Prakash
et al. Brain Informatics (2024) 11:13
https://doi.org/10.1186/s40708-024-00226-x
CORRECTION
Open Access
© The Author(s) 2024.
Open Access
This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit
http:// creat iveco mmons. org/ licen ses/ by/4. 0/
.
Brain Informatics
Correction: Semantic representation
of neural circuit knowledge in
Caenorhabditis
elegans
Sharan J. Prakash
1
, Kimberly M.
Van Auken
1
, David P. Hill
2
and Paul
W. Sternberg
1*
Correction: Brain Informatics (2023) 10:30
https://doi.org/10.1186/s40708-023-00208-5
In this article [
1
], an error occurred during the produc
-
tion process regarding proper referencing, such that the
in-text references do not correctly map to the reference
list at the end of the article. In addition, three citations in
the text did not appear in the reference list, and one ref
-
erence item (the second item in the original list) appears
incorrectly. Listed below are a corrected reference list,
and a table listing all citations in order of appearance in
the original publication, along with their corresponding
corrections where necessary. A revised copy of the man
-
uscript containing all corrections is available from corre
-
sponding author upon request.
Corrected Reference List
1.
Alon U (2007) Network motifs: Theory and experi
-
mental approaches. Nat Rev Genet 8:450–461. doi:
10.1038/nrg2102.
2.
Ashburner M, Ball CA, Blake JA, Botstein D, But
-
ler H, Cherry JM, Davis AP, Dolinski K, Dwight
SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L,
Kasarskis A, Lewis S, Matese JC, Richardson JE,
Ringwald M, Rubin GM, Sherlock G (2000) Gene
Ontology: tool for the unification of biology. Nat
Genet 25:25–29. doi: 10.1038/75556.
3.
Banerjee N, Bhattacharya R, Gorczyca M, Collins
KM, Francis MM (2017) Local neuropeptide sign
-
aling modulates serotonergic transmission to shape
the temporal organization of
C. elegans
egg-laying
behavior. PLoS Genet 13:e1006697. doi: 10.1371/
journal.pgen.1006697.
4.
Bany IA, Dong MQ, Koelle MR (2003) Genetic
and cellular basis for acetylcholine inhibition
of
Caenorhabditis elegans
egg-laying behavior.
J Neurosci 23:8060–8069. doi: 10.1523/jneuro
-
sci.23-22-08060.2003.
5.
Bargmann CI (1993) Genetic and Cellu
-
lar Analysis of Behavior in
C. elegans
. Annu
Rev Neurosci 16:47–71. doi: 10.1146/annurev.
ne.16.030193.000403.
6.
Bargmann CI (2012) Beyond the connectome: How
neuromodulators shape neural circuits. BioEs
-
says 34:458–465. doi: https://doi.org/10.1002/
bies.201100185.
7.
Bargmann CI, Avery L (1995) Laser killing of
cells in
Caenorhabditis elegans
. Methods Cell Biol
48:225–250. doi: 10.1016/s0091-679x(08)61390-4.
8.
Bargmann CI, Horvitz HR (1991) Control of larval
development by chemosensory neurons in
Cae
-
norhabditis elegans
. Science 251:1243–1246. doi:
10.1126/science.2006412.
9.
Bastiani CA, Gharib S, Simon MI, Sternberg PW
(2003)
Caenorhabditis elegans
Gαq Regulates Egg-
Laying Behavior via a PLCβ-Independent and Ser
-
otonin-Dependent Signaling Pathway and Likely
Functions Both in the Nervous System and in Mus
-
cle. Genetics 165:1805–1822. doi: 10.1093/genet
-
ics/165.4.1805.
The original article can be found online at
https:// doi. org/ 10. 1186/ s40708-
023- 00208-5
.
*Correspondence:
Paul W.
Sternberg
pws@caltech.edu
1
Division of Biology and Biological Engineering, California Institute
of
Technology, Pasadena, CA 91125, USA
2
The Jackson Laboratory, Bar Harbor, ME 04609, USA
Page 2 of 6
Prakash
et al. Brain Informatics (2024) 11:13
10.
Bellemer A, Hirata T, Romero MF, Koelle MR
(2011) Two types of chloride transporters are
required for GABA(A) receptor-mediated inhi
-
bition in
C. elegans
. EMBO J 30:1852–1863. doi:
10.1038/emboj.2011.83.
11.
Bentley B, Branicky R, Barnes CL, Chew YL, Yem
-
ini E, Bullmore ET, Vértes PE, Schafer WR (2016)
The Multilayer Connectome of
Caenorhabditis ele
-
gans
. PLoS Comput Biol 12:e1005283. doi: 10.1371/
journal.pcbi.1005283.
12.
Branicky R, Miyazaki H, Strange K, Schafer WR
(2014) The voltage-gated anion channels encoded
by clh-3 regulate egg laying in
C. elegans
by modu
-
lating motor neuron excitability. J Neurosci 34:764–
775. doi: 10.1523/JNEUROSCI.3112-13.2014.
13.
Bretscher AJ, Busch KE, De Bono M (2008) A car
-
bon dioxide avoidance behavior is integrated with
responses to ambient oxygen and food in
Caeno
-
rhabditis elegans
. Proc Nat Acad of Sci of the USA
105:8044–8049. doi: 10.1073/pnas.0707607105.
14.
Bretscher AJ, Kodama-Namba E, Busch KE, Mur
-
phy RJ, Soltesz Z, Laurent P, de Bono M (2011)
Temperature, oxygen, and salt-sensing neurons in
C. elegans
are carbon dioxide sensors that control
avoidance behavior. Neuron 69:1099–1113. doi:
10.1016/j.neuron.2011.02.023.
15.
Brundage L, Avery L, Katz A, Kim U-J, Mendel JE,
Sternberg PW, Simon MI (1996) Mutations in a
C.
elegans
Gqα Gene Disrupt Movement, Egg Laying,
and Viability. Neuron 16:999–1009. doi: https://doi.
org/10.1016/S0896-6273(00)80123-3.
16.
Carnell L, Illi J, Hong SW, McIntire SL (2005) The
G-protein-coupled serotonin receptor SER-1 regu
-
lates egg laying and male mating behaviors in
Cae
-
norhabditis elegans
. J Neurosci 25:10671–10681.
doi: 10.1523/JNEUROSCI.3399-05.2005.
17.
Carrillo MA, Guillermin ML, Rengarajan S, Okubo
RP, Hallem EA (2013)
O
2
-sensing neurons control
CO
2
response in
C. elegans
. J Neurosci 33:9675–
9683. doi: 10.1523/JNEUROSCI.4541-12.2013.
18.
Chalfie M, Sulston JE, White JG, Southgate E,
Nichol Thomson J, Brenner S (1985) The neural
circuit for touch sensitivity in
Caenorhabditis ele
-
gans
. J Neurosci 5:956–964. doi: 10.1523/jneuro
-
sci.05-04-00956.1985.
19.
Chan LE, Thessen AE, Duncan WD, Matentzoglu
N, Schmitt C, Grondin C, Vasilevsky N, McMurry
JA, Robinson PN, Mungall CJ (2022) The Environ
-
mental Conditions, Treatments, and Exposures
Ontology (ECTO): connecting toxicology and
exposure to human health and beyond. J Biomed
Semantics 14:3. doi: 10.1186/s13326-023-00283-x
20.
Cheung BHH, Arellano-Carbajal F, Rybicki I, de
Bono M (2004) Soluble guanylate cyclases act in
neurons exposed to the body fluid to promote
C.
elegans
aggregation behavior. Curr Biol 14:1105–
1111. doi: 10.1016/j.cub.2004.06.027.
21.
Choi J-H, Horowitz LB, Ringstad N (2021) Oppo
-
nent vesicular transporters regulate the strength
of glutamatergic neurotransmission in a
C. ele
-
gans
sensory circuit. Nat Commun 12:6334. doi:
10.1038/s41467-021-26575-3.
22.
Chung SH, Sun L, Gabel CV (2013) In vivo neu
-
ronal calcium imaging in
C. elegans
. J Vis Exp
:
JoVE. doi: 10.3791/50357.
23.
Clark DA, Gabel CV, Gabel H, Samuel ADT
(2007) Temporal activity patterns in thermosen
-
sory neurons of freely moving
Caenorhabditis
elegans
encode spatial thermal gradients. J Neu
-
rosci 27:6083–6090. doi: 10.1523/JNEURO
-
SCI.1032-07.2007.
24.
Coates JC, de Bono M (2002) Antagonistic path
-
ways in neurons exposed to body fluid regulate
social feeding in
Caenorhabditis elegans
. Nature
419:925–929. doi: 10.1038/nature01170.
25.
Collins KM, Bode A, Fernandez RW, Tanis JE,
Brewer JC, Creamer MS, Koelle MR (2016) Activ
-
ity of the
C. elegans
egg-laying behavior circuit is
controlled by competing activation and feedback
inhibition. eLife 5:1–24. doi: 10.7554/eLife.21126.
26.
Collins KM, Koelle MR (2013) Postsynaptic ERG
potassium channels limit muscle excitability to
allow distinct egg-laying behavior states in
Cae
-
norhabditis elegans
. J Neurosci 33:761–775. doi:
10.1523/JNEUROSCI.3896-12.2013.
27.
Court R, Costa M, Pilgrim C, Millburn G, Holmes
A, McLachlan A, Larkin A, Matentzoglu N, Kir H,
Parkinson H, Brown NH, O’Kane CJ, Armstrong
JD, Jefferis GSXE, Osumi-Sutherland D (2023) Vir
-
tual Fly Brain—An interactive atlas of the
Drosoph
-
ila
nervous system. Front in Physiol 14.
28.
Emtage L, Aziz-Zaman S, Padovan-Merhar O,
Horvitz HR, Fang-Yen C, Ringstad N (2012) IRK-1
potassium channels mediate peptidergic inhibition
of
Caenorhabditis elegans
serotonin neurons via a
Go signaling pathway. J Neurosci 32:16285–16295.
doi: 10.1523/JNEUROSCI.2667-12.2012.
29.
Fenk LA, de Bono M (2015) Environmental
CO
2
inhibits
Caenorhabditis elegans
egg-laying by mod
-
ulating olfactory neurons and evokes widespread
changes in neural activity. Proc Nat Acad of Sci
USA 112:E3525-34. doi: 10.1073/pnas.1423808112.
30.
Ghosh DD, Nitabach MN, Zhang Y, Harris G
(2017) Multisensory integration in
C. elegans
. Curr
Page 3 of 6
Prakash
et al. Brain Informatics (2024) 11:13
Opin in Neurobiol 43:110–118. doi: https://doi.
org/10.1016/j.conb.2017.01.005.
31.
Giglio M, Tauber R, Nadendla S, Munro J, Olley
D, Ball S, Mitraka E, Schriml LM, Gaudet P, Hobbs
ET, Erill I, Siegele DA, Hu JC, Mungall C, Chibu
-
cos MC (2019) ECO, the Evidence & Conclusion
Ontology: community standard for evidence infor
-
mation. Nucleic Acids Res 47:D1186–D1194. doi:
10.1093/nar/gky1036.
32.
Good BM, Van Auken K, Hill DP, Mi H, Car
-
bon S, Balhoff JP, Albou L-P, Thomas PD, Mun
-
gall CJ, Blake JA, D’Eustachio P (2021) Reactome
and the Gene Ontology: digital convergence of
data resources. Bioinformatics 37:3343–3348. doi:
10.1093/bioinformatics/btab325.
33.
Gray JM, Karow DS, Lu H, Chang AJ, Chang JS,
Ellis RE, Marletta MA, Bargmann CI (2004) Oxy
-
gen sensation and social feeding mediated by a
C. elegans
guanylate cyclase homologue. Nature
430:317–322. doi: 10.1038/nature02714.
34.
Guo ZV, Hart AC, Ramanathan S (2009) Optical
interrogation of neural circuits in
Caenorhabdi
-
tis elegans
. Nat Methods 6:891–896. doi: 10.1038/
nmeth.1397.
35.
Hallem EA, Sternberg PW (2008) Acute carbon
dioxide avoidance in
Caenorhabditis elegans
. Proc
Natl Acad Sci USA 105:8038–8043. doi: 10.1073/
pnas.0707469105.
36.
Harbinder S, Tavernarakis N, Herndon LA, Kinnell
M, Xu SQ, Fire A, Driscoll M (1997) Genetically
targeted cell disruption in
Caenorhabditis elegans
.
Proc Natl Acad Sci USA 94:13128–13133. doi:
10.1073/pnas.94.24.13128.
37.
Hastings J, Owen G, Dekker A, Ennis M, Kale N,
Muthukrishnan V, Turner S, Swainston N, Mendes
P, Steinbeck C (2016) ChEBI in 2016: Improved
services and an expanding collection of metabo
-
lites. Nucleic Acids Res 44:D1214-9. doi: 10.1093/
nar/gkv1031.
38.
Husson SJ, Gottschalk A, Leifer AM (2013)
Optogenetic manipulation of neural activity in
C.
elegans
: from synapse to circuits and behaviour.
Biol Cell 105:235–250. doi: 10.1111/boc.201200069.
39.
Jarrell TA, Wang Y, Bloniarz AE, Brittin CA, Xu
M, Thomson JN, Albertson DG, Hall DH, Emmons
SW (2012) The connectome of a decision-making
neural network. Science (New York, NY) 337:437–
444. doi: 10.1126/science.1221762.
40.
Juanes Cortés B, Vera-Ramos JA, Lovering RC,
Gaudet P, Laegreid A, Logie C, Schulz S, Roldán-
García MDM, Kuiper M, Fernández-Breis JT
(2021) Formalization of gene regulation knowledge
using ontologies and gene ontology causal activity
models. Biochim Biophys Acta Gene Regul Mech
1864:194766. doi: 10.1016/j.bbagrm.2021.194766.
41.
Kim J, Poole DS, Waggoner LE, Kempf A, Ram
-
irez DS, Treschow PA, Schafer WR (2001) Genes
affecting the activity of nicotinic receptors involved
in
Caenorhabditis elegans
egg-laying behavior.
Genetics 157:1599–1610. doi: 10.1093/genet
-
ics/157.4.1599.
42.
Kimura KD, Miyawaki A, Matsumoto K, Mori I
(2004) The
C. elegans
thermosensory neuron AFD
responds to warming. Curr Biol 14:1291–1295. doi:
10.1016/j.cub.2004.06.060.
43.
Koelle MR, Horvitz HR (1996) EGL-10 regulates G
protein signaling in the
C. elegans
nervous system
and shares a conserved domain with many mam
-
malian proteins. Cell 84:115–125. doi: 10.1016/
s0092-8674(00)80998-8.
44.
Koopmans F, van Nierop P, Andres-Alonso M,
Byrnes A, Cijsouw T, Coba MP, Cornelisse LN,
Farrell RJ, Goldschmidt HL, Howrigan DP, Hus
-
sain NK, Imig C, de Jong APH, Jung H, Kohansal
-
nodehi M, Kramarz B, Lipstein N, Lovering RC,
MacGillavry H, Mariano V, Mi H, Ninov M,
Osumi-Sutherland D, Pielot R, Smalla K-H, Tang H,
Tashman K, Toonen RFG, Verpelli C, Reig-Viader
R, Watanabe K, van Weering J, Achsel T, Ashrafi
G, Asi N, Brown TC, De Camilli P, Feuermann M,
Foulger RE, Gaudet P, Joglekar A, Kanellopoulos
A, Malenka R, Nicoll RA, Pulido C, de Juan-Sanz
J, Sheng M, Südhof TC, Tilgner HU, Bagni C, Bayés
À, Biederer T, Brose N, Chua JJE, Dieterich DC,
Gundelfinger ED, Hoogenraad C, Huganir RL,
Jahn R, Kaeser PS, Kim E, Kreutz MR, McPher
-
son PS, Neale BM, O’Connor V, Posthuma D,
Ryan TA, Sala C, Feng G, Hyman SE, Thomas PD,
Smit AB, Verhage M (2019) SynGO: An Evidence-
Based, Expert-Curated Knowledge Base for the
Synapse. Neuron 103:217-234.e4. doi: https://doi.
org/10.1016/j.neuron.2019.05.002.
45.
Kopchock RJ, Ravi B, Bode A, Collins KM (2021)
The Sex-Specific VC Neurons Are Mechani
-
cally Activated Motor Neurons That Facilitate
Serotonin-Induced Egg Laying in
C. elegans.
J
Neurosci 41:3635–3650. doi: 10.1523/JNEURO
-
SCI.2150-20.2021.
46.
Larsch J, Flavell SW, Liu Q, Gordus A, Albrecht
DR, Bargmann CI (2015) A Circuit for Gradi
-
ent Climbing in
C. elegans
Chemotaxis. Cell Rep
12:1748–1760. doi: 10.1016/j.celrep.2015.08.032.
47.
Le Novère N, Hucka M, Mi H, Moodie S, Schreiber
F, Sorokin A, Demir E, Wegner K, Aladjem MI,
Wimalaratne SM, Bergman FT, Gauges R, Ghazal
P, Kawaji H, Li L, Matsuoka Y, Villéger A, Boyd SE,
Page 4 of 6
Prakash
et al. Brain Informatics (2024) 11:13
Calzone L, Courtot M, Dogrusoz U, Freeman TC,
Funahashi A, Ghosh S, Jouraku A, Kim S, Kolpakov
F, Luna A, Sahle S, Schmidt E, Watterson S, Wu
G, Goryanin I, Kell DB, Sander C, Sauro H, Snoep
JL, Kohn K, Kitano H (2009) The Systems Biology
Graphical Notation. Nat Biotechnol 27:735–741.
doi: 10.1038/nbt.1558.
48.
Lee RYN, Sternberg PW (2003) Building a cell
and anatomy ontology of
Caenorhabditis elegans
.
Comp Funct Genomics 4:121–126. doi: 10.1002/
cfg.248.
49.
Leifer AM, Fang-Yen C, Gershow M, Alkema MJ,
Samuel ADT (2011) Optogenetic manipulation
of neural activity in freely moving
Caenorhabdi
-
tis elegans
. Nat Methods 8:147–152. doi: 10.1038/
nmeth.1554.
50.
Lickteig KM, Duerr JS, Frisby DL, Hall DH, Rand
JB, Miller DM 3rd (2001) Regulation of neuro
-
transmitter vesicles by the homeodomain protein
UNC-4 and its transcriptional corepressor UNC-
37/groucho in
Caenorhabditis elegans
choliner
-
gic motor neurons. J Neurosci 21:2001–2014. doi:
10.1523/JNEUROSCI.21-06-02001.2001.
51.
Liu KS, Sternberg PW (1995) Sensory regula
-
tion of male mating behavior in
Caenorhabdi
-
tis elegans
. Neuron 14:79–89. doi: https://doi.
org/10.1016/0896-6273(95)90242-2.
52.
MacOsko EZ, Pokala N, Feinberg EH, Chalasani
SH, Butcher RA, Clardy J, Bargmann CI (2009) A
hub-and-spoke circuit drives pheromone attrac
-
tion and social behaviour in
C. elegans
. Nature
458:1171–1175. doi: 10.1038/nature07886.
53.
Marder E (2012) Neuromodulation of neuronal
circuits: back to the future. Neuron 76:1–11. doi:
10.1016/j.neuron.2012.09.010.
54.
Milyaev N, Osumi-Sutherland D, Reeve S, Burton
N, Baldock RA, Armstrong JD (2012) The Virtual
Fly Brain browser and query interface. Bioinfor
-
matics 28:411–415. doi: 10.1093/bioinformatics/
btr677.
55.
Mori I, Ohshima Y (1995) Neural regulation of
thermotaxis in
Caenorhabditis elegans
. Nature
376:344–348. doi: 10.1038/376344a0.
56.
Okkema PG, Harrison SW, Plunger V, Aryana A,
Fire A (1993) Sequence requirements for myosin
gene expression and regulation in
Caenorhabditis
elegans
. Genetics 135:385–404. doi: 10.1093/genet
-
ics/135.2.385.
57.
Pokala N, Liu Q, Gordus A, Bargmann CI (2014)
Inducible and titratable silencing of
Caenorhabdi
-
tis elegans
neurons in vivo with histamine-gated
chloride channels. Proc Nat Acad of Sci USA
111:2770–2775. doi: 10.1073/pnas.1400615111.
58.
Ravi B, Garcia J, Collins KM (2018) Homeostatic
feedback modulates the development of two-state
patterned activity in a model serotonin motor cir
-
cuit in
Caenorhabditis elegans.
J Neurosci 38:6283–
6298. doi: 10.1523/JNEUROSCI.3658-17.2018.
59.
Reigl M, Alon U, Chklovskii DB (2004) Search for
computational modules in the
C. elegans
brain.
BMC Biol 2:25. doi: 10.1186/1741-7007-2-25.
60.
Richmond JE, Davis WS, Jorgensen EM (1999)
UNC-13 is required for synaptic vesicle fusion
in
C. elegans
. Nat Neurosci 2:959–964. doi:
10.1038/14755.
61.
Schindelman G, Fernandes JS, Bastiani CA, Yook
K, Sternberg PW (2011) Worm Phenotype Ontol
-
ogy: Integrating phenotype data within and beyond
the
C. elegans
community. BMC Bioinformatics
12:32. doi: 10.1186/1471-2105-12-32.
62.
Shannon P, Markiel A, Ozier O, Baliga NS, Wang
JT, Ramage D, Amin N, Schwikowski B, Ideker
T (2003) Cytoscape: a software environment for
integrated models of biomolecular interaction net
-
works. Genome Res 13:2498–2504. doi: 10.1101/
gr.1239303.
63.
Shen Y, Wen Q, Liu H, Zhong C, Qin Y, Harris
G, Kawano T, Wu M, Xu T, Samuel AD, Zhang Y
(2016) An extrasynaptic GABAergic signal modu
-
lates a pattern of forward movement in
Caenorhab
-
ditis elegans
. eLife 5. doi: 10.7554/eLife.14197.
64.
Shine JM, Müller EJ, Munn B, Cabral J, Moran RJ,
Breakspear M (2021) Computational models link
cellular mechanisms of neuromodulation to large-
scale neural dynamics. Nat Neurosci 24:765–776.
doi: 10.1038/s41593-021-00824-6.
65.
Shyn SI, Kerr R, Schafer WR (2003) Serotonin
and Go Modulate Functional States of Neurons
and Muscles Controlling
C. elegans
Egg-Laying
Behavior. Curr Biol 13:1910–1915. doi: 10.1016/j.
cub.2003.10.025.
66.
Smith B, Ceusters W, Klagges B, Köhler J, Kumar
A, Lomax J, Mungall C, Neuhaus F, Rector AL,
Rosse C (2005) Relations in biomedical ontologies.
Genome Biol 6:R46. doi: 10.1186/gb-2005-6-5-r46.
67.
Speese S, Petrie M, Schuske K, Ailion M, Ann K,
Iwasaki K, Jorgensen EM, Martin TFJ (2007) UNC-
31 (CAPS) is required for dense-core vesicle but
not synaptic vesicle exocytosis in
Caenorhabditis
elegans
. J Neurosci 27:6150–6162. doi: 10.1523/
JNEUROSCI.1466-07.2007.
68.
Srinivasan J, von Reuss SH, Bose N, Zaslaver A,
Mahanti P, Ho MC, O’Doherty OG, Edison AS,
Sternberg PW, Schroeder FC (2012) A modular
library of small molecule signals regulates social
Page 5 of 6
Prakash
et al. Brain Informatics (2024) 11:13
behaviors in
Caenorhabditis elegans
. PLoS Biol
10:1–14. doi: 10.1371/journal.pbio.1001237.
69.
Sweeney ST, Broadie K, Keane J, Niemann H,
O’Kane CJ (1995) Targeted expression of tetanus
toxin light chain in
Drosophila
specifically elimi
-
nates synaptic transmission and causes behavio
-
ral defects. Neuron 14:341–351. doi: https://doi.
org/10.1016/0896-6273(95)90290-2.
70.
Tanis JE, Bellemer A, Moresco JJ, Forbush B, Koelle
MR (2009) The potassium chloride cotransporter
KCC-2 coordinates development of inhibitory
neurotransmission and synapse structure in
Cae
-
norhabditis elegans
. J Neurosci 29:9943–9954. doi:
10.1523/JNEUROSCI.1989-09.2009.
71.
The Gene Ontology Consortium (2021) The
Gene Ontology resource: enriching a GOld mine.
Nucleic Acids Res 49:D325–D334. doi: 10.1093/
nar/gkaa1113.
72.
Thomas PD, Hill DP, Mi H, Osumi-Sutherland
D, Van Auken K, Carbon S, Balhoff JP, Albou L-P,
Good B, Gaudet P, Lewis SE, Mungall CJ (2019)
Gene Ontology Causal Activity Modeling (GO-
CAM) moves beyond GO annotations to struc
-
tured descriptions of biological functions and
systems. Nat Genet 51:1429–1433. doi: 10.1038/
s41588-019-0500-1.
73.
Trent C, Tsuing N, Horvitz HR (1983) Egg-laying
defective mutants of the nematode
Caenorhabditis
elegans
. Genetics 104:619–647. doi: 10.1093/genet
-
ics/104.4.619.
74.
Waggoner LE, Zhou GT, Schafer RW, Schafer WR
(1998) Control of alternative behavioral states
by serotonin in
Caenorhabditis elegans
. Neuron
21:203–214. doi: 10.1016/S0896-6273(00)80527-9.
75.
Wen X, Chen Y-H, Li R, Ge M-H, Yin S-W, Wu
J-J, Huang J-H, Liu H, Wang P-Z, Gross E, Wu
Z-X (2020) Signal Decoding for Glutamate Modu
-
lating Egg Laying Oppositely in
Caenorhabditis
elegans
under Varied Environmental Conditions.
iScience 23:101588. doi: https://doi.org/10.1016/j.
isci.2020.101588.
76.
Zhang M, Chung SH, Fang-Yen C, Craig C, Kerr
RA, Suzuki H, Samuel ADT, Mazur E, Schafer WR
(2008) A Self-Regulating Feed-Forward Circuit
Controlling
C. elegans
Egg-Laying Behavior. Curr
Biol 18:1445–1455. doi: 10.1016/j.cub.2008.08.047.
Table of Corrections
Source
Current
Correction
Main text
[8,9,18,49]
[7, 8, 18, 51]
Main text
[34,65]
[36, 38]
Main text
[7]
[5]
Main text
[72]
[74]
Main text
[36,55]
[38, 57]
Main text
[22]
[22]
Main text
[60]
[63]
Main text
[6,11,51]
[6, 11, 53]
Main text
[70]
[72]
Main text
[44]
[47]
Main text
[63]
[66]
Main text
[3,30,69]
[2,31,71]
Main text
[30]
[31]
Main text
[3,69]
[2, 71]
Main text
[19]
[19]
Main text
[45]
[48]
Main text
[63]
[66]
Main text
[19]
[19]
Main text
[18]
[18]
Main text
[33]
[34]
Main text
[13]
[14]
Main text
[42]
[45]
Main text
[58]
[60]
Main text
[64]
[67]
Main text
[21]
[21]
Main text
[70]
[72]
Main text
[28]
[29]
Main text
[74]
[75]
Main text
[29]
[30]
Main text
[13]
[14]
Main text
[63]
[66]
Main text
[42]
[45]
Main text
[61]
[64]
Main text
[55]
[57]
Main text
[67]
[69]
Main text
[25]
[25]
Main text
[13]
[14]
Main text
Schindelman et al.
(2011)
[61]
Main text
[38, 70]
[40, 72]
Main text
[41]
[44]
Main text
[31]
[32]
Main text
[43]
[46]
Main text
[29]
[30]
Main text
[13]
[14]
Main text
[62]
[65]
Main text
[45]
[48]
Main text
[26, 52]
[27, 54]
Main text
[59]
[62]
Page 6 of 6
Prakash
et al. Brain Informatics (2024) 11:13
Source
Current
Correction
Main text
[28]
[29]
Main text
[73]
[75]
Main text
[1, 37, 57]
[1, 39, 59]
Table 4A
Waggoner et al. [72]
Waggoner et al. [74]
Table 4B
Bany et al. [5]
Bany et al. [4]
Table 4B
[48]
[50]
Table 4C
Banerjee et al. [4]
Banerjee et al. [3]
Table 4D
Carnell et al. [15]
Carnell et al.[16]
Table 4D
[54]
[56]
Table 4D
[14,71,72, Bastiani et al.
2003, 62]
[9, 15, 65, 73, 74]
Table 4E
Carillo et al. [16]
Carrillo et al. [17]
Table 4E
[50]
[52]
Table 4E
[20, 32]
[20,33]
Table 4F
Bretscher et al. [13]
Bretscher et al. [14]
Table 4F
[58]
[60]
Table 4F
[23, 39, 53]
[25, 42, 55]
Table 4G
Collins et al. [25]
Collins et al. [25]
Table 4G
[27]
[28]
Table 4H
Kopchock et al. [42]
Kopchock et al. [45]
Table 4H
[25, 56]
[25, 58]
Table 4H
[5, 74]
[4, 75]
Table 4J
Choi et al. [21]
Choi et al. [21]
Table 4K
Choi et al. [21]
Choi et al. [21]
Table 5A
Bretscher et al. [13]
Bretscher et al. [14]
Table 5A
[12]
[13]
Table 5A
[24]
[24]
Table 5A
[35]
[35]
Table 5B
Kopchock et al. [42]
Kopchock et al. [45]
Table 5B
[3, 25]
[25, 26]
Table 5B
[Collins and Koelle
(2013), 25]
[25, 26]
Table 5C
Branicky et al. [11]
Branicky et al. [12]
Table 5C
[27, 46]
[28, 49]
Table 5C
[46]
[49]
Table 5D
Emtage et al. [27]
Emtage et al. [28]
Table 5D
[40]
[43]
Table 5E
Collins et al. [25]
Collins et al. [25]
Table 5E
[10, 68]
[10, 70]
Table 5F
Bretscher et al. [13]
Bretscher et al. [14]
Table 5G
Shyn et al. [62]
Shyn et al. [65]
Figure 2A
Waggoner et al. [72]
Waggoner et al. [74]
Figure 2B
[5]
[4]
Figure 2C
[4]
[3]
Figure 3A
Carnell et al. [15]
Carnell et al. [16]
Figure 3B
[16]
Carrillo et al. [17]
Figure 3C
[13]
Bretscher et al. [14]
Figure 4A
[25]
[25]
Figure 4B
[42]
[45]
Figure 4C
Choi et al. [21]
Choi et al. [21]
Figure 5
[1, 15, 25, 28, 42]
[16, 25, 29, 41, 45]
Accepted: 22 April 2024
Reference
1.
Prakash SJ, Van Auken KM, Hill DP, Sternberg PW (2023) Semantic repre
-
sentation of neural circuit knowledge in
Caenorhabditis elegans
. Brain Inf
10:30.
https:// doi. org/ 10. 1186/ s40708- 023- 00208-5
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub
-
lished maps and institutional affiliations.