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Phenotype robustness, defined as the average mutational robustness of all the
genotypes that map to a given phenotype, plays a key role in facilitating neu-
tral exploration of novel phenotypic variation by an evolving population. By
applying results from coding theory, we prove that the maximum phenotype
robustness occurs when genotypes are organized as bricklayer’s graphs,
so-called because they resemble the way in which a bricklayer would fill in
a Hamming graph. The value of the maximal robustness is given by a fractal
continuous everywhere but differentiable nowhere sums-of-digits function
from number theory. Interestingly, genotype–phenotype maps for RNA
secondary structure and the hydrophobic-polar (HP)model for protein folding
can exhibit phenotype robustness that exactly attains this upper bound. By
exploiting properties of the sums-of-digits function, we prove a lower bound
on the deviation of the maximum robustness of phenotypes with multiple
neutral components from the bricklayer’s graph bound, and show that
RNA secondary structure phenotypes obey this bound. Finally, we show
how robustness changes when phenotypes are coarse-grained and derive a
formula and associated bounds for the transition probabilities between
such phenotypes.
1. Introduction
A single genotype is a collection of biological information. It can be encoded by a
sequence of DNA or RNA or in a more coarse-grained way, for example, in the
weights of a gene regulatory network. A genotype is mapped to a phenotype,
which is a biologically observed output, trait or behaviour, via a genotype–phe-
notype (GP) map [1–3]. Examples include four letter RNA sequences and 20
letter protein sequences that can be mapped to their physical folded states,
and gene-regulatory networks, which can, for example, be described by Boo-
lean networks [4] where a set of weights represent the gene interaction
strengths.
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Because many mutations are effectively neutral there will
typically be many more genotypes than phenotypes; for
instance, in the RNA secondary structure GP map, for nucleo-
tide sequences of length L, there are approximately 1.8L

phenotypes while there are exactly 4L genotypes [5]. The set
of all genotypes that map to a given phenotype is called a
neutral set, or sometimes also a neutral network. It plays an
important role in shaping the way that novel variation
arises in evolutionary dynamics. Properties of neutral sets
have been extensively studied [1–4,6–26]. A number of key
features of neutral sets are shared across GP maps [2,3,19].
For example, the size of the neutral sets for different pheno-
types typically vary over many orders of magnitude, with a
small fraction of the phenotypes taking up the majority of
genotypes. Such phenotype bias can strongly affect
evolutionary outcomes [15,18,26–32].

Another important shared trait is that neutral sets are
typically highly connected by point mutations due to a
high average mutational robustness, meaning that they are
likely to be fully connected, or percolate. This property
hugely enhances the probability that a neutral set can be
traversed by single mutational steps, allowing a much
larger set of alternative phenotypes to be accessible than
one could reach from a single genotype. In this way,
enhanced robustness can lead to enhanced evolvability,
which is the ability to discover new phenotypes [10,33]. In
some cases, the neutral set is split into smaller component
networks which are disconnected, for example due to bio-
physical constraints [8,11,34]. Then it is not the full neutral
set, but rather each neutral component that percolates and
is easily traversed via point mutations.

The property that we will focus on in this paper is the
mutational robustness ρp of a phenotype p, defined as
the average probability that a single character mutation of a
genotype mapping to phenotype p does not change the
phenotype p. Typically larger neutral sets have higher robust-
ness. For the (3-non-crossing [35]) RNA sequence-to-
secondary structure GP map, it has been shown that the
distribution of robustness found upon random sampling of
sequences accurately predicts the distribution of robustnesses
for functional or non-coding RNAs found in nature [36],
although for very short strands, naturally occurring RNA
are marginally more robust [26]. In other words, for
this system, the structure of GP map appears to largely deter-
mine the mutational robustness found in nature. Thus
studying these more abstract mathematical features of the
GP map may directly lead to predictions about naturally
occurring phenotypes.

To study ρp in a mathematically convenient way, we will
use the language of graphs. The entire set of kℓ possible
sequences in a GP map with input sequences of length ℓ
drawn from an alphabet of k characters is representable as
a generalization of a hypercube graph called a Hamming
graph Hℓ,k. Each sequence maps onto a vertex, and two
vertices are connected by an edge in Hℓ,k only if the corre-
sponding sequences differ by a single character. The neutral
set of all genotypes mapping to phenotype p define a
vertex set V(Gp) on a vertex-induced subgraph (or neutral
set) Gp in Hℓ,k. In other words, each vertex represents one
of the genotypes in the neutral set. Similarly, the edge set
E(Gp) is defined as the set of all edges between vertices in
Gp, and represents genotypes that are connected by neutral
mutations. The robustness can now be defined as the average
degree of Gp divided by ℓ(k− 1) such that it is normalized to
0≤ ρp≤ 1. Using the relationship between the average degree
and the edge-to-vertex ratio, we have a graph-theoretic
definition of robustness ρ(Gp) of the neutral set Gp

rðGpÞ ¼
2jEðGpÞj

‘ðk � 1ÞjVðGpÞj : ð1:1Þ

In other words, this definition of the robustness scales
with the average number of edges per vertex, normalized
so that it is equal to the fraction of possible mutations in
the neutral set that are neutral. Relatively high phenotype
robustness is important because high robustness has been
shown to facilitate navigability of fitness landscapes [37]. To
a good approximation, if the frequency of a phenotype p is
above the threshold fp > 1/[ℓ(k− 1)], then the graph Gp, or
equivalently, the neutral set or neutral component, should
percolate [19], resulting in very high robustness. Even
under the assumption of random GP pairings, above the per-
colation threshold, the number of neutral components within
a neutral set is expected to drop precipitously, and the size of
the largest neutral component is expected to sharply increase
[19], both of which suggest a highly connected neutral
component and thereby high robustness.

A null expectation of the robustness predicts that the
probability of a mutation being neutral should scale as

rp � fp (random null model), ð1:2Þ

where the frequency fp≡|V(Gp)|/k
ℓ is equal to the probability

of obtaining p when choosing a genotype at random. This
scaling holds when genotypes are completely uncorrelated as
they would be in a random null model [19] where genotypes
are randomly attributed to phenotypes under the constraint
that the neutral set sizes are kept fixed. For the typically
strong phenotype bias observed in GP maps, this scaling
implies that many phenotypes will have a robustness that is
too small to allow neutral set graphs to percolate.

However, empirical studies of robustness have consist-
ently shown a log-linear relationship with the frequency of
a phenotype

rp � 1þ logk fp
‘

� fp (empirical), ð1:3Þ

for a wide range of GP maps in biology, as well as for
similar input–output maps in computer science and physics
[2,3,16–25]. The empirically measured robustness is orders
of magnitude higher than what is predicted by the random
null model. There must therefore be strong correlations
between the genotypes mapping to a particular phenotype
[19]. One important biological consequence of this empiri-
cally measured higher robustness is that, typically, a large
fraction of all neutral set graphs in a GP map should
percolate, leading to enhanced evolvability.

These empirical results also raise an interesting question
that will be the main focus of this paper, namely What is the
upper bound on robustness, and how close are physical GP maps
to this bound? Here, we prove, by applying concepts from
coding theory harking back to the 1960s [38,39], that a par-
ticular type of graph called bricklayer’s graphs [40] are
maximally robust.

We then derive explicit expressions for the maximum
robustness of bricklayer’s graphs, which by extension gives
a maximum on the possible robustness of neutral sets.
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These expressions are closely related to the well-known sums-
of-digits function from number theory. The dominant term
scales as 1 + logk fp/ℓ, which resembles the empirical scaling
of equation (1.3). Next, we numerically confirm that many
individual neutral components for the RNA sequence-to-
secondary structure GP maps and the hydrophobic-polar
(HP) protein folding GP map introduced by Dill [41] can
attain the bricklayer’s graph bound exactly.

We prove that if a full neutral set is made up of several
neutral components, then the maximal attainable robustness
will be below the maximum given by a bricklayer’s graph.
By deriving a new property of the sums-of-digits function,
we are able to calculate a lower bound on the robustness
of a neutral set made up of multiple connected neutral com-
ponents. We show numerically that the RNA GP map obeys
this lower bound.

Lastly, we consider the coarse-graining of phenotypes. We
show how robustness and transition probabilities change
when multiple phenotypes are combined into compound
phenotypes, and use our equations to explain some results
about the robustness of these compound phenotypes.
30169
2. Bricklayer’s graphs have maximum robustness
The term ‘bricklayer’s graph’ was coined by Reeves et al. [40]
in an interesting paper where they studied the principal
eigenvalue of the subgraph, which is a different measure of
phenotype robustness because it also takes into account
population structure at steady state [42]. The name arises
because they are constructed by repeatedly adding an adja-
cent vertex in the Hamming graph in a manner resembling
the process of laying bricks. While these particular graphs
have a much older origin in coding theory, we will use this
more recent nomenclature throughout this work. Bricklayer’s
graphs are formally defined as follows:

Definition 2.1. Consider a Hamming graph Hℓ,k in which all
kℓ vertices are labelled with integers 0 to kℓ− 1 according to
each integer’s base-k representation, and two vertices are
connected by an edge if the base-k representations differ
by exactly one character. A bricklayer’s graph Gn,k is an
induced subgraph of a Hamming graph Hℓ,k containing the
first |V(Gn,k)| = n vertices, labelled from {0, 1,…, n− 1}.

From our definition of the robustness (1.1), it follows that
maximizing robustness for a given number of vertices V(G)
(the size of graphG that represents the neutral set) is equivalent
to maximizing the number of edges of the equivalent graph.
Finding the subgraph G with a fixed number of vertices of a
Hamming graph Hℓ,k that maximizes the number of edges
(and robustness) is equivalent to minimizing the ‘edge bound-
ary’ of the subgraph, i.e. minimizing the number of edges {u, v}
which connect a subgraph vertex u∈V(G) to a vertex outside
the subgraph v [ VðH‘,k n GÞ. This is known as the ‘edge-
isoperimetric problem’ for the Hamming graph. This problem
is connected to coding theory because, for example, it was
effectively proven in [38,39] that if the vertices of a bricklayer’s
graph (which they referred to as a vertex numbering which
maximizes ‘connectedness’, similar to robustness) represent
the set of k-ary sequences that map to a particular codeword
being transmitted, then this set of sequences minimizes the
number of single-site mutations that would cause an incorrect
transmission of the codeword, averaged over all the sequences
mapping to that codeword. This is akin to maximizing muta-
tional robustness, which measures the average number of
pointmutations that do not change the phenotype, in biological
systems. More specifically, Harper [38] showed that brick-
layer’s graphs attain the maximum bound for the k = 2 case,
and Graham [43] and Hart [44] calculated the exact
value of the bound for k = 2, namely |E(G)|≤ S2(n), where
SkðnÞ ¼

Pn�1
i¼0 skðiÞ is formulated in terms of sk(i), the sum of

all digits in the base-k representation of the integer i. We will
call Sk(n) the sums-of-digits function.

Importantly for this study, Lindsey [39] generalized the
work of Harper [38] to prove that bricklayer’s graphs (not
necessarily uniquely) attain the maximum bound for all k≥ 2
although he did not calculate the value of the bound. No
other graph can have a robustness higher than a bricklayer’s
graph, although some graphs may attain the same robustness.
3. Robustness of bricklayer’s graphs
3.1. Exact robustness/number of edges
To exactly calculate the maximum robustness, we first need
to prove a theorem about the maximum number of edges
of a bricklayer’s graph.
Theorem 3.1. A bricklayer’s graph Gn,k(V, E) with n vertices has
jEj ¼ SkðnÞ ¼

Pn�1
i¼0 skðiÞ edges, where sk(i) is the sum of all digits

in the base-k representation of the integer i, and Sk(n) is the sums-
of-digits function.

Proof. See appendix A. ▪

This theorem generalizes the proof by Graham [43] and
Hart [44] for all k≥ 2, and improves on the bound given by
Squier et al. [45]. A graphical example of the theorem and
the relationship between the coding/graph theory and
number theory perspectives are shown in figure 1.

To calculate the upper bound on robustness, we therefore
need to work out the properties of the sums-of-digits func-
tion. As far back as 1940, Bush [46] already showed that the
asymptotic behaviour (for large n) of the sums-of-digits func-
tion scaled as Sk(n)∼ (n/2)(k− 1)logk n. An exact analytical
form for k = 2 was given by Trollope in 1968 [47] and later
generalized by Delange in 1975 for all k [48] as

SkðnÞ ¼ n
2
[ðk � 1Þ logk n� gk(kflogk ng�1)], ð3:1Þ

where {x} denotes the fractional part of x, and

gkðxÞ ¼ ðk � 1Þ logk xþ
DkðxÞ
x

, ð3:2Þ

where Dk(x) is the Delange function (using the modified defi-
nition in [49]) given by

DkðxÞ ¼
X1
n¼0

Dk,0ðknxÞ
kn

and Dk,0ðxÞ ¼
ðx
0
dtð2k½t� � 2½kt� þ k � 1Þ,

9>>>>=
>>>>;

ð3:3Þ

where [x] is the integer part of x. For k = 2, the Delange func-
tion Dk(x) is the same as the continuous everywhere,
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Figure 1. Schematic to illustrate the coding theory/graph theory perspective on the maximum robustness for an induced subgraph of the Hamming graph. (Top) By
considering the Hamming graph’s vertices as binary sequences, sequences that differ by exactly one character are connected by an edge. Robustness is proportional
to the edge-to-vertex ratio, see equation (1.1). (Top, left) Hamming graph for binary sequences (k = 2) of length ℓ = 3, (top, middle) the ‘bricklayer’s graph’ [40]
representation of the (top, right) neutral network with maximal robustness for n = 5 vertices. (Bottom) Table showing the maximal number of edges for different
numbers of vertices, together with an example of a bricklayer graph. In theorem 3.1, |E| = Sk(n) for k = 2, making a direct connection between number theory and
the maximal number of edges, which is calculated by adding up the digits of the base-k representations of the integers 0 to n− 1, which are listed in the white
rows of the table.
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Figure 2. A linear-log plot of the bricklayer’s graphs’ robustness rmaxp for n
vertices, given by equation (3.6), versus frequency (number of vertices n
divided by kℓ), where ℓ = 6 and k = 2. Each blue dot denotes a possible
neutral set size. The green line denotes the continuous everywhere but dif-
ferentiable nowhere ‘blancmange-like curve’ (here k = 2, so one component
of this line is exactly equivalent to the Tagaki curve [50]) that is given by the
continuous np version of equation (3.6), corresponding to rmaxp . The upper
and lower bounds on rmaxp , given by equation (3.8), are also plotted.
The upper bound is equivalent to the simple form ρp = ℓ−1logk np =
1 + logk( fp)/ℓ. Plots like this, containing the exact maximum robustness
as well as the upper and lower bounds, can be generated with our free,
open-source web tool RoBound Calculator [52].
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differentiable nowhere Takagi function first described in 1903
[50]. The fractal Takagi function is sometimes called the
Blancmange function, because it resembles the blancmange
dessert. It has many applications, including but not limited
to mathematical analysis, probability theory and number
theory [51]. The general sums-of-digits function has also
interesting connections to many fields, and in particular to
number theory. For example, Delange [48] famously
showed that the Fourier series coefficients {cn} of gk(k

{x}−1)
(which is periodic in x with a period of one) are defined by

gk(kfxg�1) ¼
X
n[Z

cn e{2pnx ð3:4Þ

with

cn ¼ {
k � 1
np

1þ {2np
log k

� ��1

z
{2np
log k

� �
, ð3:5Þ

which are linked to ζ, the Riemann zeta function.
Combining our expression for phenotype robustness (1.1)

with theorem 3.1 and equation (3.1) provides an expression
for the maximum phenotype robustness for a neutral set of
size np = |V(Gp)|

rmax
p ¼ 2SkðnpÞ

np‘ðk � 1Þ ¼
logk np

‘
� gk(kflogk npg�1)

‘ðk � 1Þ : ð3:6Þ

This upper bound is optimal because we can always con-
struct a bricklayer’s graph with np vertices. The maximum
robustness is plotted in figure 2, and exhibits the expected
blancmange-like self-similar form. Since the frequency fp =
np/k

ℓ, the first term reproduces the empirically observed scal-
ing of equation (1.3), namely ρp≈ ℓ−1log k np = 1 + logk( fp)/ℓ,
which upperbounds the exact robustness in figure 2.
3.2. Bounds on neutral set robustness
It would be useful to find simpler expressions to bound the
maximum robustness. Indeed, Galkin & Galkina [49] specify
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the bound

Ak � SkðnÞ
n

� k � 1
2

logk n � 0, ð3:7Þ

in terms of a constantAk that only depends on the alphabet size
k. This implies that the robustness of a bricklayer’s graph, or
equivalently the maximum robustness of a neutral set of size
n from equation (3.6) is bounded below and above by

logk n
‘

þ 2Ak

ðk � 1Þ‘ � rmax
n � logk n

‘
: ð3:8Þ

In other words, the empirical scaling (1.3) is a strict upper
bound to the robustness, and it also provides a lower bound
up to terms that scale with Oð1=‘Þ. We have created a free,
open-source web tool called RoBound Calculator using
Google Colaboratory which can generate, for specified k and
ℓ, exact values and continuous interpolations of the brick-
layer’s graph robustness rmax

n , as well as the upper and lower
bounds from equation (3.8). RoBound Calculator is available
at [52], and several example plots from this tool are provided
in appendix C.

There is no short formula to calculate Ak, but Galkin &
Galkina [49] have found an exact, though fairly involved,
algorithm to determine Ak. For k = 2, A2 = log4 3−
1≈−0.2075; for k = 3, A3 = log3 2− 1≈−0.3691 and for k = 4,
A4 = (3/4)log2 5− (9/4)≈−0.5086 (biologically relevant, as
DNA/RNA have k = 4). Additional biologically relevant
values of k can be calculated using their algorithm. For
instance, proteins have k = 20 amino acids comprising
their primary sequence, and we can use the algorithm to
find that A20 ¼ ð19 logð84=23Þ=logð400ÞÞ � 355

46 � �3:6097.
Moreover, as k→∞,

Ak ¼ � k
2

1� log log k
log k

þO 1
log k

� �� �
: ð3:9Þ

Finally, note that the correction term 2Ak/((k− 1)ℓ) that
appears on the left-hand side of the equation (3.8) is
typically quite small compared with the scale of the typical
values of ρp found for neutral components of these systems.
For instance, this correction term has the value −0.0283 for
RNA12, and −0.0226 for RNA15. Equation (3.8) is therefore
typically a tight bound (see also figure 2). Thus, the maxi-
mum robustness can be quite reasonably approximated by
simple rmax

p � logkðnpÞ=‘ ¼ 1þ logkðfpÞ=‘ form.
4. Neutral components of biological genotype–
phenotype maps can attain the bricklayer’s
graph bound

We next turn to the question of how close the neutral com-
ponents of physical GP maps are to the upper bound (3.6).
We study the RNA (length 12 and 15) secondary structure
models with all four nucleotides (ACUG) as well as the HP
protein folding models (length 24, and 5 × 5 lattice). The
RNA and HP simulation data were obtained from prior
work [19].

A neutral set for a phenotype may not fully percolate, but
it can be broken into multiple neutral components of various
sizes that do percolate [19] (though some phenotypes may
have only a single component). By definition, a neutral
component has no single mutation connections to any other
neutral component of that same phenotype’s neutral set.

In figure 3, the robustness values of each neutral com-
ponent in the RNA12, RNA15, HP24 and HP5 × 5 models
are plotted against the logarithm of the number of vertices
in that neutral component. For all of the systems studied,
many neutral components over several orders of magnitude
of phenotype frequencies fp exactly attain the same robustness
as bricklayer’s graphs. Typically, this is more common for
smaller than for larger neutral components. In the HP
model GP maps, the size of the largest neutral components
that still reach the bricklayer’s graph line have fewer vertices
than the same for RNA secondary structure GP maps. This is
probably due to the architecture of the GP maps themselves;
it has been shown recently [53] that neutral components are
often modular in that they consist of highly packed clusters
of vertices which are then connected to other clusters by a
smaller set of linking vertices. We speculate that in the HP
model GP map there may be higher modularity, leading to
less-than-maximally robust neutral components above a lower
threshold. It is alsoworthmentioning that theRNAandHP sys-
tems examined here are fairly small in length because it is
computationally quite expensive to exhaustively check the neu-
tral components for much larger sequence lengths.

Figure 3 also depicts the minimum robustness of each
fully connected neutral component Gi

rminðGiÞ ¼ 2
‘ðk � 1Þ 1� 1

jVðGiÞj
� �

: ð4:1Þ

The above formula follows from the fact that a neutral com-
ponent, by definition, is connected, and the minimum
number of edges in a connected graph with n vertices is n− 1.
This minimum value can be attained by many graphs, includ-
ing the path graph Pn and star graph K1,n. This is also the
robustness that individual phenotypes/outputs have for the
one-dimensional Edwards–Anderson spin glass input–output
map [25]. Note that the null-model for robustness, ρp≈ fp
includes many disconnected components, and so can be
much lower than equation (4.1), which holds for a fully con-
nected component. The RoBound Calculator tool [52] we have
introduced also calculates and plots the ρmin curve as well.

The strict upper bound (3.6) is close to empirical scaling
(1.3) observed for many GP maps, and quite far from the
naive scaling ρp≈ fp. Since the actual robustness cannot be
higher than the bound, this suggests that, at least on the scale
given by fp, physical GP maps exhibit a robustness that is
close to the maximum value attainable. This empirical obser-
vation raises interesting theoretical questions because the
upper bound is not imposed by the specific properties of an
individual GP map (biological or not); rather, the robustness
is bounded above due to very general mathematical properties
of the Hamming graph underlying the GP map.
5. Robustness of full neutral sets and the
bricklayer’s bound

A bricklayer’s graph is maximally dense in its edge-to-vertex
ratio; it must certainly be fully connected. Therefore, if a neu-
tral set is not fully connected, and thus broken down into
neutral components, then the full phenotype robustness ρp
must deviate from this optimum, even if the robustness of
each of its components attains the optimal bound.
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vertices randomly selected to form a neutral network in the random null model. The data for these curves can be generated by using the RoBound Calculator [52]
tool we have introduced. The natural GP maps all contain neutral components which attain the bricklayer’s graph bound (as well as some very low robustness
components that attain the minimum bound). The unfolded (trivial) phenotype is omitted from each of these plots. The minimum robustness appears to be larger
than the bricklayer’s graph line for low frequencies; but, this only happens for non-integer values of the number of vertices. Of course, any graph will have an
integer number of vertices; in all of those cases, the bricklayer’s graph robustness will be greater than or equal to the minimum robustness.
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To calculate a bound on how much phenotypes broken
down into neutral components deviate from the optimal
robustness, we consider a neutral set that has n vertices and
is split into m neutral components. If each neutral component
is maximally robust (as many of the RNA/HP neutral
components are), then each robustness would be

rðGni ,kÞ ¼
2SkðniÞ

ni‘ðk � 1Þ , 1 � i � m, ð5:1Þ

where n ¼Pm
i¼1 ni, with ni being the number of vertices in the

ith neutral component. In other words, the total robustness ρp
for this specific case of a neutral set made up of bricklayer’s
graph components is simply a frequency-weighted sum of
the robustnesses of the individual neutral components

rmp ¼ ð1=nÞ
Xm
i¼1

nirðGni ,kÞ � rmax
p , ð5:2Þ

where the last inequality simply follows from the fact that rmax
p is

the strict upper boundon robustness,which canonlybeobtained
when the entire neutral set only has one single component.

To calculate a more accurate bound, we first prove an
interesting property of the sums-of-digits function Sk(n),
generalizing the proof by Graham [43], who proved the fol-
lowing for k = 2, which we now prove for general k

Theorem 5.1. For k non-negative integers {n1, n2,…, nk} obeying
0≤ n1≤ n2≤ · · ·≤ nk, the following property of the sums-of-digits
function holds:

Xk
i¼1

SkðniÞ þ
Xk�1

i¼1

ðk � iÞni � Sk
Xk
i¼1

ni

 !
ð5:3Þ

Proof. See appendix A. ▪

Theorem 5.1 is not only an interesting property of the sums-
of-digits function which may be useful in coding theory, but it
also can be used to provide, for the specific case that there are
exactly k neutral components, a tight bound

rðGn,kÞ � 1
n

Xk
i¼1

nirðGni ,kÞ
 !

� 2
n‘ðk � 1Þ

Xk�1

i¼1

ðk � iÞni ð5:4Þ

on the difference between themaximumphenotype robustness
for a fully connected neutral set of size n, given by equation
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Figure 4. Plot of left-hand side (ordinate) and right-hand side (abscissa) of equation (5.5) for physical phenotype data for RNA12 and RNA15 from our dataset from
[19]. Green plot points represent phenotypes with ≤k = 4 neutral components; the theoretical bound in equation (5.5) rigorously holds for these phenotypes.
Magenta plot points have greater than 4 neutral components; despite the fact that the bound should not rigorously hold for such phenotypes, it still does
seem to approximately hold for many phenotypes, or at least many plot points lie close to the dashed line.
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(6.1) and rkp ¼ ð1=nÞPk
i¼1 nirðGni ,kÞ, the robustness of a neutral

set consisting of k bricklayer’s graphs as neutral components.
A further generalization and discussion of this formula is
provided in §6.

The assumption that the neutral components are brick-
layer’s graphs is not necessary, however. Weakening this
assumption to assume that each neutral component has
an arbitrary topology simply weakens the tightness of the
bound. For an arbitrary neutral componentAni with ni vertices,
rðAniÞ � rðGni ,kÞ, so

rðGn,kÞ � 1
n

Xk
i¼1

nirðAniÞ
 !

� 2
n‘ðk � 1Þ

Xk�1

i¼1

ðk � iÞni: ð5:5Þ

It is important to note that this inequality has been proven
to hold only when the number of neutral components is
less than or equal to k. Indeed, it does hold perfectly for the
biological RNA neutral component/phenotype robustness
data from our dataset from [19]. In figure 4, each plot point
represents a phenotype, and the vertical axis coordinate is
given by the log of the left-hand side of equation (5.5), which
is (the log of) the difference in the optimal number of edges
and the actual number of edges for that phenotype. The
horizontal axis coordinate is given by the log of the right-
hand side of equation (5.5), which is a theoretical bound
computed from the frequencies of the neutral components for
that phenotype. The figure 4a shows actual RNA12 phenotype
data, and figure 4b RNA 15 phenotype data. Green plot points
have k = 4 or fewer neutral components; it is for these pheno-
types that the theoretical bound rigorously holds. The
biological data support the theory if all green plot points are
above or on the dashed 1 : 1 diagonal line, as this would indicate
that the inequality is valid; indeed that is the case.

Most of the phenotypes in the RNA12 and RNA15 second-
ary structure GPmaps do not have ≤k = 4 neutral components,
however. Also in figure 4, we have plotted, in magenta,
the values of the left- and right-hand side of equation (5.5)
for phenotypes with >k = 4. The theoretical bound seems
to hold even for most of the cases outside the range
for which it is proven, but it begins to fail for sufficiently
large phenotypes.
Here, we discussed the process by which many neutral
components are combined into one larger phenotype; these
neutral components are not connected to each other (by defi-
nition), so the phenotype robustness is simply a frequency-
weighted average of the component robustnesses that will
be necessarily lower than the maximum possible achievable
robustness for a single-component phenotype. With this
being said, in practice, an evolving population will typically
be confined to a component, as double neutral mutations
are typically quite rare. Therefore, even though the robust-
ness of the phenotype is lower, the robustness experienced
in shorter time scales by the population may often be closer
to the bricklayer’s graph bound.
6. Robustness of coarse-grained outputs/
phenotypes

In discussing neutral set and neutral component topologies
for natural systems, one should keep in mind that the
definition of a phenotype can vary depending on which bio-
logical property one is interested in. Working out exactly how
to map genotypes to phenotypes in biological systems can be
difficult due to questions of how a phenotype is defined.
For RNA structures, for example, one may be interested in
a specific secondary structure, as we are here, or in a more
restricted phenotype, such as a certain tertiary structure. Con-
versely, one may be interested in a broader class of secondary
structures or in a different property, such as a certain catalytic
function. It is therefore interesting to ask how robustness
changes if one zeroes in on different levels of description of
a phenotype.

In this section, wewill study the robustness of a phenotype
and transition probabilities between phenotypes that have
been generated from the union of multiple neutral sets. We
refer to this process of merging neutral sets of different
phenotypes as ‘coarse-graining’ of phenotypes. Tackling this
question requires a more generalized approach than was
used in the previous section because different phenotypes typi-
cally have non-zero transition probabilities between each
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other, unlike neutral components which have zero transition
probabilities (on single mutations).

We illustrate our approach for RNA secondary structure
using a coarse-graining method from Giegerich et al. [54],
who defined a set of new ‘abstract shape’ RNA secondary
structures which ignore fine details of the stem and loop
lengths and nesting. There may, in fact, be good biological
reasons for doing this coarse-graining if one thinks that func-
tion or structure is not that sensitive to small changes in the
full secondary structure. Another reason for our interest in
this coarse-graining scheme comes from the work of Dingle
et al. [31], who showed that the frequency with which non-
coding or functional RNA abstract structure appears in the
Rfam database [55,56] of non-coding or functional RNA
could be remarkably well predicted over five orders of mag-
nitude by the frequency by which these structures appear
upon random sampling of sequences. This phenomenon
illustrates how biases in the arrival of variation, which are
mediated through the GP map, can dramatically affect
evolutionary outcomes [15,26].

In coarse-grained GP maps, the value of the robustness
is determined by the level of coarse-graining as well as
by the underlying neutral set topologies. To study this
problem, we will first derive analytic formulae which
follow from the underlying graph theory. We then present
numerical results on coarse-grained RNA GP maps and
explain qualitative changes in robustness with pheno-
type coarse-graining. We conclude by deriving a critical
transition probability that would be needed for two coarse-
grained phenotypes to maintain ‘high’ robustness when
coarse-grained together.

6.1. Robustness and transition probabilities for
coarse-grained phenotypes

As before, we consider a GP map whose genotypes consist
of sequences of length ℓ drawn from an alphabet of k charac-
ters. The genotype space is the Hamming graph Hℓ,k, and
phenotype neutral sets are induced subgraphs of Hℓ,k. The
ith phenotype’s neutral set Gi (assuming 1≤ i≤Np, where
Np is the total number of phenotypes) is an induced subgraph
of Hℓ,k. Once again, we let V(G) denote the vertex set of a
graph G, E(G) denote the edge set of G, and we additionally
define E(Gi, Gj) = EH(Gj, Gi) to denote the set of edges induced
in graph Hℓ,k by union VðGiÞ< VðGjÞ which are neither
elements of E(Gi) nor E(Gj), where we have taken both Gi

and Gj for i≠ j to be induced subgraphs of Hℓ,k. Precisely,
EðGi, GjÞ ¼ ffu, vg [ H‘,kju [ VðGiÞ ^ v [ VðGjÞg.

As we have defined before, the robustness of the ith
phenotype is defined as

ri ¼
2jEðGiÞj

‘ðk � 1ÞjVðGiÞj : ð6:1Þ

In other words it is proportional to the ratio of edges to
vertices in the neutral set graph. The transition probability
that a single point mutation in the genotype leads to a
change from phenotype i to phenotype j is defined by

f ji ¼
jEðGi, GjÞj

‘ðk � 1ÞjVðGiÞj , i = j, ð6:2Þ

which is again the average number of links per node between
the two distinct neutral sets i and j. Note that ϕji|V(Gi)| = ϕij-
|V(Gj)|. If we define the diagonal terms ϕii≡ ρi then there
needs to be an additional prefactor of 2 since the connections
are between nodes of the same neutral set, and so must be
counted twice.

6.1.1. Robustness of coarse-grained phenotypes
We first derive a general formula for robustness of coarse-
grained phenotypes. Let S be the set of phenotype indices
that indicate which phenotypes are being coarse-grained
into a new neutral set GS. The vertex set of GS is the union
of all vertices

VðGSÞ ¼
[
s[S

VðGsÞ: ð6:3Þ

The edge set of GS includes all edges in each individual
neutral set as well as the edges joining the neutral sets

EðGSÞ ¼
[
s[S

EðGsÞ
 !

<
[

ðr,sÞ[S

EðGr, GsÞ
0
@

1
A, ð6:4Þ

where (r, s)∈ S denotes an ordered pair of elements of S such
that r > s. It follows that the robustness ρS of coarse-grained
phenotype S is

rS ¼ 2
‘ðk � 1Þ

P
s[S jEðGsÞj þ

P
ðr,sÞ[S jEðGr, GsÞjP

s[S jVðGsÞj : ð6:5Þ

Using equation (6.1) and the normalized phenotype fre-
quency fi = |V(Gi)|/k

ℓ, we can rewrite the coarse-grained
robustness in terms of familiar biological parameters

rS ¼
P

s[S rsfs þ 2
P

ðr,sÞ[S frsfsP
s[S fs

¼
P

s[S
P

r[S frsfsP
s[S fs

, ð6:6Þ

where in the last step we have used ϕss = ρs. It is easy to check
that, if S = {1, 2,…, Np} is the set of all phenotypes, thenP

1�s�Np
frsfs ¼ fr (given the definition of ϕrs), so ρS = 1 as

expected. The intuition behind equation (6.6) is that the
robustness of the coarse-grained phenotype includes terms
that come from the frequency-weighted sum of the robust-
nesses of the original phenotypes, as was the case for
combining neutral components in equation (5.2), plus a
term that adds in the contribution from transition probabil-
ities between the combined phenotypes. If there are many
transitions between them, then the combined robustness
will be higher because these are now also classed as an
additional contribution to robustness.

6.1.2. Transition probabilities between coarse-grained
phenotypes

We now calculate a general formula for transition probabil-
ities between coarse-grained phenotypes. Let S and T be
two non-overlapping sets of phenotype indices that indicate
which phenotypes are being coarse-grained into two
coarse-grained neutral sets GS and GT, respectively. The set
of edges E(GS, GT) joining GS and GT is the union of all sets
of edges that adjoin every pair of (non-coarse-grained)
phenotypes, where within each pair one element is picked
from the constituent phenotypes of S and the other is
picked from constituent phenotypes of T. It follows that

EðGS, GTÞ ¼
[
s[S

[
t[T

EðGs, GtÞ: ð6:7Þ



φts

coarse-graining

�s   S �t   T φts fs φTS

φTS

�s S fs

Figure 5. Schematic diagram of phenotype coarse-graining on the transition
matrix ϕts→ ϕTS, which includes transition probabilities (off-diagonals) and
robustness (diagonals). If two non-overlapping sets of original phenotypes are
coarse-grained into two new coarse-grained phenotypes T and S, then the
transition probability from coarse-grained phenotype S to coarse-grained
phenotype T is given by ϕTS, calculated in equation (6.8), which involves
taking a frequency-weighted sum over the transition probabilities ϕts
between the original non-coarse-grained phenotypes that comprise T and S.
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It now follows that the transition probability ϕTS from the
Sth coarse-grained phenotype to the Tth coarse-grained
phenotype (assuming S and T have no overlap) is

fTS ¼ jEðGS, GTÞj
‘ðk � 1ÞjVðGSÞj

¼ 1
‘ðk � 1Þ

P
s[S
P

t[T jEðGs, GtÞjP
s[S jVðGsÞj

¼
P

s[S
P

t[T ftsfsP
s[S fs

: ð6:8Þ

We can now see from equations (6.6) and (6.8) that the coarse-
graining procedure takes on the same functional form, which
is represented graphically in figure 5.

The process of coarse-graining neutral components into a
phenotype neutral set, handled in §5, is a specific case of
the more general process of coarse-graining phenotype neu-
tral sets, but in the former case, all transition probabilities
between neutral components ϕji = 0 since neutral components
are not connected to each other, by definition. We now exam-
ine coarse-graining in the RNA secondary structure GP map.
The RNASHAPES program [57] merges RNA phenotypes at
different ‘levels’ of coarse-graining by progressively ignoring
more and more layers of detail in the stem and loop lengths
and nesting structure of the folded RNA oligonucleotides.
The ‘dot-bracket’ structure is the actual RNA secondary struc-
ture phenotype, obtained from the ViennaRNA program [58].
The dot-bracket structure is then provided to the RNASHAPES

program to produce the coarse-grained structures. Level 1
of coarse-graining ignores some details of the dot-bracket
structure and combines similar phenotypes into the same
abstract phenotype; the Level 2 structures include further
coarse-graining, and so forth. There are five possible levels
of coarse-graining. A schematic of the RNA coarse-graining
process is shown in figure 6. In figure 7, we present results
in which RNA secondary structure GP maps have robustness
values calculated for these various levels of coarse-graining,
performed using the RNASHAPES tool.

Even though the systems in figure 7 are too small to show
many Level 4 or 5 coarse-grained phenotypes, the overall
trends are visible. The dot-bracket structures appear to be
closest to the bricklayer’s graph maximum robustness curve.
At the highest levels of coarse-graining (Level 4/5), abstract
phenotypes are so densely packed with dot-bracket pheno-
types that a substantial portion of the Hamming graph
sequence space is covered by only a small number of abstract
phenotypes. This leads to a percolation-like phenomenon that
allows for highly coarse-grained, large-frequency phenotypes
having high robustness as would be intuitively expected.

At lower levels of coarse-graining, however, we see a trend
that we did not at first expect. It seemed to us reasonable to
assume that coarse-graining dot-bracket phenotypes together,
which increases the frequency, would simply ‘push’ the robust-
ness parallel to the diagonal logarithm line. However, the data
show that coarse-grained phenotypes with sufficiently small
frequencies deviate further from the maximal possible robust-
ness (the bricklayer’s graph bound) than the phenotypes that
comprise them. This is because the transition probabilities
between these phenotypes being coarse-grained are probably
too low to provide adequate increase in robustness after
coarse-graining. Note that, in contrast to robustness, transition
probabilities are expected to scale as ϕij≈ fj for RNA [15], as
well as some other models [19] such as the HP model [41]
and the polyomino model for protein quaternary structure
[12,59]. In other words, the scaling of the transition probability
versus frequency is no different from what would be expected
from random assignment of GP pairs, so that these values are
typically much lower than the robustness.
6.2. Critical threshold for the coarse-graining of
phenotypes with high robustness

We now consider the example of coarse-graining two pheno-
types and ask how much the transition probability between
those phenotypes should be in order to keep them along
the same diagonal robustness line parallel to the bricklayer’s
graph bound. Recall that a phenotype’s neutral set Gi which
contains n vertices has at most |E(Gi)| = Sk(n) edges, where
Sk(n) is once again the sums-of-digits function. We know
that asymptotically Sk(n)∼ (n/2)logk n, and a reasonable
approximation to the maximum robustness is

rmax
i ¼ 2SkðnÞ

n‘ðk � 1Þ � 1þ logk fi
‘

: ð6:9Þ

In the high-robustness asymptotic assumption, employed
below, we assume that the robustness is near this bound
and approximate it as ρi≈ 1 + ℓ−1logk fi.

For two phenotypes p and q that are being coarse-grained
into a new phenotype S, we can use equation (6.6) to
show that

rS ¼ rpfp þ rqfq þ 2fqpfp
fp þ fq

: ð6:10Þ

Let us assume that the two phenotypes have robustness
values that are displaced from the (asymptotic) optimal
robustness curve by amounts Δp and Δq

rp ¼ 1þ logk fp
‘

� Dp and rq ¼ 1þ logk fq
‘

� Dq: ð6:11Þ

Substituting these approximations into equation (6.10), we
have

rS � 1� fpDp þ fqDq

fp þ fq
þ fp logk fp þ fq logk fq þ 2‘fqpfp

‘ðfp þ fqÞ : ð6:12Þ

We would intuitively expect two very robust phenotypes p
and q that have dense connections to each other (i.e. relatively
high values of ϕqpfp = ϕpqfq) to deviate from the optimal robust-
ness curve by Δp and Δq. That is to say, we expect the
robustness of the coarse-grained phenotype S to be bounded
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Figure 6. Demonstration of coarse-graining for RNA secondary structures. Genotypes (RNA sequences) map to secondary structure phenotypes represented as dot-
bracket structures produced by ViennaRNA program [58]. The RNASHAPES program [57] then progressively computes coarse-graining at different ‘levels’, increasingly
ignoring nesting of secondary structure topological features. In this figure, three example sequences of length L = 70 are shown to map to their dot-bracket
phenotypes. A cartoon of a neutral set (not actual size) has been drawn for each phenotype; network properties like robustness can be calculated for each
phenotype. At a higher level of coarse-graining (here, Level 3), multiple dot-bracket phenotypes all map onto the same coarse-grained phenotype. Accordingly,
the coarse-grained phenotype has a neutral set comprising the individual neutral sets of the original phenotypes. Note that in practice there are many more
secondary structures beyond those shown that map to this same coarse-grained phenotype; the analysis above is schematic.
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Figure 7. RNA abstract phenotype robustness plots for various levels of coarse-graining for (a) RNA12 and (b) RNA15 models. ‘Dot-bracket’ structures are the
standard folded RNA obtained from the ViennaRNA program [58] folding results. The subsequent levels of coarse-grained structures are then obtained from
the RNASHAPES program [57]. Level 1 is the first abstracted (coarse-grained) phenotype, including one or more dot-bracket structures based on coarse-grained
topology. Level 2 includes phenotypes that are further coarse-grained from Level 1; Level 3 includes phenotypes that are even further coarse-grained, etc.
In the case of RNA12, Levels 4 and 5 are identical because the Level 4 phenotypes are already coarse-grained as much as possible. Also plotted are the bricklayer’s
bound indicating the maximum possible robustness, the null model robustness (equation (1.2)), and the minimum robustness for a phenotype that contains only
one component (equation (4.1)); this would be the robustness of a star graph [25].
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above by

ruS � 1þ logkðfp þ fqÞ
‘

�minðDp, DqÞ ð6:13Þ

and bounded below by

rlS � 1þ logkðfp þ fqÞ
‘

�maxðDp, DqÞ: ð6:14Þ

The following inequalities provide bounds on the transition
probability ϕqp in order for rlS � rS � ruS to be satisfied.
The exact bounds are derived in appendix B and plotted
in figure 8.

We find that, among all 1653 possible pairs of phenotypes in
the RNA12 GP map, 1187 (71.8%) phenotype pairs’ transition
probabilities undershoot the lower bound, which would lead
to the coarse-grained phenotype deviating from the logarithmic
upper bound (the approximation of the bricklayer’s bound)
more than either of the two basic phenotypes. This means
that, formost pairs of phenotypes, the number of edges connect-
ing two random phenotypes is too low to pass the threshold
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Figure 8. Plots of the (a,c) lower bounds and (b,d ) upper bounds on ϕqp required for the coarse grained robustness to deviate from the maximum robustness curve
by an amount that is at most max (Δp, Δq) and at least min (Δp, Δq). Contours are plotted versus the difference (a,c) Δp− Δq when Δp > Δq and (c,d ) Δq− Δp
when Δp < Δq on ordinate and versus the ratio of frequencies β≡ fq/fp with 0 < β≤ 1 on the abscissa. 1187 phenotype pairs’ transition probabilities (blue)
undershoot the lower bound, 423 transition probabilities (green) fall within the bounds derived above, and 43 transition probabilities (red) overshoot the
upper bound.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

20:20230169

11
required to obtain a coarse-grained robustness that is no less
than the max possible robustness minus max (Δp, Δq). Four
hundred and twenty-three transition probabilities fall
within the bounds derived above. The remaining 43 transition
probabilities overshoot the upper bound, thereby bringing the
coarse-grained phenotype closer to the logarithmic upper
bound. Moreover, 42 of those 43 pairs of phenotypes involve
the non-folding phenotype, which is the highest occurring
phenotype, with frequency 0.854, since most sequences in the
RNA12 GPmap do not have a folded structure as theminimum
free energy structure. The frequency of 0.854 is higher than the
percolation threshold of 1/[ℓ(k− 1)] = 1/36≈ 0.028, above
which the neutral set contains a large component on the order
of the system size. It is also higher than the giant component
threshold 1− k−(1/(k−1)) = 1− 2−2/3≈ 0.37, abovewhich the com-
ponents of the neutral network coalesce into one large giant
component that is (nearly) fully connected [19]. A giant com-
ponent which occupies most of genotype space is more likely
to sharemanyedgeswith neutral networks of other phenotypes;
as a result, the transition probabilities tend to be high, and
coarse-graining another neutral network into the giant com-
ponent simply forms an even larger, more robust giant
component in most cases. Figure 8, along with the bounds,
shows colour-coded plots of the transition probabilities which
undershoot, overshoot and fall within the bounds.

It should be noted that, from a physical standpoint, it makes
little sense to coarse-grain the non-folding phenotype along
with a folding phenotype unless one were constructing, for
instance, a coarse-grained ‘non-functional’ phenotype which
incorporated phenotypes with low biological prevalence of
functionality. Here, we entertain the above discussion only to
offer physical intuition for why some transition probabilities
cross the upper bound calculated earlier. In general, we expect
that the intuition and theoretical insight gained fromour formu-
lation will be useful in the study of coarse-grained phenotypes,
which is an active area in the field of GP maps [31,60].
7. Discussion
In this paper, we investigate maximally robust neutral sets
known as bricklayer’s graphs. By applying concepts from
coding theory as well as results from number theory on the
sums-of-digits function, we analytically calculate the maxi-
mum phenotype robustness of a biological neutral set, a
quantity which plays an important role in GP maps. We used
numerical simulation to show, for the RNA sequence-to-sec-
ondary structure GP map and for the HP map for protein
folding, that many neutral components have robustness that
is near or achieves the upper bound.

We then derived a new property of sums of digits and
used it to calculate a lower bound on the deviation of
the robustness from the maximum bound when a neutral
set is made up of independent neutral components. Similar
bounds for the deviation from the maximum robustness
that occur when phenotypes are coarse-grained together
were also derived. By coarse-graining RNA secondary
structures into abstract shapes [54], we demonstrated that
our bounds provide intuition for trends observed in the
behaviour of the robustness of coarse-grained abstract
RNA shapes.

It remains an open question as to why GP maps generic-
ally have such high robustness. There are heuristic arguments
based on constrained and unconstrained sites that help
point in this direction [17,20,61] for systems such as RNA,
and it would be interesting to explore how they link to our
graph-theoretical approach. The bricklayer’s graph involves
genotype networks that have precisely constrained genetic
sites by construction. It is therefore perhaps surprising to
see that many neutral components identified in §4 achieve
the exact bricklayer’s bound, though it is possible that some
of these graphs may not exactly be bricklayer’s graphs, but
rather other small graphs that obtain the same bound.
While combined phenotypes and neutral sets made up of
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multiple neutral components cannot exactly achieve this
bound, it remains the case that their robustness is much
closer (on a log scale) to this bricklayer’s bound than it is
to a random-null model of uncorrelated phenotypes. Impor-
tant ideas for future work include studying other GP
maps, to see how close their robustness is to our theoretical
maximum. In naturally occurring functional RNA, the
mutational robustness is very close to that predicted by
random sampling of genotypes for the GP map [26,36],
which provides a neat example of detailed mathematical
structure of the GP map being reflected in the living world.
It would be extremely interesting to see if other biological sys-
tems exhibit mutational robustness that can also be predicted
in this way.

Arguments from algorithmic information theory suggest
that biological GP maps and other input–output maps
share common underlying principles of organization [62].
This begs the question of how close the robustnesses of
non-biological systems such as spin glasses [25], quantum
circuits [63] and linear genetic programs [24] are to the
maximum robustness we calculate here.

Another interesting direction of future work would be to
better understand the spectral properties of bricklayer’s
graphs. These may provide insight into population distri-
butions and average robustness on long evolutionary
time scales [40,42], allowing the exploration of relationships
between mutational robustness and spectral properties.

Data accessibility. We have introduced the web tool RoBound Calculator,
a Google Colaboratory notebook which can generate, for specified ℓ
and k, a continuous interpolation of the maximum robustness
curve, tight upper and lower bounds on the maximum robustness
curve, the exact robustnesses of bricklayer’s graphs comprising 1 to
kℓ genotypes, the random null expectation of robustness and the
minimum robustness curve for a single neutral component. The
RoBound Calculator is available free of charge, with open-source
code at the GitHub link in [52]. The data are available from the
Dryad Digital Repository: https://datadryad.org/stash/dataset/
doi:10.5061/dryad.sj3tx969f.
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Appendix A. Proofs of main text theorems
Theorem 3.1. A bricklayer’s graph Gn,k(V, E) with n vertices has
jEj ¼ SkðnÞ ¼

Pn�1
i¼0 skðiÞ edges, where sk(i) is the sum of all digits

in the base-k representation of the integer i, and Sk(n) is the sums-
of-digits function.

Proof. To see this, let ℓ be the length of the input sequence so ℓ≥
logk n, and let (xℓ−1(n),…, x0(n)) be the vector of integers contain-
ing thedigits of thebase-k representationof the integern such that
n ¼P‘�1

i¼0 xiðnÞki. Consider the bricklayer’s graph Gn−1,k. When
we add one more vertex such that Gn�1,k 7! Gn,k, we look at the
base-k representation ofn. An edge canbe added if the base-k rep-
resentation of n differs from the base-k representation of the
neighbouring vertex by exactly one digit. Going through digit
by digit, we see that the only allowed flips for the ith digits are
xiðnÞ 7! f0, . . . , xiðnÞ � 1g. This set has cardinality xi(n). Sum-
ming this over all digits, we find that the number of edges
added to the graph Gn−1,k when adding an additional vertex n
is the sum of digits of n in the base-k representation sk(n). There-
fore, the total number of edges in Gn,k is SkðnÞ ¼

Pn�1
i¼0 skðiÞ. ▪

Theorem 5.1. For k non-negative integers {n1, n2,…, nk} obeying
0≤ n1≤ n2≤ · · ·≤ nk, the following property of the sums-of-digits
function holds:

Xk
i¼1

SkðniÞ þ
Xk�1

i¼1

ðk � iÞni � Sk
Xk
i¼1

ni

 !
ð5:3Þ

Proof. Let n ¼Pk
i¼1 ni, and choose ℓ such that nk≤ kℓ. We

must necessarily have that n≤ k nk≤ kℓ+1. Consider the Ham-
ming graph Hℓ+1,k. Since H‘þ1,k ¼ H‘,kKk, we can decompose
the edge set of Hℓ+1,k into

EðH‘þ1,kÞ ¼
[k
i¼1

EðHðiÞ
‘,kÞ

 !
<

[
1�i,j�k

EðHðiÞ
‘,k, H

ðjÞ
‘,kÞ

0
@

1
A, ðA1Þ

where HðiÞ
‘,k is the Hamming graph consisting of the base-k rep-

resentations of the integers whose (arbitrarily) first digit is i−
1, and EðG1, G2Þ ¼ ffu, vgju [ EðG1Þ ^ v [ EðG2Þg is the set
of edges in Hℓ+1,k which join two subgraphs G1 and G2. Note
that for 1≤ i≤ k, we can construct a bricklayer’s graph Gni ,k

with ni vertices that is a subgraph of the Hamming graph HðiÞ
‘,k.

By theorem 3.1, each bricklayer’s graph has size (number of
edges) equal to Sk(ni). Let us assume that each bricklayer’s
graph has been constructed starting on the vertex such that its
index’s first digit is i− 1, and all other digits are 0. This ensures
that the jEðGni ,k, Gnj ,kÞj ¼ ni for i < j is maximal. The total
number of edges in this graph G—i.e. the subgraph G of the
Hamming graph Hℓ+1,k induced by the vertex set VðGÞ ¼Sk

i¼1 VðGni ,kÞ—is given by the contributions from within the
bricklayer’s graphs and the connections between them

jEðGÞj ¼
Xk
i¼1

jEðGni ,kÞj þ
X

1�i,j�k

jEðGni ,k, Gnj ,kÞj

¼
Xk
i¼1

SkðniÞ þ
X

1�i,j�k

ni

¼
Xk
i¼1

SkðniÞ þ
Xk�1

i¼1

Xk
j¼iþ1

ni

¼
Xk
i¼1

SkðniÞ þ
Xk�1

i¼1

ðk � iÞni: ðA2Þ

https://datadryad.org/stash/dataset/doi:10.5061/dryad.sj3tx969f
https://datadryad.org/stash/dataset/doi:10.5061/dryad.sj3tx969f
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Figure 9. Plots of the continuous interpolation of the maximum robustness curve (bricklayer’s bound/blancmange-like curve), upper and lower bounds on the
maximum robustness, the random null expectation robustness and the single neutral component minimum robustness, generated using RoBound Calculator
[52] using k = 2 (corresponding to a binary alphabet, such as in the HP lattice protein model). Plots for ℓ = 10, 30, 50 and 100 are shown. The k = 2,
ℓ = 10 plot also shows, as blue dots, the exact robustness of bricklayer’s graphs with an integer number of genotypes/vertices.
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However, we also know that G has |V(G)| = n and, by theorem
3.1, size |E(G)|≤ Sk(n). Therefore,

jEðGÞj ¼
Xk
i¼1

SkðniÞ þ
Xk�1

i¼1

ðk � iÞni � SkðnÞ, ðA3Þ

and this completes the proof. ▪
p

b
:

p

Appendix B. Derivation of bounds on transition
probability for coarse-graining of robustness
Starting with equation (6.13), we now perform a change of
variables to β≡ fq/fp and fS≡ fp + fq, so fp = fS/(1 + β) and fq =
fSβ/(1 + β). Without loss of generality, we can choose pheno-
type assignment such that fq≤ fp, i.e. 0≤ β≤ 1. We now
rewrite equation (6.13) as

rS � 1� Dp þ bDq

1þ b
þ 1
‘ð1þ bÞ logk

fS
1þ b

� �

þ b

‘ð1þ bÞ logk
fSb

1þ b

� �
þ 2fqp

1þ b

¼ 1þ logk fS
‘

� Dp þ bDq

1þ b

� �
� logkð1þ bÞ

‘
þ b logk b
‘ð1þ bÞ þ

2fq

1þ
ðB 1Þ
The actual coarse-grained robustness deviates from the upper
bound, equation (6.13), by

ruS � rS ¼ Dp þ bDq

1þ b
�minðDp, DqÞ þ logkð1þ bÞ

‘

� b logk b
‘ð1þ bÞ �

2fqp

1þ b
, ðB 2Þ

and it deviates from the lower bound, equation (6.14), by

rS � rlS ¼ maxðDp, DqÞ �
Dp þ bDq

1þ b
� logkð1þ bÞ

‘

þ b logk b
‘ð1þ bÞ þ

2fqp

1þ b
ðB 3Þ

In order for the actual coarse-grained robustness ρS to fall
within the bounds of the interval ½rlS, ruS�, for Δp > Δq, and
with the constraint 0≤ ϕqp≤ 1, we have

max 0,
1
2

ð1þ bÞ logkð1þ bÞ � b logk b
‘

� bðDp � DqÞ
� �� �

� fq

� min 1,
1
2

ð1þ bÞ logkð1þ bÞ � b logk b
‘

þ ðDp � DqÞ
� �� �

,

ðB 4Þ
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Figure 10. Plots of the continuous interpolation of the maximum robustness curve (bricklayer’s bound/blancmange-like curve), upper and lower bounds on the
maximum robustness, the random null expectation robustness and the single neutral component minimum robustness, generated using RoBound Calculator [52]
using k = 4 (corresponding to the RNA alphabet). Plots for ℓ = 10, 30, 50 and 100 are shown.
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and for Δp < Δq, with the constraint 0≤ ϕqp≤ 1, we have

max 0,
1
2

ð1þ bÞ logkð1þ bÞ � b logk b
‘

� ðDq � DpÞ
� �� �

� fqp

� min 1,
1
2

ð1þ bÞ logkð1þ bÞ � b logk b
‘

þ bðDq � DpÞ
� �� �

ðB 5Þ
Collectively, we can write

max 0,
1
2

ð1þ bÞ logkð1þ bÞ � b logk b
‘

þ Dp

��

þ bDq � ð1þ bÞmaxðDp, DqÞ
��

� fqp

� min 1,
1
2

ð1þ bÞ logkð1þ bÞ � b logk b
‘

��

þ Dp þ bDq � ð1þ bÞminðDp, DqÞ
��

: ðB 6Þ

The lower and upper bounds on ϕqp for the cases Δp > Δq and
Δp < Δq are plotted in figure 8. For Δp = Δq, the range ½rlS, ruS�
collapses to a single value, and the constraint on ϕqp becomes
an equality

fqp ¼
1
2

ð1þ bÞ logkð1þ bÞ � b logk b
‘

� �
: ðB 7Þ
Appendix C. Example plots using the RoBound
calculator web tool
In this section of the appendix, we show representative
plots generated from our web tool RoBound Calculator
[52], which generates—provided ℓ, k and a resolution
value—the continuous interpolation of the maximum robust-
ness curve (bricklayer’s bound/blancmange-like curve),
upper and lower bounds on the maximum robustness, the
random null expectation robustness, the single neutral
component minimum robustness and, if desired, the exact
robustnesses of bricklayer’s graphs with an integer-
valued number of nodes. The examples we provide are for
sequences lengths ℓ = 10, 30, 50 and 100 for alphabet
sizes k = 2 (corresponding to the HP lattice protein
model, in figure 9), k = 4 (corresponding to the RNA
alphabet, in figure 10), and k = 20 (corresponding to the
number of amino acids in proteins, in figure 11). These
plots help illustrate how for larger k and ℓ, the upper
and lower bounds from equation (3.8) become tighter,
so that the simple rmax

p � logkðnpÞ=‘ ¼ 1þ logkðfpÞ=‘
form provides good approximation to the maximum
robustness.
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