. Blackburn,
1
C. D. Blair,
49
D. Blair,
49
R. M. Blair,
34
S. Bloemen,
10
,
50
O. Bock,
9
T. P. Bodiya,
11
M. Boer,
51
G. Bogaert,
51
C. Bogan,
9
A. Bohe,
27
P. Bojtos,
52
C. Bond,
43
F. Bondu,
53
R. Bonnand,
7
R. Bork,
1
V. Boschi,
18
,
17
S. Bose,
54
,
13
A. Bozzi,
31
C. Bradaschia,
18
P. R. Brady,
15
V. B. Braginsky,
47
M. Branchesi,
55
,
56
J. E. Brau,
57
T. Briant,
58
A. Brillet,
51
M. Brinkmann,
9
V. Brisson,
22
P. Brockill,
15
A. F. Brooks,
1
D. A. Brown,
32
D. D. Brown,
43
N. M. Brown,
11
C. C. Buchanan,
2
A. Buikema,
11
T. Bulik,
42
H. J. Bulten,
59
,
10
A. Buonanno,
27
,
60
D. Buskulic,
7
C. Buy,
35
R. L. Byer,
38
L. Cadonati,
61
G. Cagnoli,
62
C. Cahillane,
1
J. Calder ́on Bustillo,
63
,
61
T. Callister,
1
E. Calloni,
64
,
4
J. B. Camp,
65
K. C. Cannon,
66
J. Cao,
67
C. D. Capano,
9
E. Capocasa,
35
F. Carbognani,
31
S. Caride,
68
J. Casanueva Diaz,
22
C. Casentini,
69
,
70
S. Caudill,
15
M. Cavagli`a,
20
F. Cavalier,
22
R. Cavalieri,
31
G. Cella,
18
C. Cepeda,
1
L. Cerboni Baiardi,
55
,
56
G. Cerretani,
17
,
18
E. Cesarini,
69
,
70
R. Chakraborty,
1
T. Chalermsongsak,
1
S. J. Chamberlin,
15
M. Chan,
33
S. Chao,
71
P. Charlton,
72
E. Chassande-Mottin,
35
H. Y. Chen,
73
Y. Chen,
74
C. Cheng,
71
A. Chincarini,
45
A. Chiummo,
31
H. S. Cho,
75
M. Cho,
60
J. H. Chow,
19
N. Christensen,
76
Q. Chu,
49
S. Chua,
58
S. Chung,
49
G. Ciani,
5
F. Clara,
34
J. A. Clark,
61
F. Cleva,
51
E. Coccia,
69
,
77
P.-F. Cohadon,
58
A. Colla,
78
,
26
C. G. Collette,
79
M. Constancio Jr.,
12
A. Conte,
78
,
26
L. Conti,
40
D. Cook,
34
T. R. Corbitt,
2
N. Cornish,
28
A. Corsi,
80
S. Cortese,
31
C. A. Costa,
12
M. W. Coughlin,
76
S. B. Coughlin,
81
J.-P. Coulon,
51
S. T. Countryman,
37
P. Couvares,
1
D. M. Coward,
49
M. J. Cowart,
6
D. C. Coyne,
1
R. Coyne,
80
K. Craig,
33
J. D. E. Creighton,
15
J. Cripe,
2
S. G. Crowder,
82
A. Cumming,
33
L. Cunningham,
33
E. Cuoco,
31
T. Dal Canton,
9
S. L. Danilishin,
33
S. D’Antonio,
70
K. Danzmann,
16
,
9
N. S. Darman,
83
V. Dattilo,
31
I. Dave,
46
H. P. Daveloza,
84
M. Davier,
22
G. S. Davies,
33
E. J. Daw,
85
R. Day,
31
D. DeBra,
38
G. Debreczeni,
36
J. Degallaix,
62
M. De Laurentis,
64
,
4
S. Del ́eglise,
58
W. Del Pozzo,
43
T. Denker,
9
,
16
T. Dent,
9
H. Dereli,
51
V. Dergachev,
1
R. DeRosa,
6
R. De Rosa,
64
,
4
R. DeSalvo,
8
S. Dhurandhar,
13
M. C. D ́ıaz,
84
L. Di Fiore,
4
M. Di Giovanni,
78
,
26
A. Di Lieto,
17
,
18
I. Di Palma,
27
,
9
A. Di Virgilio,
18
G. Dojcinoski,
86
V. Dolique,
62
F. Donovan,
11
K. L. Dooley,
20
S. Doravari,
6
R. Douglas,
33
T. P. Downes,
15
M. Drago,
9
,
87
,
88
R. W. P. Drever,
1
J. C. Driggers,
34
Z. Du,
67
M. Ducrot,
7
S. E. Dwyer,
34
T. B. Edo,
85
M. C. Edwards,
76
A. Effler,
6
H.-B. Eggenstein,
9
P. Ehrens,
1
J. M. Eichholz,
5
S. S. Eikenberry,
5
W. Engels,
74
R. C. Essick,
11
T. Etzel,
1
M. Evans,
11
T. M. Evans,
6
R. Everett,
89
M. Factourovich,
37
V. Fafone,
69
,
70
,
77
H. Fair,
32
S. Fairhurst,
81
X. Fan,
67
Q. Fang,
49
S. Farinon,
45
B. Farr,
73
W. M. Farr,
43
M. Favata,
86
M. Fays,
81
H. Fehrmann,
9
M. M. Fejer,
38
I. Ferrante,
17
,
18
E. C. Ferreira,
12
F. Ferrini,
31
F. Fidecaro,
17
,
18
I. Fiori,
31
R. P. Fisher,
32
R. Flaminio,
62
M. Fletcher,
33
J.-D. Fournier,
51
S. Franco,
22
S. Frasca,
78
,
26
F. Frasconi,
18
Z. Frei,
52
A. Freise,
43
R. Frey,
57
T. T. Fricke,
9
P. Fritschel,
11
V. V. Frolov,
6
P. Fulda,
5
M. Fyffe,
6
H. A. G. Gabbard,
20
J. R. Gair,
90
L. Gammaitoni,
29
,
30
S. G. Gaonkar,
13
F. Garufi,
64
,
4
A. Gatto,
35
G. Gaur,
91
,
92
N. Gehrels,
65
G. Gemme,
45
B. Gendre,
51
E. Genin,
31
A. Gennai,
18
J. George,
46
L. Gergely,
93
V. Germain,
7
A. Ghosh,
14
S. Ghosh,
10
,
50
J. A. Giaime,
2
,
6
K. D. Giardina,
6
A. Giazotto,
18
K. Gill,
94
A. Glaefke,
33
E. Goetz,
68
R. Goetz,
5
L. Gondan,
52
G. Gonz ́alez,
2
1
arXiv:1304.0670v3 [gr-qc] 9 Feb 2016
J. M. Gonzalez Castro,
17
,
18
A. Gopakumar,
95
N. A. Gordon,
33
M. L. Gorodetsky,
47
S. E. Gossan,
1
M. Gosselin,
31
R. Gouaty,
7
C. Graef,
33
P. B. Graff,
65
,
60
M. Granata,
62
A. Grant,
33
S. Gras,
11
C. Gray,
34
G. Greco,
55
,
56
A. C. Green,
43
P. Groot,
50
H. Grote,
9
S. Grunewald,
27
G. M. Guidi,
55
,
56
X. Guo,
67
A. Gupta,
13
M. K. Gupta,
92
K. E. Gushwa,
1
E. K. Gustafson,
1
R. Gustafson,
68
J. J. Hacker,
21
B. R. Hall,
54
E. D. Hall,
1
G. Hammond,
33
M. Haney,
95
M. M. Hanke,
9
J. Hanks,
34
C. Hanna,
89
M. D. Hannam,
81
J. Hanson,
6
T. Hardwick,
2
J. Harms,
55
,
56
G. M. Harry,
96
I. W. Harry,
27
M. J. Hart,
33
M. T. Hartman,
5
C.-J. Haster,
43
K. Haughian,
33
A. Heidmann,
58
M. C. Heintze,
5
,
6
H. Heitmann,
51
P. Hello,
22
G. Hemming,
31
M. Hendry,
33
I. S. Heng,
33
J. Hennig,
33
A. W. Heptonstall,
1
M. Heurs,
9
,
16
S. Hild,
33
D. Hoak,
97
K. A. Hodge,
1
D. Hofman,
62
S. E. Hollitt,
98
K. Holt,
6
D. E. Holz,
73
P. Hopkins,
81
D. J. Hosken,
98
J. Hough,
33
E. A. Houston,
33
E. J. Howell,
49
Y. M. Hu,
33
S. Huang,
71
E. A. Huerta,
99
D. Huet,
22
B. Hughey,
94
S. Husa,
63
S. H. Huttner,
33
T. Huynh-Dinh,
6
A. Idrisy,
89
N. Indik,
9
D. R. Ingram,
34
R. Inta,
80
H. N. Isa,
33
J.-M. Isac,
58
M. Isi,
1
G. Islas,
21
T. Isogai,
11
B. R. Iyer,
14
K. Izumi,
34
T. Jacqmin,
58
H. Jang,
75
K. Jani,
61
P. Jaranowski,
100
S. Jawahar,
101
F. Jim ́enez-Forteza,
63
W. W. Johnson,
2
D. I. Jones,
24
R. Jones,
33
R.J.G. Jonker,
10
L. Ju,
49
Haris K,
102
C. V. Kalaghatgi,
23
V. Kalogera,
103
S. Kandhasamy,
20
G. Kang,
75
J. B. Kanner,
1
S. Karki,
57
M. Kasprzack,
2
,
22
,
31
E. Katsavounidis,
11
W. Katzman,
6
S. Kaufer,
16
T. Kaur,
49
K. Kawabe,
34
F. Kawazoe,
9
F. K ́ef ́elian,
51
M. S. Kehl,
66
D. Keitel,
9
D. B. Kelley,
32
W. Kells,
1
R. Kennedy,
85
J. S. Key,
84
A. Khalaidovski,
9
F. Y. Khalili,
47
S. Khan,
81
Z. Khan,
92
E. A. Khazanov,
104
N. Kijbunchoo,
34
C. Kim,
75
J. Kim,
105
K. Kim,
106
N. Kim,
75
N. Kim,
38
Y.-M. Kim,
105
E. J. King,
98
P. J. King,
34
D. L. Kinzel,
6
J. S. Kissel,
34
L. Kleybolte,
25
S. Klimenko,
5
S. M. Koehlenbeck,
9
K. Kokeyama,
2
S. Koley,
10
V. Kondrashov,
1
A. Kontos,
11
M. Korobko,
25
W. Z. Korth,
1
I. Kowalska,
42
D. B. Kozak,
1
V. Kringel,
9
B. Krishnan,
9
A. Kr ́olak,
107
,
108
C. Krueger,
16
G. Kuehn,
9
P. Kumar,
66
L. Kuo,
71
A. Kutynia,
107
B. D. Lackey,
32
M. Landry,
34
J. Lange,
109
B. Lantz,
38
P. D. Lasky,
110
A. Lazzarini,
1
C. Lazzaro,
61
,
40
P. Leaci,
27
,
78
,
26
S. Leavey,
33
E. Lebigot,
35
,
67
C. H. Lee,
105
H. K. Lee,
106
H. M. Lee,
111
K. Lee,
33
A. Lenon,
32
M. Leonardi,
87
,
88
J. R. Leong,
9
N. Leroy,
22
N. Letendre,
7
Y. Levin,
110
B. M. Levine,
34
T. G. F. Li,
1
A. Libson,
11
T. B. Littenberg,
103
N. A. Lockerbie,
101
J. Logue,
33
A. L. Lombardi,
97
J. E. Lord,
32
M. Lorenzini,
77
V. Loriette,
112
M. Lormand,
6
G. Losurdo,
56
J. D. Lough,
9
,
16
H. L ̈uck,
16
,
9
A. P. Lundgren,
9
J. Luo,
76
R. Lynch,
11
Y. Ma,
49
T. MacDonald,
38
B. Machenschalk,
9
M. MacInnis,
11
D. M. Macleod,
2
F. Maga ̃na-Sandoval,
32
R. M. Magee,
54
M. Mageswaran,
1
E. Majorana,
26
I. Maksimovic,
112
V. Malvezzi,
69
,
70
N. Man,
51
I. Mandel,
43
V. Mandic,
82
V. Mangano,
78
,
26
,
33
G. L. Mansell,
19
M. Manske,
15
M. Mantovani,
31
F. Marchesoni,
113
,
30
F. Marion,
7
S. M ́arka,
37
Z. M ́arka,
37
A. S. Markosyan,
38
E. Maros,
1
F. Martelli,
55
,
56
L. Martellini,
51
I. W. Martin,
33
R. M. Martin,
5
D. V. Martynov,
1
J. N. Marx,
1
K. Mason,
11
A. Masserot,
7
T. J. Massinger,
32
M. Masso-Reid,
33
F. Matichard,
11
L. Matone,
37
N. Mavalvala,
11
N. Mazumder,
54
G. Mazzolo,
9
R. McCarthy,
34
D. E. McClelland,
19
S. McCormick,
6
S. C. McGuire,
114
G. McIntyre,
1
J. McIver,
97
D. J. McManus,
19
S. T. McWilliams,
99
D. Meacher,
51
G. D. Meadors,
27
,
9
J. Meidam,
10
A. Melatos,
83
G. Mendell,
34
D. Mendoza-Gandara,
9
R. A. Mercer,
15
E. Merilh,
34
M. Merzougui,
51
S. Meshkov,
1
C. Messenger,
33
C. Messick,
89
P. M. Meyers,
82
F. Mezzani,
26
,
78
H. Miao,
43
C. Michel,
62
H. Middleton,
43
E. E. Mikhailov,
115
L. Milano,
64
,
4
J. Miller,
11
M. Millhouse,
28
Y. Minenkov,
70
J. Ming,
27
,
9
S. Mirshekari,
116
C. Mishra,
14
S. Mitra,
13
V. P. Mitrofanov,
47
G. Mitselmakher,
5
R. Mittleman,
11
A. Moggi,
18
M. Mohan,
31
S. R. P. Mohapatra,
11
M. Montani,
55
,
56
B. C. Moore,
86
C. J. Moore,
90
D. Moraru,
34
G. Moreno,
34
S. R. Morriss,
84
K. Mossavi,
9
B. Mours,
7
C. M. Mow-Lowry,
43
C. L. Mueller,
5
G. Mueller,
5
A. W. Muir,
81
Arunava Mukherjee,
14
D. Mukherjee,
15
S. Mukherjee,
84
A. Mullavey,
6
J. Munch,
98
D. J. Murphy,
37
P. G. Murray,
33
A. Mytidis,
5
I. Nardecchia,
69
,
70
L. Naticchioni,
78
,
26
R. K. Nayak,
117
V. Necula,
5
K. Nedkova,
97
G. Nelemans,
10
,
50
M. Neri,
44
,
45
A. Neunzert,
68
G. Newton,
33
T. T. Nguyen,
19
A. B. Nielsen,
9
S. Nissanke,
50
,
10
A. Nitz,
9
F. Nocera,
31
D. Nolting,
6
M. E. N. Normandin,
84
L. K. Nuttall,
32
J. Oberling,
34
E. Ochsner,
15
J. O’Dell,
118
E. Oelker,
11
G. H. Ogin,
119
J. J. Oh,
120
S. H. Oh,
120
F. Ohme,
81
M. Oliver,
63
P. Oppermann,
9
Richard J. Oram,
6
B. O’Reilly,
6
R. O’Shaughnessy,
109
C. D. Ott,
74
D. J. Ottaway,
98
R. S. Ottens,
5
H. Overmier,
6
B. J. Owen,
80
A. Pai,
102
S. A. Pai,
46
J. R. Palamos,
57
O. Palashov,
104
C. Palomba,
26
A. Pal-Singh,
25
H. Pan,
71
C. Pankow,
15
,
103
F. Pannarale,
81
B. C. Pant,
46
F. Paoletti,
31
,
18
A. Paoli,
31
M. A. Papa,
27
,
15
,
9
H. R. Paris,
38
W. Parker,
6
D. Pascucci,
33
A. Pasqualetti,
31
R. Passaquieti,
17
,
18
D. Passuello,
18
Z. Patrick,
38
B. L. Pearlstone,
33
M. Pedraza,
1
R. Pedurand,
62
L. Pekowsky,
32
A. Pele,
6
S. Penn,
121
R. Pereira,
37
A. Perreca,
1
M. Phelps,
33
O. Piccinni,
78
,
26
M. Pichot,
51
F. Piergiovanni,
55
,
56
V. Pierro,
8
G. Pillant,
31
L. Pinard,
62
I. M. Pinto,
8
M. Pitkin,
33
R. Poggiani,
17
,
18
A. Post,
9
J. Powell,
33
J. Prasad,
13
2
V. Predoi,
81
S. S. Premachandra,
110
T. Prestegard,
82
L. R. Price,
1
M. Prijatelj,
31
M. Principe,
8
S. Privitera,
27
G. A. Prodi,
87
,
88
L. Prokhorov,
47
M. Punturo,
30
P. Puppo,
26
M. P ̈urrer,
81
H. Qi,
15
J. Qin,
49
V. Quetschke,
84
E. A. Quintero,
1
R. Quitzow-James,
57
F. J. Raab,
34
D. S. Rabeling,
19
H. Radkins,
34
P. Raffai,
52
S. Raja,
46
M. Rakhmanov,
84
P. Rapagnani,
78
,
26
V. Raymond,
27
M. Razzano,
17
,
18
V. Re,
69
,
70
J. Read,
21
C. M. Reed,
34
T. Regimbau,
51
L. Rei,
45
S. Reid,
48
D. H. Reitze,
1
,
5
H. Rew,
115
F. Ricci,
78
,
26
K. Riles,
68
N. A. Robertson,
1
,
33
R. Robie,
33
F. Robinet,
22
A. Rocchi,
70
L. Rolland,
7
J. G. Rollins,
1
V. J. Roma,
57
J. D. Romano,
84
R. Romano,
3
,
4
G. Romanov,
115
J. H. Romie,
6
D. Rosi ́nska,
122
,
41
S. Rowan,
33
A. R ̈udiger,
9
P. Ruggi,
31
K. Ryan,
34
S. Sachdev,
1
T. Sadecki,
34
L. Sadeghian,
15
M. Saleem,
102
F. Salemi,
9
A. Samajdar,
117
L. Sammut,
83
E. J. Sanchez,
1
V. Sandberg,
34
B. Sandeen,
103
J. R. Sanders,
68
B. Sassolas,
62
B. S. Sathyaprakash,
81
P. R. Saulson,
32
O. Sauter,
68
R. L. Savage,
34
A. Sawadsky,
16
P. Schale,
57
R. Schilling
†
,
9
J. Schmidt,
9
P. Schmidt,
1
,
74
R. Schnabel,
25
R. M. S. Schofield,
57
A. Sch ̈onbeck,
25
E. Schreiber,
9
D. Schuette,
9
,
16
B. F. Schutz,
81
J. Scott,
33
S. M. Scott,
19
D. Sellers,
6
D. Sentenac,
31
V. Sequino,
69
,
70
A. Sergeev,
104
G. Serna,
21
Y. Setyawati,
50
,
10
A. Sevigny,
34
D. A. Shaddock,
19
S. Shah,
10
,
50
M. S. Shahriar,
103
M. Shaltev,
9
Z. Shao,
1
B. Shapiro,
38
P. Shawhan,
60
A. Sheperd,
15
D. H. Shoemaker,
11
D. M. Shoemaker,
61
K. Siellez,
51
X. Siemens,
15
D. Sigg,
34
A. D. Silva,
12
D. Simakov,
9
A. Singer,
1
L. P. Singer,
65
A. Singh,
27
,
9
R. Singh,
2
A. M. Sintes,
63
B. J. J. Slagmolen,
19
J. R. Smith,
21
N. D. Smith,
1
R. J. E. Smith,
1
E. J. Son,
120
B. Sorazu,
33
F. Sorrentino,
45
T. Souradeep,
13
A. K. Srivastava,
92
A. Staley,
37
M. Steinke,
9
J. Steinlechner,
33
S. Steinlechner,
33
D. Steinmeyer,
9
,
16
B. C. Stephens,
15
R. Stone,
84
K. A. Strain,
33
N. Straniero,
62
G. Stratta,
55
,
56
N. A. Strauss,
76
S. Strigin,
47
R. Sturani,
116
A. L. Stuver,
6
T. Z. Summerscales,
123
L. Sun,
83
P. J. Sutton,
81
B. L. Swinkels,
31
M. J. Szczepanczyk,
94
M. Tacca,
35
D. Talukder,
57
D. B. Tanner,
5
M. T ́apai,
93
S. P. Tarabrin,
9
A. Taracchini,
27
R. Taylor,
1
T. Theeg,
9
M. P. Thirugnanasambandam,
1
E. G. Thomas,
43
M. Thomas,
6
P. Thomas,
34
K. A. Thorne,
6
K. S. Thorne,
74
E. Thrane,
110
S. Tiwari,
77
V. Tiwari,
81
K. V. Tokmakov,
101
C. Tomlinson,
85
M. Tonelli,
17
,
18
C. V. Torres
‡
,
84
C. I. Torrie,
1
D. T ̈oyr ̈a,
43
F. Travasso,
29
,
30
G. Traylor,
6
D. Trifir`o,
20
M. C. Tringali,
87
,
88
L. Trozzo,
124
,
18
M. Tse,
11
M. Turconi,
51
D. Tuyenbayev,
84
D. Ugolini,
125
C. S. Unnikrishnan,
95
A. L. Urban,
15
S. A. Usman,
32
H. Vahlbruch,
16
G. Vajente,
1
G. Valdes,
84
N. van Bakel,
10
M. van Beuzekom,
10
J. F. J. van den Brand,
59
,
10
C. van den Broeck,
10
D. C. Vander-Hyde,
32
,
21
L. van der Schaaf,
10
M. V. van der Sluys,
10
,
50
J. V. van Heijningen,
10
A. A. van Veggel,
33
M. Vardaro,
39
,
40
S. Vass,
1
M. Vas ́uth,
36
R. Vaulin,
11
A. Vecchio,
43
G. Vedovato,
40
J. Veitch,
43
P. J. Veitch,
98
K. Venkateswara,
126
D. Verkindt,
7
F. Vetrano,
55
,
56
A. Vicer ́e,
55
,
56
S. Vinciguerra,
43
D. J. Vine,
48
J.-Y. Vinet,
51
S. Vitale,
11
T. Vo,
32
H. Vocca,
29
,
30
C. Vorvick,
34
W. D. Vousden,
43
S. P. Vyatchanin,
47
A. R. Wade,
19
L. E. Wade,
15
M. Wade,
15
M. Walker,
2
L. Wallace,
1
S. Walsh,
15
G. Wang,
77
H. Wang,
43
M. Wang,
43
X. Wang,
67
Y. Wang,
49
R. L. Ward,
19
J. Warner,
34
M. Was,
7
B. Weaver,
34
L.-W. Wei,
51
M. Weinert,
9
A. J. Weinstein,
1
R. Weiss,
11
T. Welborn,
6
L. Wen,
49
P. Weßels,
9
T. Westphal,
9
K. Wette,
9
J. T. Whelan,
109
,
9
D. J. White,
85
B. F. Whiting,
5
R. D. Williams,
1
A. R. Williamson,
81
J. L. Willis,
127
B. Willke,
16
,
9
M. H. Wimmer,
9
,
16
W. Winkler,
9
C. C. Wipf,
1
H. Wittel,
9
,
16
G. Woan,
33
J. Worden,
34
J. L. Wright,
33
G. Wu,
6
J. Yablon,
103
W. Yam,
11
H. Yamamoto,
1
C. C. Yancey,
60
M. J. Yap,
19
H. Yu,
11
M. Yvert,
7
A. Zadro ̇zny,
107
L. Zangrando,
40
M. Zanolin,
94
J.-P. Zendri,
40
M. Zevin,
103
F. Zhang,
11
L. Zhang,
1
M. Zhang,
115
Y. Zhang,
109
C. Zhao,
49
M. Zhou,
103
Z. Zhou,
103
X. J. Zhu,
49
M. E. Zucker,
11
S. E. Zuraw,
97
and J. Zweizig
1
(The LIGO Scientific Collaboration and the Virgo Collaboration)
†
Deceased, May 2015.
‡
Deceased, March 2015.
1
LIGO, California Institute of Technology, Pasadena, CA 91125, USA
2
Louisiana State University, Baton Rouge, LA 70803, USA
3
Universit`a di Salerno, Fisciano, I-84084 Salerno, Italy
4
INFN, Sezione di Napoli, Complesso Universitario di Monte S.Angelo, I-80126 Napoli, Italy
5
University of Florida, Gainesville, FL 32611, USA
6
LIGO Livingston Observatory, Livingston, LA 70754, USA
7
Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Universit ́e Savoie Mont Blanc,
CNRS/IN2P3, F-74941 Annecy-le-Vieux, France
8
University of Sannio at Benevento, I-82100 Benevento, Italy and INFN, Sezione di Napoli, I-80100
Napoli, Italy
9
Albert-Einstein-Institut, Max-Planck-Institut f ̈ur Gravitationsphysik, D-30167 Hannover, Germany
3
10
Nikhef, Science Park, 1098 XG Amsterdam, The Netherlands
11
LIGO, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
12
Instituto Nacional de Pesquisas Espaciais, 12227-010 S ̃ao Jos ́e dos Campos, SP, Brazil
13
Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India
14
International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore 560012,
India
15
University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
16
Leibniz Universit ̈at Hannover, D-30167 Hannover, Germany
17
Universit`a di Pisa, I-56127 Pisa, Italy
18
INFN, Sezione di Pisa, I-56127 Pisa, Italy
19
Australian National University, Canberra, Australian Capital Territory 0200, Australia
20
The University of Mississippi, University, MS 38677, USA
21
California State University Fullerton, Fullerton, CA 92831, USA
22
LAL, Univ. Paris-Sud, CNRS/IN2P3, Universit ́e Paris-Saclay, Orsay, France
23
Chennai Mathematical Institute, Chennai, India
24
University of Southampton, Southampton SO17 1BJ, United Kingdom
25
Universit ̈at Hamburg, D-22761 Hamburg, Germany
26
INFN, Sezione di Roma, I-00185 Roma, Italy
27
Albert-Einstein-Institut, Max-Planck-Institut f ̈ur Gravitationsphysik, D-14476 Potsdam-Golm, Germany
28
Montana State University, Bozeman, MT 59717, USA
29
Universit`a di Perugia, I-06123 Perugia, Italy
30
INFN, Sezione di Perugia, I-06123 Perugia, Italy
31
European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy
32
Syracuse University, Syracuse, NY 13244, USA
33
SUPA, University of Glasgow, Glasgow G12 8QQ, United Kingdom
34
LIGO Hanford Observatory, Richland, WA 99352, USA
35
APC, AstroParticule et Cosmologie, Universit ́e Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de
Paris, Sorbonne Paris Cit ́e, F-75205 Paris Cedex 13, France
36
Wigner RCP, RMKI, H-1121 Budapest, Konkoly Thege Mikl ́os ́ut 29-33, Hungary
37
Columbia University, New York, NY 10027, USA
38
Stanford University, Stanford, CA 94305, USA
39
Universit`a di Padova, Dipartimento di Fisica e Astronomia, I-35131 Padova, Italy
40
INFN, Sezione di Padova, I-35131 Padova, Italy
41
CAMK-PAN, 00-716 Warsaw, Poland
42
Astronomical Observatory Warsaw University, 00-478 Warsaw, Poland
43
University of Birmingham, Birmingham B15 2TT, United Kingdom
44
Universit`a degli Studi di Genova, I-16146 Genova, Italy
45
INFN, Sezione di Genova, I-16146 Genova, Italy
46
RRCAT, Indore MP 452013, India
47
Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
48
SUPA, University of the West of Scotland, Paisley PA1 2BE, United Kingdom
49
University of Western Australia, Crawley, Western Australia 6009, Australia
50
Department of Astrophysics/IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen,
The Netherlands
51
ARTEMIS, Universit ́e Cˆote d’Azur, CNRS and Observatoire de la Cˆote d’Azur, F-06304 Nice, France
52
MTA E ̈otv ̈os University, “Lendulet” Astrophysics Research Group, Budapest 1117, Hungary
53
Institut de Physique de Rennes, CNRS, Universit ́e de Rennes 1, F-35042 Rennes, France
54
Washington State University, Pullman, WA 99164, USA
55
Universit`a degli Studi di Urbino ’Carlo Bo’, I-61029 Urbino, Italy
56
INFN, Sezione di Firenze, I-50019 Sesto Fiorentino, Firenze, Italy
4
57
University of Oregon, Eugene, OR 97403, USA
58
Laboratoire Kastler Brossel, UPMC-Sorbonne Universit ́es, CNRS, ENS-PSL Research University, Coll`ege
de France, F-75005 Paris, France
59
VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
60
University of Maryland, College Park, MD 20742, USA
61
Center for Relativistic Astrophysics and School of Physics, Georgia Institute of Technology, Atlanta, GA
30332, USA
62
Laboratoire des Mat ́eriaux Avanc ́es (LMA), IN2P3/CNRS, Universit ́e de Lyon, F-69622 Villeurbanne,
Lyon, France
63
Universitat de les Illes Balears, IAC3—IEEC, E-07122 Palma de Mallorca, Spain
64
Universit`a di Napoli ’Federico II’, Complesso Universitario di Monte S.Angelo, I-80126 Napoli, Italy
65
NASA/Goddard Space Flight Center, Greenbelt, MD 20771, USA
66
Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, Ontario M5S 3H8,
Canada
67
Tsinghua University, Beijing 100084, China
68
University of Michigan, Ann Arbor, MI 48109, USA
69
Universit`a di Roma Tor Vergata, I-00133 Roma, Italy
70
INFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy
71
National Tsing Hua University, Hsinchu City, Taiwan 30013, R.O.C.
72
Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia
73
University of Chicago, Chicago, IL 60637, USA
74
Caltech CaRT, Pasadena, CA 91125, USA
75
Korea Institute of Science and Technology Information, Daejeon 305-806, Korea
76
Carleton College, Northfield, MN 55057, USA
77
INFN, Gran Sasso Science Institute, I-67100 L’Aquila, Italy
78
Universit`a di Roma ’La Sapienza’, I-00185 Roma, Italy
79
University of Brussels, Brussels 1050, Belgium
80
Texas Tech University, Lubbock, TX 79409, USA
81
Cardiff University, Cardiff CF24 3AA, United Kingdom
82
University of Minnesota, Minneapolis, MN 55455, USA
83
The University of Melbourne, Parkville, Victoria 3010, Australia
84
The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
85
The University of Sheffield, Sheffield S10 2TN, United Kingdom
86
Montclair State University, Montclair, NJ 07043, USA
87
Universit`a di Trento, Dipartimento di Fisica, I-38123 Povo, Trento, Italy
88
INFN, Trento Institute for Fundamental Physics and Applications, I-38123 Povo, Trento, Italy
89
The Pennsylvania State University, University Park, PA 16802, USA
90
University of Cambridge, Cambridge CB2 1TN, United Kingdom
91
Indian Institute of Technology, Gandhinagar Ahmedabad Gujarat 382424, India
92
Institute for Plasma Research, Bhat, Gandhinagar 382428, India
93
University of Szeged, D ́om t ́er 9, Szeged 6720, Hungary
94
Embry-Riddle Aeronautical University, Prescott, AZ 86301, USA
95
Tata Institute for Fundamental Research, Mumbai 400005, India
96
American University, Washington, D.C. 20016, USA
97
University of Massachusetts-Amherst, Amherst, MA 01003, USA
98
University of Adelaide, Adelaide, South Australia 5005, Australia
99
West Virginia University, Morgantown, WV 26506, USA
100
University of Bia lystok, 15-424 Bia lystok, Poland
101
SUPA, University of Strathclyde, Glasgow G1 1XQ, United Kingdom
102
IISER-TVM, CET Campus, Trivandrum Kerala 695016, India
5
103
Northwestern University, Evanston, IL 60208, USA
104
Institute of Applied Physics, Nizhny Novgorod, 603950, Russia
105
Pusan National University, Busan 609-735, Korea
106
Hanyang University, Seoul 133-791, Korea
107
NCBJ, 05-400
́
Swierk-Otwock, Poland
108
IM-PAN, 00-956 Warsaw, Poland
109
Rochester Institute of Technology, Rochester, NY 14623, USA
110
Monash University, Victoria 3800, Australia
111
Seoul National University, Seoul 151-742, Korea
112
ESPCI, CNRS, F-75005 Paris, France
113
Universit`a di Camerino, Dipartimento di Fisica, I-62032 Camerino, Italy
114
Southern University and A&M College, Baton Rouge, LA 70813, USA
115
College of William and Mary, Williamsburg, VA 23187, USA
116
Instituto de F ́ısica Te ́orica, University Estadual Paulista/ICTP South American Institute for
Fundamental Research, S ̃ao Paulo SP 01140-070, Brazil
117
IISER-Kolkata, Mohanpur, West Bengal 741252, India
118
Rutherford Appleton Laboratory, HSIC, Chilton, Didcot, Oxon OX11 0QX, United Kingdom
119
Whitman College, 280 Boyer Ave, Walla Walla, WA 9936, USA
120
National Institute for Mathematical Sciences, Daejeon 305-390, Korea
121
Hobart and William Smith Colleges, Geneva, NY 14456, USA
122
Institute of Astronomy, 65-265 Zielona G ́ora, Poland
123
Andrews University, Berrien Springs, MI 49104, USA
124
Universit`a di Siena, I-53100 Siena, Italy
125
Trinity University, San Antonio, TX 78212, USA
126
University of Washington, Seattle, WA 98195, USA
127
Abilene Christian University, Abilene, TX 79699, USA
February 10, 2016
Abstract
We present a possible observing scenario for the Advanced LIGO and Advanced Virgo
gravitational-wave detectors over the next decade, with the intention of providing infor-
mation to the astronomy community to facilitate planning for multi-messenger astronomy
with gravitational waves. We determine the expected sensitivity of the network to transient
gravitational-wave signals, and study the capability of the network to determine the sky location
of the source. We report our findings for gravitational-wave transients, with particular focus on
gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered
the most promising for multi-messenger astronomy. The ability to localize the sources of the
detected signals depends on the geographical distribution of the detectors and their relative
sensitivity, and 90% credible regions can be as large as thousands of square degrees when only
two sensitive detectors are operational. Determining the sky position of a significant fraction of
detected signals to areas of 5
deg
2
to 20
deg
2
will require at least three detectors of sensitivity
within a factor of
∼
2 of each other and with a broad frequency bandwidth. Should the third
LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave
signals will be localized to a few square degrees by gravitational-wave observations alone.
6
1 Introduction
Advanced LIGO (aLIGO) [
61
,
7
] and Advanced Virgo (AdV) [
25
,
23
,
24
] are kilometer-scale
gravitational-wave (GW) detectors that are expected to yield direct observations of GWs. In this
article we describe the currently projected schedule, sensitivity, and sky-localization accuracy for
the
GW
-detector network. We discuss the proposed sequence of observing runs (designated O1, O2,
O3, etc.) and the prospects for multi-messenger astronomy.
The purpose of this article is to provide information to the astronomy community to assist in the
formulation of plans for the upcoming era of
GW
observations. In particular, we intend this article
to provide the information required for assessing the features of programs for joint observation of
GW events using electromagnetic, neutrino, or other facilities.
The full science of aLIGO and AdV is broad [
10
], and is not covered in this article. We concentrate
solely on candidate
GW
transient signals. We place particular emphasis on the coalescence of
binary neutron-star (
BNS
) systems, which are the
GW
source for which electromagnetic follow-up
seems most promising. For more general introductory articles on
GW
generation, detection and
astrophysics, we point readers to [33, 87, 93].
Although our collaborations have amassed a great deal of experience with
GW
detectors and
analysis, it is still difficult to make predictions for both improvements in search methods and for
the rate of progress for detectors which are not yet fully installed or operational.
The scenarios of
LIGO and Virgo detector sensitivity evolution and observing times given here represent our best
estimates as of January 2016. They should not be considered as fixed or firm commitments.
As the detectors’ construction and commissioning progress, we intend to release updated versions
of this article. This is the second version of the article, written to coincide with the first observing
run (O1) of the advanced-detector era. Changes with respect to the first version [
3
] are given in
Appendix A. Progress has been made in the commissioning of the detectors, and the plausible
observing scenarios are largely the same; the predicted sky-localization accuracies have been updated
following improvements in parameter estimation.
7
2 Commissioning and Observing Phases
We divide the development of the aLIGO and AdV observatories into three components:
Construction
includes the installation and testing of the detectors. This phase ends with
accep-
tance
of the detectors. Acceptance means that the interferometers can lock for periods of
hours: light is resonant in the arms of the interferometer with
no guaranteed
GW
sensitivity.
Construction incorporates several short
engineering runs
with no astrophysical output as the
detectors progress towards acceptance. The aLIGO construction project ended (on time and
on budget) in March 2015. The acceptance of AdV is expected in the first part of 2016.
Commissioning
takes the detectors from their configuration at acceptance through progressively
better sensitivity to the design advanced-generation detector sensitivity. Engineering runs in
the commissioning phase allow us to understand our detectors and analyses in an observational
mode; these are not intended to produce astrophysical results, but that does not preclude
the possibility of this happening. Rather than proceeding directly to design sensitivity
before making astrophysical observations, commissioning is interleaved with
observing runs
of
progressively better sensitivity.
Observing
runs begin when the detectors have reached (and can stably maintain) a significantly
improved sensitivity compared with previous operation. It is expected that observing runs
will produce astrophysical results, including upper limits on the rate of sources and possibly
the first detections of
GW
s. During this phase, exchange of
GW
candidates with partners
outside the LIGO Scientific Collaboration (
LSC
) and the Virgo Collaboration will be governed
by memoranda of understanding (MOUs) [
18
,
9
]. After the first four detections, we expect
free exchange of
GW
event candidates with the astronomical community and the maturation
of GW astronomy.
The progress in sensitivity as a function of time will affect the duration of the runs that we
plan at any stage, as we strive to minimize the time to successful
GW
observations. Commissioning
is a complex process which involves both scheduled improvements to the detectors and tackling
unexpected new problems. While our experience makes us cautiously optimistic regarding the
schedule for the advanced detectors, we are targeting an order of magnitude improvement in
sensitivity relative to the previous generation of detectors over a wider frequency band. Consequently,
it is not possible to make concrete predictions for sensitivity or duty cycle as a function of time.
We can, however, use our experience as a guide to plausible scenarios for the detector operational
states that will allow us to reach the desired sensitivity. Unexpected problems could slow down the
commissioning, but there is also the possibility that progress may happen faster than predicted
here. As the detectors begin to be commissioned, information on the cost in time and benefit in
sensitivity will become more apparent and drive the schedule of runs. More information on event
rates, including the first detection, could also change the schedule and duration of runs.
In Section 2.1 we present the commissioning plans for the aLIGO and AdV detectors. A
summary of expected observing runs is in Section 2.2.
2.1 Commissioning and observing roadmap
The anticipated strain sensitivity evolution for aLIGO and AdV is shown in Figure 1. A standard
figure of merit for the sensitivity of an interferometer is the
BNS
range
R
BNS
: the volume- and
orientation-averaged distance at which a compact binary coalescence consisting of two 1
.
4
M
neutron stars gives a matched filter signal-to-noise ratio (
SNR
) of 8 in a single detector [
58
].
1
The
BNS
ranges for the various stages of aLIGO and AdV expected evolution are also provided in
Figure 1.
1
Another often quoted number is the
BNS
horizon
– the distance at which an optimally oriented and located
BNS
system would be observed with an
SNR
of 8. The horizon is a factor of 2
.
26 larger than the range [
58
,
14
,
13
].
8
Frequency/Hz
Strain noise amplitude/Hz
−
1
/
2
Advanced LIGO
Early (2015 – 16, 40 – 80 Mpc)
Mid (2016 – 17, 80 – 120 Mpc)
Late (2017 – 18, 120 – 170 Mpc)
Design (2019, 200 Mpc)
BNS-optimized (215 Mpc)
10
1
10
2
10
3
10
−
24
10
−
23
10
−
22
10
−
21
Frequency/Hz
Strain noise amplitude/Hz
−
1
/
2
Advanced Virgo
Early (2016–17, 20 – 60 Mpc)
Mid (2017–18, 60 – 85 Mpc)
Late (2018–20, 65 – 115 Mpc)
Design (2021, 130 Mpc)
BNS-optimized (145 Mpc)
10
1
10
2
10
3
10
−
24
10
−
23
10
−
22
10
−
21
Figure 1: aLIGO (
left
) and AdV (
right
) target strain sensitivity as a function of frequency. The
binary neutron-star (BNS) range, the average distance to which these signals could be detected,
is given in megaparsec. Current notions of the progression of sensitivity are given for early, mid
and late commissioning phases, as well as the final design sensitivity target and the
BNS
-optimized
sensitivity. While both dates and sensitivity curves are subject to change, the overall progression
represents our best current estimates.
The commissioning of aLIGO is well under way. The original plan called for three identical
4-
km
interferometers, two at Hanford (H1 and H2) and one at Livingston (L1). In 2011, the LIGO
Lab and IndIGO consortium in India proposed installing one of the aLIGO Hanford detectors (H2)
at a new observatory in India (LIGO-India) [
64
]. As of early 2015, LIGO Laboratory has placed
the H2 interferometer in long-term storage for possible use in India. Funding for the Indian portion
of LIGO-India is in the final stages of consideration by the Indian government.
Advanced LIGO detectors began taking sensitive data in August 2015 in preparation for the
first observing run. O1 formally began 18 September 2015 and ended 12 January 2016. It involved
the H1 and L1 detectors; the detectors were not at full design sensitivity. We aimed for a
BNS
range of 40 – 80
Mpc
for both instruments (see Figure 1), and both instruments were running with a
60 – 80
Mpc
range. Subsequent observing runs will have increasing duration and sensitivity. We aim
for a
BNS
range of 80 – 170
Mpc
over 2016 – 2018, with observing runs of several months. Assuming
that no unexpected obstacles are encountered, the aLIGO detectors are expected to achieve a
200
Mpc BNS
range circa 2019. After the first observing runs, circa 2020, it might be desirable to
optimize the detector sensitivity for a specific class of astrophysical signals, such as
BNS
s. The
BNS
range may then become 215
Mpc
. The sensitivity for each of these stages is shown in Figure 1.
As a consequence of the planning for the installation of one of the LIGO detectors in India, the
installation of the H2 detector has been deferred. This detector will be reconfigured to be identical
to H1 and L1 and will be installed in India once the LIGO-India Observatory is complete. The final
schedule will be adopted once final funding approvals are granted. If project approval comes soon,
site development could start in 2016, with installation of the detector beginning in 2020. Following
this scenario, the first observing runs could come circa 2022, and design sensitivity at the same
level as the H1 and L1 detectors is anticipated for no earlier than 2024.
The time-line for the AdV interferometer (V1) [
23
] is still being defined, but it is anticipated
that in 2016 AdV will join the aLIGO detectors in their second observing run (O2). Following an
early step with sensitivity corresponding to a
BNS
range of 20 – 60
Mpc
, commissioning is expected
to bring AdV to a 60 – 85
Mpc
in 2017 – 2018. A configuration upgrade at this point will allow the
9
range to increase to approximately 65 – 115
Mpc
in 2018 – 2020. The final design sensitivity, with a
BNS range of 130 Mpc, is anticipated circa 2021. The corresponding BNS-optimized range would
be 145 Mpc. The sensitivity curves for the various AdV configurations are shown in Figure 1.
The GEO 600 [
76
] detector will likely be operational in the early to middle phase of the AdV and
aLIGO observing runs, i.e. 2015 – 2017. The sensitivity that potentially can be achieved by GEO
in this time-frame is similar to the AdV sensitivity of the early and mid scenarios at frequencies
around 1
kHz
and above. GEO could therefore contribute to the detection and localization of
high-frequency transients in this period. However, in the
∼
100 Hz region most important for
BNS
signals, GEO will be at least 10 times less sensitive than the early AdV and aLIGO detectors, and
will not contribute significantly.
Japan has begun the construction of an advanced detector, KAGRA [
100
,
28
]. KAGRA is
designed to have a
BNS
range comparable to AdV at final sensitivity. We do not consider KAGRA
in this article, but the addition of KAGRA to the worldwide
GW
-detector network will improve
both sky coverage and localization capabilities beyond those envisioned here [96].
Finally, further upgrades to the LIGO and Virgo detectors, within their existing facilities (e.g.,
[
63
,
78
,
11
]) as well as future underground detectors (for example, the Einstein Telescope [
94
]) are
envisioned in the future. These affect both the rates of observed signals as well as the localizations
of these events, but this lies beyond the scope of this paper.
2.2 Envisioned observing schedule
Keeping in mind the important caveats about commissioning affecting the scheduling and length of
observing runs, the following is a plausible scenario for the operation of the LIGO–Virgo network
over the next decade:
2015 – 2016 (O1)
A four-month run (beginning 18 September 2015 and ending 12 January 2016)
with the two-detector H1L1 network at early aLIGO sensitivity (40 – 80 Mpc BNS range).
2016 – 2017 (O2)
A six-month run with H1L1 at 80 – 120 Mpc and V1 at 20 – 60 Mpc.
2017 – 2018 (O3)
A nine-month run with H1L1 at 120 – 170 Mpc and V1 at 60 – 85 Mpc.
2019+
Three-detector network with H1L1 at full sensitivity of 200
Mpc
and V1 at 65 – 115
Mpc
.
2022+
H1L1V1 network at full sensitivity (aLIGO at 200
Mpc
, AdV at 130
Mpc
), with other
detectors potentially joining the network. Including a fourth detector improves sky localiza-
tion [
72
,
109
,
79
,
91
], so as an illustration we consider adding LIGO-India to the network.
2022 is the earliest time we imagine LIGO-India could be operational, and it would take
several more years for it to achieve full sensitivity.
This time-line is summarized in Figure 2. The observational implications of this scenario are
discussed in Section 4.
10