of 8
Search for
CP
violation in the decay
D

!
K
0
S


P. del Amo Sanchez,
1
J. P. Lees,
1
V. Poireau,
1
E. Prencipe,
1
V. Tisserand,
1
J. Garra Tico,
2
E. Grauges,
2
M. Martinelli,
3a,3b
D. A. Milanes,
3a
A. Palano,
3a,3b
M. Pappagallo,
3a,3b
G. Eigen,
4
B. Stugu,
4
L. Sun,
4
D. N. Brown,
5
L. T. Kerth,
5
Yu. G. Kolomensky,
5
G. Lynch,
5
I. L. Osipenkov,
5
H. Koch,
6
T. Schroeder,
6
D. J. Asgeirsson,
7
C. Hearty,
7
T. S. Mattison,
7
J. A. McKenna,
7
A. Khan,
8
V. E. Blinov,
9
A. R. Buzykaev,
9
V. P. Druzhinin,
9
V. B. Golubev,
9
E. A. Kravchenko,
9
A. P. Onuchin,
9
S. I. Serednyakov,
9
Yu. I. Skovpen,
9
E. P. Solodov,
9
K. Yu. Todyshev,
9
A. N. Yushkov,
9
M. Bondioli,
10
S. Curry,
10
D. Kirkby,
10
A. J. Lankford,
10
M. Mandelkern,
10
E. C. Martin,
10
D. P. Stoker,
10
H. Atmacan,
11
J. W. Gary,
11
F. Liu,
11
O. Long,
11
G. M. Vitug,
11
C. Campagnari,
12
T. M. Hong,
12
D. Kovalskyi,
12
J. D. Richman,
12
C. A. West,
12
A. M. Eisner,
13
C. A. Heusch,
13
J. Kroseberg,
13
W. S. Lockman,
13
A. J. Martinez,
13
T. Schalk,
13
B. A. Schumm,
13
A. Seiden,
13
L. O. Winstrom,
13
C. H. Cheng,
14
D. A. Doll,
14
B. Echenard,
14
D. G. Hitlin,
14
P. Ongmongkolkul,
14
F. C. Porter,
14
A. Y. Rakitin,
14
R. Andreassen,
15
M. S. Dubrovin,
15
B. T. Meadows,
15
M. D. Sokoloff,
15
P. C. Bloom,
16
W. T. Ford,
16
A. Gaz,
16
M. Nagel,
16
U. Nauenberg,
16
J. G. Smith,
16
S. R. Wagner,
16
R. Ayad,
17,
*
W. H. Toki,
17
H. Jasper,
18
A. Petzold,
18
B. Spaan,
18
M. J. Kobel,
19
K. R. Schubert,
19
R. Schwierz,
19
D. Bernard,
20
M. Verderi,
20
P. J. Clark,
21
S. Playfer,
21
J. E. Watson,
21
M. Andreotti,
22a,22b
D. Bettoni,
22a
C. Bozzi,
22a
R. Calabrese,
22a,22b
A. Cecchi,
22a,22b
G. Cibinetto,
22a,22b
E. Fioravanti,
22a,22b
P. Franchini,
22a,22b
I. Garzia,
22a,22b
E. Luppi,
22a,22b
M. Munerato,
22a,22b
M. Negrini,
22a,22b
A. Petrella,
22a,22b
L. Piemontese,
22a
R. Baldini-Ferroli,
23
A. Calcaterra,
23
R. de Sangro,
23
G. Finocchiaro,
23
M. Nicolaci,
23
S. Pacetti,
23
P. Patteri,
23
I. M. Peruzzi,
23,
M. Piccolo,
23
M. Rama,
23
A. Zallo,
23
R. Contri,
24a,24b
E. Guido,
24a,24b
M. Lo Vetere,
24a,24b
M. R. Monge,
24a,24b
S. Passaggio,
24a
C. Patrignani,
24a,24b
E. Robutti,
24a
B. Bhuyan,
25
V. Prasad,
25
C. L. Lee,
26
M. Morii,
26
A. J. Edwards,
27
A. Adametz,
28
J. Marks,
28
U. Uwer,
28
F. U. Bernlochner,
29
M. Ebert,
29
H. M. Lacker,
29
T. Lueck,
29
A. Volk,
29
P. D. Dauncey,
30
M. Tibbetts,
30
P. K. Behera,
31
U. Mallik,
31
C. Chen,
32
J. Cochran,
32
H. B. Crawley,
32
W. T. Meyer,
32
S. Prell,
32
E. I. Rosenberg,
32
A. E. Rubin,
32
A. V. Gritsan,
33
Z. J. Guo,
33
N. Arnaud,
34
M. Davier,
34
D. Derkach,
34
J. Firmino da Costa,
34
G. Grosdidier,
34
F. Le Diberder,
34
A. M. Lutz,
34
B. Malaescu,
34
A. Perez,
34
P. Roudeau,
34
M. H. Schune,
34
J. Serrano,
34
V. Sordini,
34,
A. Stocchi,
34
L. Wang,
34
G. Wormser,
34
D. J. Lange,
35
D. M. Wright,
35
I. Bingham,
36
C. A. Chavez,
36
J. P. Coleman,
36
J. R. Fry,
36
E. Gabathuler,
36
D. E. Hutchcroft,
36
D. J. Payne,
36
C. Touramanis,
36
A. J. Bevan,
37
F. Di Lodovico,
37
R. Sacco,
37
M. Sigamani,
37
G. Cowan,
38
S. Paramesvaran,
38
A. C. Wren,
38
D. N. Brown,
39
C. L. Davis,
39
A. G. Denig,
40
M. Fritsch,
40
W. Gradl,
40
A. Hafner,
40
K. E. Alwyn,
41
D. Bailey,
41
R. J. Barlow,
41
G. Jackson,
41
G. D. Lafferty,
41
J. Anderson,
42
R. Cenci,
42
A. Jawahery,
42
D. A. Roberts,
42
G. Simi,
42
J. M. Tuggle,
42
C. Dallapiccola,
43
E. Salvati,
43
R. Cowan,
44
D. Dujmic,
44
G. Sciolla,
44
M. Zhao,
44
D. Lindemann,
45
P. M. Patel,
45
S. H. Robertson,
45
M. Schram,
45
P. Biassoni,
46a,46b
A. Lazzaro,
46a,46b
V. Lombardo,
46a
F. Palombo,
46a,46b
S. Stracka,
46a,46b
L. Cremaldi,
47
R. Godang,
47,
x
R. Kroeger,
47
P. Sonnek,
47
D. J. Summers,
47
X. Nguyen,
48
M. Simard,
48
P. Taras,
48
G. De Nardo,
49a,49b
D. Monorchio,
49a,49b
G. Onorato,
49a,49b
C. Sciacca,
49a,49b
G. Raven,
50
H. L. Snoek,
50
C. P. Jessop,
51
K. J. Knoepfel,
51
J. M. LoSecco,
51
W. F. Wang,
51
L. A. Corwin,
52
K. Honscheid,
52
R. Kass,
52
N. L. Blount,
53
J. Brau,
53
R. Frey,
53
O. Igonkina,
53
J. A. Kolb,
53
R. Rahmat,
53
N. B. Sinev,
53
D. Strom,
53
J. Strube,
53
E. Torrence,
53
G. Castelli,
54a,54b
E. Feltresi,
54a,54b
N. Gagliardi,
54a,54b
M. Margoni,
54a,54b
M. Morandin,
54a
A. Pompili,
54a,54b
M. Posocco,
54a
M. Rotondo,
54a
F. Simonetto,
54a,54b
R. Stroili,
54a,54b
E. Ben-Haim,
55
M. Bomben,
55
G. R. Bonneaud,
55
H. Briand,
55
G. Calderini,
55
J. Chauveau,
55
O. Hamon,
55
Ph. Leruste,
55
G. Marchiori,
55
J. Ocariz,
55
J. Prendki,
55
S. Sitt,
55
M. Biasini,
56a,56b
E. Manoni,
56a,56b
A. Rossi,
56a,56b
C. Angelini,
57a,57b
G. Batignani,
57a,57b
S. Bettarini,
57a,57b
M. Carpinelli,
57a,57b,
k
G. Casarosa,
57a,57b
A. Cervelli,
57a,57b
F. Forti,
57a,57b
M. A. Giorgi,
57a,57b
A. Lusiani,
57a,57c
N. Neri,
57a,57b
E. Paoloni,
57a,57b
G. Rizzo,
57a,57b
J. J. Walsh,
57a
D. Lopes Pegna,
58
C. Lu,
58
J. Olsen,
58
A. J. S. Smith,
58
A. V. Telnov,
58
F. Anulli,
59a
E. Baracchini,
59a,59b
G. Cavoto,
59a
R. Faccini,
59a,59b
F. Ferrarotto,
59a
F. Ferroni,
59a,59b
M. Gaspero,
59a,59b
L. Li Gioi,
59a
M. A. Mazzoni,
59a
G. Piredda,
59a
F. Renga,
59a,59b
C. Buenger,
60
T. Hartmann,
60
T. Leddig,
60
H. Schro
̈
der,
60
R. Waldi,
60
T. Adye,
61
E. O. Olaiya,
61
F. F. Wilson,
61
S. Emery,
62
G. Hamel de Monchenault,
62
G. Vasseur,
62
Ch. Ye
`
che,
62
M. T. Allen,
63
D. Aston,
63
D. J. Bard,
63
R. Bartoldus,
63
J. F. Benitez,
63
C. Cartaro,
63
M. R. Convery,
63
J. Dorfan,
63
G. P. Dubois-Felsmann,
63
W. Dunwoodie,
63
R. C. Field,
63
M. Franco Sevilla,
63
B. G. Fulsom,
63
A. M. Gabareen,
63
M. T. Graham,
63
P. Grenier,
63
C. Hast,
63
W. R. Innes,
63
M. H. Kelsey,
63
H. Kim,
63
P. Kim,
63
M. L. Kocian,
63
D. W. G. S. Leith,
63
P. Lewis,
63
S. Li,
63
B. Lindquist,
63
S. Luitz,
63
V. Luth,
63
H. L. Lynch,
63
D. B. MacFarlane,
63
D. R. Muller,
63
H. Neal,
63
S. Nelson,
63
C. P. O’Grady,
63
I. Ofte,
63
M. Perl,
63
T. Pulliam,
63
B. N. Ratcliff,
63
A. Roodman,
63
A. A. Salnikov,
63
V. Santoro,
63
R. H. Schindler,
63
J. Schwiening,
63
A. Snyder,
63
D. Su,
63
M. K. Sullivan,
63
S. Sun,
63
K. Suzuki,
63
J. M. Thompson,
63
J. Va’vra,
63
A. P. Wagner,
63
M. Weaver,
63
W. J. Wisniewski,
63
M. Wittgen,
63
D. H. Wright,
63
H. W. Wulsin,
63
A. K. Yarritu,
63
C. C. Young,
63
V. Ziegler,
63
PHYSICAL REVIEW D
83,
071103(R) (2011)
RAPID COMMUNICATIONS
1550-7998
=
2011
=
83(7)
=
071103(8)
071103-1
Ó
2011 American Physical Society
X. R. Chen,
64
W. Park,
64
M. V. Purohit,
64
R. M. White,
64
J. R. Wilson,
64
A. Randle-Conde,
65
S. J. Sekula,
65
M. Bellis,
66
P. R. Burchat,
66
T. S. Miyashita,
66
S. Ahmed,
67
M. S. Alam,
67
J. A. Ernst,
67
B. Pan,
67
M. A. Saeed,
67
S. B. Zain,
67
N. Guttman,
68
A. Soffer,
68
P. Lund,
69
S. M. Spanier,
69
R. Eckmann,
70
J. L. Ritchie,
70
A. M. Ruland,
70
C. J. Schilling,
70
R. F. Schwitters,
70
B. C. Wray,
70
J. M. Izen,
71
X. C. Lou,
71
F. Bianchi,
72a,72b
D. Gamba,
72a,72b
M. Pelliccioni,
72a,72b
L. Lanceri,
73a,73b
L. Vitale,
73a,73b
N. Lopez-March,
74
F. Martinez-Vidal,
74
A. Oyanguren,
74
H. Ahmed,
75
J. Albert,
75
Sw. Banerjee,
75
H. H. F. Choi,
75
K. Hamano,
75
G. J. King,
75
R. Kowalewski,
75
M. J. Lewczuk,
75
C. Lindsay,
75
I. M. Nugent,
75
J. M. Roney,
75
R. J. Sobie,
75
T. J. Gershon,
76
P. F. Harrison,
76
T. E. Latham,
76
E. M. T. Puccio,
76
H. R. Band,
77
S. Dasu,
77
K. T. Flood,
77
Y. Pan,
77
R. Prepost,
77
C. O. Vuosalo,
77
and S. L. Wu
77
(
B
A
B
AR
Collaboration)
1
Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Universite
́
de Savoie,
CNRS/IN
2
P
3
, F-74941 Annecy-Le-Vieux, France
2
Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
3a
INFN Sezione di Bari, I-70126 Bari, Italy;
3b
Dipartimento di Fisica, Universita
`
di Bari, I-70126 Bari, Italy
4
University of Bergen, Institute of Physics, N-5007 Bergen, Norway
5
Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
6
Ruhr Universita
̈
t Bochum, Institut fu
̈
r Experimentalphysik 1, D-44780 Bochum, Germany
7
University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
8
Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
9
Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
10
University of California at Irvine, Irvine, California 92697, USA
11
University of California at Riverside, Riverside, California 92521, USA
12
University of California at Santa Barbara, Santa Barbara, California 93106, USA
13
University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
14
California Institute of Technology, Pasadena, California 91125, USA
15
University of Cincinnati, Cincinnati, Ohio 45221, USA
16
University of Colorado, Boulder, Colorado 80309, USA
17
Colorado State University, Fort Collins, Colorado 80523, USA
18
Technische Universita
̈
t Dortmund, Fakulta
̈
t Physik, D-44221 Dortmund, Germany
19
Technische Universita
̈
t Dresden, Institut fu
̈
r Kern- und Teilchenphysik, D-01062 Dresden, Germany
20
Laboratoire Leprince-Ringuet, CNRS/IN
2
P
3
, Ecole Polytechnique, F-91128 Palaiseau, France
21
University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
22a
INFN Sezione di Ferrara, I-44100 Ferrara, Italy;
22b
Dipartimento di Fisica, Universita
`
di Ferrara, I-44100 Ferrara, Italy
23
INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
24a
INFN Sezione di Genova, I-16146 Genova, Italy;
24b
Dipartimento di Fisica, Universita
`
di Genova, I-16146 Genova, Italy
25
Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India
26
Harvard University, Cambridge, Massachusetts 02138, USA
27
Harvey Mudd College, Claremont, California 91711
28
Universita
̈
t Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
29
Humboldt-Universita
̈
t zu Berlin, Institut fu
̈
r Physik, Newtonstr. 15, D-12489 Berlin, Germany
30
Imperial College London, London, SW7 2AZ, United Kingdom
31
University of Iowa, Iowa City, Iowa 52242, USA
32
Iowa State University, Ames, Iowa 50011-3160, USA
33
Johns Hopkins University, Baltimore, Maryland 21218, USA
34
Laboratoire de l’Acce
́
le
́
rateur Line
́
aire, IN
2
P
3
/CNRS et Universite
́
Paris-Sud 11,
Centre Scientifique d’Orsay, B. P. 34, F-91898 Orsay Cedex, France
35
Lawrence Livermore National Laboratory, Livermore, California 94550, USA
36
University of Liverpool, Liverpool L69 7ZE, United Kingdom
37
Queen Mary, University of London, London, E1 4NS, United Kingdom
38
University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
39
University of Louisville, Louisville, Kentucky 40292, USA
40
Johannes Gutenberg-Universita
̈
t Mainz, Institut fu
̈
r Kernphysik, D-55099 Mainz, Germany
41
University of Manchester, Manchester M13 9PL, United Kingdom
42
University of Maryland, College Park, Maryland 20742, USA
43
University of Massachusetts, Amherst, Massachusetts 01003, USA
P. DEL AMO SANCHEZ
et al.
PHYSICAL REVIEW D
83,
071103(R) (2011)
RAPID COMMUNICATIONS
071103-2
44
Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
45
McGill University, Montre
́
al, Que
́
bec, Canada H3A 2T8
46a
INFN Sezione di Milano, I-20133 Milano, Italy;
46b
Dipartimento di Fisica, Universita
`
di Milano, I-20133 Milano, Italy
47
University of Mississippi, University, Mississippi 38677, USA
48
Universite
́
de Montre
́
al, Physique des Particules, Montre
́
al, Que
́
bec, Canada H3C 3J7
49a
INFN Sezione di Napoli, I-80126 Napoli, Italy;
49b
Dipartimento di Scienze Fisiche, Universita
`
di Napoli Federico II, I-80126 Napoli, Italy
50
NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
51
University of Notre Dame, Notre Dame, Indiana 46556, USA
52
Ohio State University, Columbus, Ohio 43210, USA
53
University of Oregon, Eugene, Oregon 97403, USA
54a
INFN Sezione di Padova, I-35131 Padova, Italy;
54b
Dipartimento di Fisica, Universita
`
di Padova, I-35131 Padova, Italy
55
Laboratoire de Physique Nucle
́
aire et de Hautes Energies, IN
2
P
3
/CNRS, Universite
́
Pierre et Marie Curie-Paris6,
Universite
́
Denis Diderot-Paris7, F-75252 Paris, France
56a
INFN Sezione di Perugia, I-06100 Perugia, Italy;
56b
Dipartimento di Fisica, Universita
`
di Perugia, I-06100 Perugia, Italy
57a
INFN Sezione di Pisa, I-56127 Pisa, Italy;
57b
Dipartimento di Fisica, Universita
`
di Pisa, I-56127 Pisa, Italy;
57c
Scuola Normale Superiore di Pisa, I-56127 Pisa, Italy
58
Princeton University, Princeton, New Jersey 08544, USA
59a
INFN Sezione di Roma, I-00185 Roma, Italy;
59b
Dipartimento di Fisica, Universita
`
di Roma La Sapienza, I-00185 Roma, Italy
60
Universita
̈
t Rostock, D-18051 Rostock, Germany
61
Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
62
CEA, Irfu, SPP, Centre de Saclay, F-91191 Gif-sur-Yvette, France
63
SLAC National Accelerator Laboratory, Stanford, California 94309 USA
64
University of South Carolina, Columbia, South Carolina 29208, USA
65
Southern Methodist University, Dallas, Texas 75275, USA
66
Stanford University, Stanford, California 94305-4060, USA
67
State University of New York, Albany, New York 12222, USA
68
Tel Aviv University, School of Physics and Astronomy, Tel Aviv, 69978, Israel
69
University of Tennessee, Knoxville, Tennessee 37996, USA
70
University of Texas at Austin, Austin, Texas 78712, USA
71
University of Texas at Dallas, Richardson, Texas 75083, USA
72a
INFN Sezione di Torino, I-10125 Torino, Italy;
72b
Dipartimento di Fisica Sperimentale, Universita
`
di Torino, I-10125 Torino, Italy
73a
INFN Sezione di Trieste, I-34127 Trieste, Italy;
73b
Dipartimento di Fisica, Universita
`
di Trieste, I-34127 Trieste, Italy
74
IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
75
University of Victoria, Victoria, British Columbia, Canada V8W 3P6
76
Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
77
University of Wisconsin, Madison, Wisconsin 53706, USA
(Received 29 November 2010; published 22 April 2011)
We report on a search for
CP
violation in the decay
D

!
K
0
S


using a data set corresponding to an
integrated luminosity of
469 fb

1
collected with the
BABAR
detector at the PEP-II asymmetric energy
e
þ
e

storage rings. The
CP
-violating decay rate asymmetry
A
CP
is determined to be
ð
0
:
44

0
:
13
ð
stat
Þ
0
:
10
ð
syst
ÞÞ
%
, consistent with zero at
2
:
7

and with the standard model prediction of
ð
0
:
332

0
:
006
Þ
%
. This is currently the most precise measurement of this parameter.
DOI:
10.1103/PhysRevD.83.071103
PACS numbers: 13.25.Ft, 11.30.Er, 14.40.Lb
*
Now at Temple University, Philadelphia, PA 19122, USA
Also with Universita
`
di Perugia, Dipartimento di Fisica, Perugia, Italy
Also with Universita
`
di Roma La Sapienza, I-00185 Roma, Italy
x
Now at University of South AL, Mobile, AL 36688, USA
k
Also with Universita
`
di Sassari, Sassari, Italy
SEARCH FOR
CP
VIOLATION IN THE DECAY
...
PHYSICAL REVIEW D
83,
071103(R) (2011)
RAPID COMMUNICATIONS
071103-3
In the standard model (SM),
CP
violation (CPV) arises
from the complex phase of the Cabibbo-Kobayashi-
Maskawa (CKM) quark-mixing matrix [
1
]. Measure-
ments of the CPV asymmetries in the
K
and
B
meson
systems are consistent with expectations based on the
SM and, together with theoretical inputs, lead to the deter-
mination of the parameters of the CKM matrix. CPV has
not yet been observed in the charm sector, where the
theoretical predictions based on the SM for CPV asymme-
tries are at the level of
10

3
or below [
2
].
In this paper we present a search for CPV in the decay
D

!
K
0
S


by measuring the CPV parameter
A
CP
defined as
A
CP
¼

ð
D
þ
!
K
0
S

þ
Þ

ð
D

!
K
0
S


Þ

ð
D
þ
!
K
0
S

þ
Þþ

ð
D

!
K
0
S


Þ
;
(1)
where

is the partial decay width for this decay. This
decay mode has been chosen because of its clean experi-
mental signature. Although direct
CP
violation due to
interference between Cabibbo-allowed and doubly
Cabibbo-suppressed amplitudes is predicted to be negli-
gible within the SM [
3
],
K
0


K
0
mixing induces a time-
integrated
CP
-violating asymmetry of
ð
0
:
332

0
:
006
Þ
%
[
4
]. Contributions from non-SM processes may reduce the
value of the measured
A
CP
or enhance it up to the level of
1% [
3
,
5
]. Therefore, a significant deviation of the
A
CP
measurement from pure
K
0


K
0
mixing effects would
be evidence for the presence of new physics beyond the
SM. Because of the smallness of the expected value, this
measurement requires a large data sample and precise
control of the systematic uncertainties. Previous measure-
ments of
A
CP
have been reported by the CLEO-c (
ð
0
:
6

1
:
0
ð
stat
Þ
0
:
3
ð
syst
ÞÞ
%
[
6
]) and Belle collaborations
(
ð
0
:
71

0
:
19
ð
stat
Þ
0
:
20
ð
syst
ÞÞ
%
[
7
]).
The data used in this analysis were recorded at or near
the

ð
4
S
Þ
resonance by the
BABAR
detector at the PEP-II
storage rings. The
BABAR
detector is described in detail
elsewhere [
8
]. The data sample corresponds to an inte-
grated luminosity of
469 fb

1
. To avoid any bias from
adapting the analysis procedure to the data, we perform a
‘‘blind’’ analysis where all aspects of the analysis, includ-
ing the statistical and systematic uncertainties, are vali-
dated with data and Monte Carlo (MC) simulation based on
GEANT4 [
9
] before looking at the value of
A
CP
. The MC
samples include
e
þ
e

!
q

q
ð
q
¼
u;d;s;c
Þ
events, simu-
lated with JETSET [
10
] and
B

B
decays simulated with the
EvtGen generator [
11
]. The coordinate system defined in
[
8
] is assumed throughout the paper.
We select
D

!
K
0
S


decays by combining a
K
0
S
candidate reconstructed in the decay mode
K
0
S
!

þ


with a charged pion candidate. A
K
0
S
candidate is recon-
structed from two oppositely charged tracks with an in-
variant mass within

10 MeV
=c
2
of the nominal
K
0
S
mass
[
4
], which is equivalent to slightly more than

2
:
5

in the
measured
K
0
S
mass resolution. The

2
probability of the

þ


vertex fit must be greater than 0.1%. To reduce
combinatorial background, we require the measured flight
length of the
K
0
S
candidate to be greater than 3 times its
uncertainty. A reconstructed charged track that has
p
T

400 MeV
=c
is selected as a pion candidate, where
p
T
is the
magnitude of the momentum in the plane perpendicular to
the z axis. At
BABAR
, charged hadron identification is
achieved through measurements of ionization energy loss
in the tracking system and the Cherenkov angle obtained
from a detector of internally reflected Cherenkov light. A
CsI(Tl) electromagnetic calorimeter provides photon de-
tection, electron identification, and neutral pion recon-
struction [
8
]. In our measurement, the pion candidate is
required not to be identified as a kaon, a proton, or an
electron. These selection criteria for the pion candidate are
very effective in reducing the charge asymmetry from track
reconstruction and identification, as inferred from studying
the large control sample described later. A kinematic ver-
tex fit to the whole decay tree is then performed with no
additional constraints [
12
]. We retain only
D

candidates
having a

2
probability for this fit greater than 0.1% and an
invariant mass
m
ð
K
0
S


Þ
within

65 MeV
=c
2
of the
nominal
D
þ
mass [
4
], which is equivalent to more than

8

in the measured
D

mass resolution. Motivated by
Monte Carlo simulation studies, we further require the
magnitude of the
D

candidate momentum in the
e
þ
e

center-of-mass (CM) system,
p

ð
D

Þ
, to be between 2 and
5 GeV
=c
. This criterion reduces the combinatorial back-
ground to an acceptable level, but also keeps some
D

mesons from
B
mesons decays (they are

8%
of the
selected sample) [
13
]. Additional background rejection is
obtained by requiring that the impact parameter of the
D

candidate with respect to the beam-spot [
8
], projected onto
the plane perpendicular to the z axis, be less than 0.3 cm
and the
D

lifetime

xy
ð
D

Þ
be between

12
:
5
and
31.3 ps. The lifetime is measured using
L
xy
ð
D

Þ
, defined
as the distance of the
D

decay vertex from the beam-spot
projected onto the plane perpendicular to the z axis.
To further improve the search sensitivity, a Boosted
Decision Tree (BDT) algorithm [
14
] is constructed from
seven discriminating variables for each
D

candidate:

xy
ð
D

Þ
,
L
xy
ð
D

Þ
, the CM momentum magnitude
p

ð
D

Þ
, the momentum magnitudes and transverse com-
ponents with respect to the beam axis for both the
K
0
S
and
pion candidates. Because all the input variables contains no
charge information, no charge bias is expected to be in-
troduced by the algorithm and this assumption has been
verified using a large sample of MC simulated events. The
final selection criteria are based on the BDT output and
optimized using truth-matched signal and background
candidates from the MC sample. For the optimization,
we maximize the
S=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
S
þ
B
p
ratio, where
S
and
B
are the
numbers of signal and background candidates whose in-
variant mass is within

31 MeV
=c
2
of the nominal
D

mass.
P. DEL AMO SANCHEZ
et al.
PHYSICAL REVIEW D
83,
071103(R) (2011)
RAPID COMMUNICATIONS
071103-4
A binned maximum likelihood (ML) fit to the
m
ð
K
0
S


Þ
distribution for the retained
D

candidates is used to
extract the signal yield. The total probability density func-
tion (PDF) is the sum of signal and background compo-
nents. The signal PDF is modeled as a sum of three
Gaussian functions, the first two of them with common
mean. The background PDF is taken as a sum of two
components: a background from
D

s
!
K
0
S
K

, where the
K

is misidentified as


, and a combinatorial back-
ground from other sources. Based on MC studies, the yield
of
D

!






decays in the final data sample is
estimated to be 0.02% of the signal and the estimated
A
CP
for this source to be less than 0.002%. Therefore a
PDF to model this component is not included in the fit. The
background from the decay
D

s
!
K
0
S
K

is modeled using
a PDF sampled from the MC histogram for this mode. The
combinatorial background is described as a second-order
polynomial. The fit to the
m
ð
K
0
S


Þ
distribution yields
ð
807

1
Þ
10
3
signal events. The data and the fit are
shown in Fig.
1
. All of the fit parameters are extracted
from the fit to the data sample apart from the normalization
of the background due to
D

s
!
K
0
S
K

, which is fixed to
the value predicted by the MC simulation.
We determine
A
CP
by measuring the signal yield asym-
metry
A
defined as
A
¼
N
D
þ

N
D

N
D
þ
þ
N
D

;
(2)
where
N
D
þ
ð
N
D

Þ
is the number of fitted
D
þ
!
K
0
S

þ
ð
D

!
K
0
S


Þ
decays. The quantity
A
is the result
of two other contributions in addition to
A
CP
. There is a
physics component due to the forward-backward (FB)
asymmetry (
A
FB
)in
e
þ
e

!
c

c
, arising from


-
Z
0
inter-
ference and high order QED processes in
e
þ
e

!
c

c
. This
asymmetry will create a difference in the number of re-
constructed
D
þ
and
D

decays due to the FB detection
asymmetries arising from the boost of the CM system
relative to the laboratory frame. There is also a detector-
induced component due to the difference in the reconstruc-
tion efficiencies of
D
þ
!
K
0
s

þ
and
D

!
K
0
s


gener-
ated by differences in the track reconstruction and
identification efficiencies for

þ
and


. While
A
FB
is
measured together with
A
CP
using the selected data set, we
correct the data set itself for the reconstruction and iden-
tification effects using control data sets.
In this analysis we have developed a data-driven method
to determine the charge asymmetry in track reconstruction
as a function of the magnitude of the track momentum and
its polar angle. Since
B
mesons are produced in the process
e
þ
e

!

ð
4
S
Þ!
B

B
nearly at rest in the CM frame and
decay isotropically in the
B
rest frame, these events pro-
vide a very large control sample essentially free of any
physics-induced charge asymmetry. However, data re-
corded at the

ð
4
S
Þ
resonance also include continuum
production
e
þ
e

!
q

q
ð
q
¼
u;d;s;c
Þ
, where there is a
non-negligible FB asymmetry due to the interference be-
tween the single virtual photon process and other produc-
tion processes, as described above. The continuum
contribution is estimated using the off-resonance data re-
scaled to the same luminosity as the on-resonance data
sample. Subtracting the number of reconstructed tracks in
the rescaled off-resonance sample from the number of
tracks in the on-resonance one, we obtain the number of
tracks corresponding to the
B
meson decays only.
Therefore, the relative detection and identification efficien-
cies of the positively and negatively charged particles for
given selection criteria can be determined using the
numbers of positively and negatively reconstructed tracks
directly from data.
Using samples of
8
:
5fb

1
on-resonance and
9
:
5fb

1
off-resonance data, applying the same charged pion track
selection criteria used in the reconstruction of
D

!
K
0
S


decays, and subtracting the off-resonance sample
from the on-resonance sample, we obtain a sample of more
than
20

10
6
tracks. We use this sample to produce a map
for the ratio of detection efficiencies for

þ
and


as a
function of the track-momentum magnitude and
cos

,
where

is the polar angle of the track in the laboratory
frame. The map and associated statistical errors are shown
in Fig.
2
. Since the charm meson production is azimuthally
uniform, the

dependence of this ratio is found to be very
small and uncorrelated with momentum magnitude and
polar angle. Therefore, the ratio of detection efficiencies
is averaged over the

coordinate. The statistical uncer-
tainties can be reduced by increasing the control sample
]
2
) [GeV/c
±
π
S
0
m(K
1.82
1.84
1.86
1.88
1.9
1.92
4
10
1.82
1.84
1.86
1.88
1.9
1.92
2
)
Events / (1 MeV/c
4
5
10
3
5
10
4
10
FIG. 1. Invariant mass distribution for
K
0
S


candidates in the
data (black points). The solid curve shows the fit to the data. The
dashed line is the sum of all backgrounds, while the dotted line is
combinatorial background only. The vertical scale of the plot is
logarithmic.
SEARCH FOR
CP
VIOLATION IN THE DECAY
...
PHYSICAL REVIEW D
83,
071103(R) (2011)
RAPID COMMUNICATIONS
071103-5
size, but this would bring a negligible reduction in the final
systematic error. In the fit procedure described below, the
D

yields, in intervals of pion-momentum and
cos

, are
weighted with this relative efficiency map to correct for the
detection efficiency differences between

þ
and


, leav-
ing only FB and
CP
asymmetries. The average correction
factor for each interval is

0
:
09%
.
Neglecting the second-order terms that contain the prod-
uct of
A
CP
and
A
FB
, the resulting asymmetry can be ex-
pressed simply as the sum of the two. The parameter
A
CP
is
independent of kinematic variables, while
A
FB
is an odd
function of
cos


D
, where


D
is the polar angle of the
D

candidate momentum in the
e
þ
e

CM frame. If we com-
pute
A
ðþj
cos


D
for the
D

candidates in a positive
cos


D
bin and
A
ðj
cos


D
for the candidates in its nega-
tive counterpart, the contribution to the two asymmetries
from
A
CP
is the same, while the contribution from
A
FB
has
the same magnitude but opposite sign. Therefore
A
CP
and
A
FB
can be written as a function of
j
cos


D
j
as follows:
A
FB
ðj
cos


D
jÞ¼
A
ðþj
cos


D
jÞ
A
ðj
cos


D
2
(3)
and
A
CP
ðj
cos


D
jÞ¼
A
ðþj
cos


D
jÞþ
A
ðj
cos


D
2
:
(4)
Furthermore, the small fraction of the
D

signal yields
produced from
B
meson decays have zero FB asymmetry.
As a result, the measured
A
FB
from the
e
þ
e

!
c

c
pro-
duction is slightly diluted, but the
A
CP
value is unaffected.
The selected sample is divided into ten subsamples
corresponding to ten
cos


D
bins of equal width and a
simultaneous binned ML fit is performed on the invariant
mass distributions of
D
þ
and
D

candidates for each
subsample to extract the signal yield asymmetries. The
PDF shape that describes the distribution in each subsam-
ple is the same as that used in the fit to the full sample, but
the following parameters are allowed to float separately in
each subsample: the yields and the asymmetries for signal
and combinatorial events, the mean of the second and third
Gaussians for the signal PDF, and the first order coefficient
for the polynomial of the combinatorial background. The
relative fractions corresponding to the second Gaussian are
allowed to float only for three high-statistics subsamples,
while they have been fixed to zero for other ones in order to
have a converged fit. The means of the three Gaussians for
the signal PDF, the width of the first Gaussian, and the
second-order coefficient for the polynomial of the combi-
natorial background are allowed to float, but they have the
same values for all the subsamples. Therefore, the final fit
involves a total of 78 free parameters. Using the asymme-
try measurements in five positive and in five negative
cos


D
bins, we obtain five
A
FB
and five
A
CP
values. As
A
CP
does not depend upon
cos


D
, we compute a central
value of this parameter using a

2
minimization to a
constant:
A
CP
¼ð
0
:
39

0
:
13
Þ
%
, where the error is sta-
tistical only. The
A
CP
and
A
FB
values are shown in Fig.
3
,
together with the central value and

1

confidence inter-
val for
A
CP
.
We perform two tests to validate the analysis procedure.
The first involves generating ensembles of toy MC experi-
ments and extracting
A
CP
for each experiment. We deter-
mine that the fitted value of the
A
CP
parameter is unbiased,
and that the fit returns an accurate estimate of the statistical
uncertainty. The second test involves fitting a large number
of MC events from the full
BABAR
detector simulation. We
measure
A
CP
from this MC sample to be within

1

from
the generated value of zero.
The primary sources of systematic uncertainty are the
contamination in the composition of particles for the data
control sample used to determine the charge asymmetry in
track reconstruction efficiencies and statistical uncertain-
ties in the detection efficiency ratios used to weight the
D

yields. The charged pion sample selected to determine the
ratio of detection efficiencies for


and

þ
contains a
contamination of kaons, electrons, muons, and protons at
the percent level due to particle misidentification and in-
efficiencies. This contamination introduces a small bias in
the
A
CP
measurement due to the slightly different particle
identification efficiencies between positively and nega-
tively charged nonpion particles. The particle identification
efficiencies, measured in the data for positively and nega-
tively charged tracks using the method described in the
previous paragraphs, are found to be in a good agreement
with the MC simulation. We therefore study this bias using
Ratio
0.97
0.98
0.99
1
1.01
1.02
1.03
Pion Momentum (GeV/c)
0123456
θ
cos
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
Ratio Err
0
0.002
0.004
0.006
0.008
0.01
0.012
0.014
0.016
Pion Momentum (GeV/c)
0123456
θ
cos
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
FIG. 2 (color online). Map of the ratio between detection
efficiency for

þ
and


(top) plus the corresponding statistical
errors (bottom). The map is produced using the numbers of


and

þ
tracks in the selected control sample.
P. DEL AMO SANCHEZ
et al.
PHYSICAL REVIEW D
83,
071103(R) (2011)
RAPID COMMUNICATIONS
071103-6
the MC simulated events and determine the bias to be
þ
0
:
05%
. As a result, we shift the measured
A
CP
by

0
:
05%
to correct for the bias and then, conservatively,
include the same value as a contribution to the systematic
uncertainty. Therefore the bias-corrected value of
A
CP
is
ð
0
:
44

0
:
13
Þ
%
.
The technique used here to remove the charge asymme-
try from detector-induced effects produces a small system-
atic uncertainty in the measurement of
A
CP
due to the
statistical error in the relative efficiency map (

0
:
06%
).
Using MC simulation, we evaluate an additional system-
atic uncertainty of

0
:
01%
due to a possible charge asym-
metry present in the control sample before applying the
selection criteria. Combining these two contributions with
the systematic contribution from the difference in the
composition of the control sample compared to the signal
sample (

0
:
05%
), as described earlier, the total contribu-
tion from the correction technique is

0
:
08%
, which is the
dominant source of systematic error. We also consider a
possible systematic uncertainty due to the regeneration of
K
0
and

K
0
mesons in the material of the detector.
K
0
and

K
0
mesons produced in the decay process can interact with
the material around the interaction point before they decay.
Following a method similar to that described in [
15
], we
compute the probability for
K
0
and

K
0
to interact inside
the
BABAR
tracking system. We numerically integrate the
interaction probability distribution, which depends on the
measured nuclear cross-section for
K

(assuming isospin
symmetry), the amount of material in the
BABAR
beam-
pipe and tracking detectors, the
K
0
=

K
0
time evolutions,
and the
K
0
S
kinematic distribution and reconstruction effi-
ciency as determined from simulation studies. From the
difference between the interaction probabilities for
K
0
and

K
0
, we estimate a systematic uncertainty of

0
:
06%
.
Minor systematic uncertainties from the simultaneous
ML fit are also considered: the choice of the signal and
background PDF, the limited MC data set to estimate the
normalization of
D

s
!
K
0
S
K

, and the choice of binning
in
cos


D
, for a total contribution of

0
:
01%
. The com-
bined systematic uncertainty in the
CP
asymmetry mea-
surement including all the contributions is calculated as the
quadrature sum and is found to be

0
:
10%
.
In conclusion, we measure the direct
CP
asymmetry,
A
CP
, in the
D

!
K
0
S


decay using approximately
800 000
D

signal candidates. We obtain
A
CP
¼ð
0
:
44

0
:
13

0
:
10
Þ
%
;
(5)
where the first error is statistical and the second is system-
atic. The result is consistent with the prediction of
ð
0
:
332

0
:
006
Þ
%
for this mode based on the SM.
We are grateful for the excellent luminosity and machine
conditions provided by our PEP-II colleagues, and for the
substantial dedicated effort from the computing organiza-
tions that support
BABAR
. The collaborating institutions
wish to thank SLAC for its support and kind hospitality.
This work is supported by DOE and NSF (USA), NSERC
(Canada), CEA and CNRS-IN
2
P
3
(France), BMBF and
DFG (Germany), INFN (Italy), FOM (The Netherlands),
NFR (Norway), MES (Russia), MICIIN (Spain), STFC
(United Kingdom). Individuals have received support
from the Marie Curie EIF (European Union), the A. P.
Sloan Foundation (USA) and the Binational Science
Foundation (USA-Israel).
*
D
θ
|cos |
0
0.2
0.4
0.6
0.8
1
CP
A
-0.005
0
0.005
*
D
θ
|cos |
0
0.2
0.4
0.6
0.8
1
FB
A
-0.04
-0.03
-0.02
-0.01
0
FIG. 3.
A
CP
(top) and
A
FB
(bottom) asymmetries for
D

!
K
0
S


candidates as a function of
j
cos


D
j
in the data sample.
The solid line represents the central value of
A
CP
and the hatched
region is the

1

interval, both obtained from a

2
minimiza-
tion assuming no dependence on
j
cos


D
j
.
SEARCH FOR
CP
VIOLATION IN THE DECAY
...
PHYSICAL REVIEW D
83,
071103(R) (2011)
RAPID COMMUNICATIONS
071103-7
[1] N. Cabibbo,
Phys. Rev. Lett.
10
, 531 (1963)
;M.
Kobayashi and T. Maskawa,
Prog. Theor. Phys.
49
, 652
(1973)
.
[2] F. Buccella
et al.
,
Phys. Rev. D
51
, 3478 (1995)
.
[3] H. J. Lipkin and Z. Xing,
Phys. Lett. B
450
, 405 (1999)
.
[4] K. Nakamura
et al.
(Particle Data Group),
J. Phys. G
37
,
075021 (2010)
.
[5] I. I. Bigi and H. Yamamoto,
Phys. Lett. B
349
, 363 (1995)
.
[6] S. Dobbs
et al.
(CLEO Collaboration),
Phys. Rev. D
76
,
112001 (2007)
.
[7] B. R. Ko
et al.
(Belle collaboration),
Phys. Rev. Lett.
104
,
181602 (2010)
.
[8] B. Aubert
et al.
(
BABAR
Collaboration),
Nucl. Instrum.
Methods Phys. Res., Sect. A
479
, 1 (2002)
.
[9] S. Agostinelli
et al.
(GEANT4 Collaboration),
Nucl. Instrum. Methods Phys. Res., Sect. A
506
, 250
(2003)
.
[10] T. Sjostrand, S. Mrenna, and P. Z. Skands,
J. High Energy
Phys. 05 (2006) 026
.
[11] D. J. Lange,
Nucl. Instrum. Methods Phys. Res., Sect. A
462
, 152 (2001)
.
[12] W. D. Hulsbergen,
Nucl. Instrum. Methods Phys. Res.,
Sect. A
552
, 566 (2005)
.
[13] The contribution from
CP
violation in
B
decays from the
standard model processes is estimated to be negligible.
[14] P. Speckmayer, A. Hocker, J. Stelzer, and H. Voss,
J. Phys.
Conf. Ser.
219
, 032057 (2010)
.
[15] B. R. Ko
et al.
,
arXiv:1006.1938
.
P. DEL AMO SANCHEZ
et al.
PHYSICAL REVIEW D
83,
071103(R) (2011)
RAPID COMMUNICATIONS
071103-8