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Relations between neutron star properties that do not depend on the nuclear equation of state offer
insights on neutron star physics and have practical applications in data analysis. Such relations are obtained
by fitting to a range of phenomenological or nuclear physics equation of state models, each of which may
have varying degrees of accuracy. In this study we revisit commonly used relations and reassess them with a
very flexible set of phenomenological nonparametric equation of state models that are based on Gaussian
processes. Our models correspond to two sets: equations of state which mimic hadronic models, and
equations of state with rapidly changing behavior that resemble phase transitions. We quantify the accuracy
of relations under both sets and discuss their applicability with respect to expected upcoming statistical
uncertainties of astrophysical observations. We further propose a goodness-of-fit metric which provides an
estimate for the systematic error introduced by using the relation to model a certain equation-of-state set.
Overall, the nonparametric distribution is more poorly fit with existing relations, with the I–Love–Q
relations retaining the highest degree of universality. Fits degrade for relations involving the tidal
deformability, such as the binary-Love and compactness-Love relations, and when introducing phase
transition phenomenology. For most relations, systematic errors are comparable to current statistical
uncertainties under the nonparametric equation of state distributions.
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I. INTRODUCTION

While most neutron star (NS) properties depend sensi-
tively on the unknown equation of state (EoS) of dense
nuclear matter, some properties are interrelated in an
approximate EoS-independent way [1]. The impact of
EoS-independent relations ranges from enhancing our
understanding of NS physics [2–6] to practical applications
in analyses of data. For example, relations between the NS
multiple moments [4,7–9] have led to a generalization of the
no-hair theorem for black holes to the three-hair relations
for Newtonian NSs [8], while the so-called “I–Love–Q”
relations [10,11] have been attributed to the self-similarity
of isodensity contours [3]. On the data analysis side, EoS-
independent relations reduce the number of degrees of
freedom [12–16] and enable consistency tests [11,17–20].
EoS-independent relations may include static or dynamic

and macroscopic or microscopic quantities. One of the

earliest proposed such relation is the one between the
(complex) NS modes and their mass and radius, which can
be used to translate gravitational wave (GW) observations
from isolated NSs to constraints on the radius [21–25].
Additionally, relations including the NS tidal parameters
can simplify analysis of GW data. In general, the signal
emitted during the coalescence of two NSs depends on a list
of tidal deformability parameters and the rotational quadru-
pole moment of each star. Relations between the different
tidal parameters and the quadrupole moment [10–12,26]
reduce the number of free parameters to one per star,
typically the so-called dimensionless tidal deformabilityΛi,
i∈ f1; 2g. A relation between Λ1 and Λ2 (and the binary
mass ratio) further reduces the number of free parameters to
just one [13,27–31].
EoS-independent relations are typically constructed

empirically by fitting a large number of EoS models,
obtained either through phenomenological or theoretical
nuclear models. Their applicability is therefore limited to
the nuclear physics represented in the set of EoSs, while
deviations from the relations may be a sign of new
(relevant) physics. For example, an observed deviation
from the relation between the frequency content of the
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postmerger GW signal from a NS coalescence and the tidal
properties of the pre-merger signal that hold for hadronic
matter [5,32–36] can signal the presence of quark matter in
the merger remnant [19,20,37,38]. The breakdown of
universal behavior in a catalog of observations can further
be used to identify outliers that can be attributed to quark
matter [39] or NS-black hole binaries [40].
Beyond relations breaking down outside their regime

of validity, EoS-independent relations display different
degrees of independence even within it, which furthermore
varies across the NS parameter space. The set of EoSs the
relation is fitted to sensitively impacts the degree of
EoS-independence. A potential choice of such a set is
EoS candidates from nuclear theory, and corresponds to
evaluating the degree of independence present in existing
nuclear models [10,27,41]. Nonetheless, the extent to
which current nuclear models cover the entire range of
possible behaviors of matter at high densities is unclear.
More extended sets of EoSs can be obtained by con-

sidering phenomenological models, designed to mimic
nuclear theory while maintaining some degree of flexibility
at high densities. Examples of such phenomenological
models include piecewise polytropes [42,43] and spectral
representations [44–46]. This approach leads to large sets
of EoSs and statistical distributions on the EoS which
can further be conditioned on astrophysical observations.
Such studies directly quantify the impact of astrophysical
constraints on the degree of EoS-independence compared
to fully agnostic nuclear behavior. For example, Carson
et al. [47] considered spectral EoSs that have been con-
ditioned on GW170817 [48,49] and found that the degree
of EoS-independence can be improved by more than 50%
compared to an agnostic EoS set. Similar improvements
have been reported in [50–52].
Though more generic than a set of selected nuclear

models, parametric EoS representations are still limited in
flexibility by the functional form of the EoS, which is
usually not determined from first principles. This can lead
to strong correlations between the EoS at different densities
that are not an outcome of nuclear insight, but of the
arbitrary functional form of the representation [53]. These
correlations effectively cause many EoSs in the fitting set
to share similar macroscopic and microscopic features,
mimicking or strengthening true EoS-independence [53].
Figure 1 shows an example of such emerging EoS-
independence in the radius R1.4 and dimensionless tidal
deformabilityΛ1.4 of a 1.4M⊙ NS, and the pressure at twice
saturation1 p2.0. The R1.4–Λ1.4 relation is an outcome of the
so called C–Love relation [1,54] (discussed more later),
while a correlation with p2.0 has been observed in several
theoretical models [2], and is analogous to the C–αc
relation described later. Using the spectral parametrization,
perfect knowledge of Λ1.4 would give a R1.4 uncertainty of

∼1 km, consistent with the error in the C–Love relation
computed in [47].2

Figure 1 also shows the same relations obtained with a
more flexible set of nonparametric EoSs based on Gaussian
processes [55,56] that is only minimally informed by
nuclear physics. The nonparametric EoSs are drawn from
a collection of Gaussian processes and explore a wide rage
of intra-density correlations lengths and strengths. As
shown in Legred et al. [53], this EoS set is extremely
agnostic and intradensity correlations are only imposed by
physical considerations such as causality and thermody-
namic stability. Due to its flexibility, the set also inherently
includes EoSs with phase-transition-like behavior, includ-
ing nonmonotonic behavior in the speed of sound and
multiple stable branches [57]. As expected, under the
nonparametric EoSs, perfect knowledge of Λ1.4 yields an
increased uncertainty in R1.4 of ∼2 km, larger than the
nominal error of the C-Love relation.
In this work and motivated by Fig. 1, we revisit common

EoS-independent relations and assess them under non-
parametric EoSs. Following Ref. [47], we evaluate EoS-
independent relations separately against hadronic EoS sets

FIG. 1. The astrophysically informed posterior distributions for
R1.4, Λ1.4, and p2.0 when using nonparametric (blue) and spectral
(orange) EoSs. Astrophysical distributions are conditioned on
pulsar mass, mass-radius, and mass-tidal deformability measure-
ments; see Sec. II C. The spectral EoS result shows less
variability in R1.4 at a fixed value of Λ1.4 than the nonparametric
one. This suggests that the degree of EoS-independence in
R1.4–Λ1.4 is linked to the flexibility of the EoS model. Similar
conclusions hold for p2.0.

1We define the saturation density as 2.8 × 1014 g=cm3.

2When computing the compactness (and throughout unless
otherwise stated), we use units with G ¼ c ¼ 1.
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as well as mixed hadronic and hybrid EoSs. Because of the
difficulty in fitting the relation over an unstable branch of
the M–R relation, we only study EoSs with a single stable
branch, thus restricting to weak phase transitions. We also
consider EoSs that are only required to be consistent with
the existence of massive pulsar measurements, contrasted
with a set required to be consistent with additional GWand
X-ray measurements [58].
With a focus on the applicability of EoS-independent

relations, we further revisit the issue of EoS-independence
across the parameter space. In general, relations are most
useful in the regions of parameter space where data are
most informative, since tight constraints on some param-
eters can be interpreted as constraints on other parameters.
A higher degree of EoS-independence in these regions will
therefore expand their applicability. For example, the
relations that link the dimensional tidal deformabilities
of two NSs in a binary to each other are most useful for NS
with masses ≲1.7M⊙ as GW observations are largely
uninformative about the tidal properties of more massive
NSs [59,60]. In Sec. II, we propose a statistic to measure
the goodness-of-fit of an EoS-independent relation, by
comparing to a tolerance factor which is chosen based
on the application. Fitting via optimization of this metric
allows more control over the precision of the EoS-
independent relation as a function of NS mass.
With the extended EoS set and goodness-of-fit metric in

hand, we revisit the following relations in Sec. III:
(i) I–Love–Q [10,11], Sec. III A: a relation between the

(normalized) moment of inertia I, the tidal deform-
ability Λ, and the rotational quadrupole moment Q
of a NS. The I–Love–Q relations remain highly
universal, likely useful even with sensitivities more
than ten times current GW detectors.

(ii) C–Love [1,54], Sec. III B: a relation between the
compactnessC ¼ m=R and the tidal deformabilityΛ
of a NS. Its main applicability is in translating GW
tidal constraints to radii, given the NS mass m. The
C–Love relation is relatively non-universal; for
nonparametric EoS distributions, it leads to system-
atic errors of ∼30% compared to statistical uncer-
tainties at current sensitivity. This holds true for
EoSs both with and without strong phase transitions.

(iii) Binary-Love [27], Sec. III C: a relation between the
dimensionless tidal deformabilities of two NSs in a
binary Λ1 and Λ2 given the mass ratio q. Its main
applicability is in reducing the number of parameters in
GW analyses on NS binaries, though its EoS-inde-
pendence breaks down for EoSs with phase transitions
[47,61]. The binary-Love relation is similarly nonuni-
versal under the nonparametric EoS distribution with
systematic errors ∼50% of current statistical uncer-
tainties. The binary-Love relation universality is further
degraded for EoSs with phase transitions.

(iv) R1.4-Love [14,29,30], Sec. III D: a relation between
the NS radius and the chirp mass and chirp tidal

deformability of a NS binary, essentially combining
the C–Love and binary-Love relations above.
R1.4-Love likely would introduce bias before the
advent of next-generation detectors, with systematic
errors becoming comparable to statistical uncertain-
ties for a GW170817-like butOð3 − 5Þ times louder.

(v) αc-C [6], Sec. III E: a relation between the EoS
stiffness measure αc ≡ pc=ϵc where pc and ϵc are
the central pressure and energy density respectively,
and the compactness. The αc − C relation is a very
poor fit to the nonparametric mixed distribution with
systematic errors greater than or equal to current
statistical uncertainties. The relation is somewhat
better fit by the parametric and hadronic nonpara-
metric distributions.

II. GOODNESS-OF-FIT AND QUANTIFYING
EOS-INDEPENDENCE

In this section we formalize the discussion of EoS-
independent relations by quantifying EoS-independence
through a goodness-of-fit metric in Sec. II A, introducing a
tolerance factor for the fit in Sec. II B, and describing the
EoS sets we use in Sec. II C.
In general, an individual NS is characterized by an EoS ϵ

and the NS central density ρc. Given two NS properties
Fðϵ; ρcÞ and Gðϵ; ρcÞ which are each one-to-one3 with ρc,
we define their relation Gðϵ; Fðϵ; ρcÞÞ. Remarkably,
for a number of property pairs the induced function
Gðϵ; Fðϵ; ρcÞÞ is nearly independent of ϵ. These are so-
called universal, or EoS-independent relations.

A. Defining a goodness-of-fit metric

Following [11], we fit an analytic phenomenological
approximant to the EoS-independent relation

G̃ðF; θÞ ≈Gð•; Fð•; ρcÞÞ; ð1Þ

where • in place of the EoS ϵ indicates this should hold
regardless of the EoS and θ are fitting parameters. Given a
functional form for G̃ðF; θÞ (typically in terms of simple
functions such as polynomials and logarithms) and a
particular EoS ϵ, we select θ such that a goodness-of-fit
metric is minimized. A least-squares metric is4

3If F is not one-to-one with ρc (for example the mass mðϵ; ρcÞ
for EoSs with multiple stable branches and twin stars), then this
construction works on each monotonic branch.

4Though this metric is not strictly a χ2 statistic, as there is no
statistical interpretation of the scatter which induces the χ2, we use
familiar notation since many conventional intuitions hold. For
instance, χ2=Ndof ¼ 1 is a threshold for a good fit, and any value
significantly smaller than 1 would be regarded as overfitting [62].
In our case, we expect the EoS-independent relations to overfit the
“data”, χ2=Ndof ≪ 1. A large value would be considered a poor fit.
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χ2ϵðθÞ≡
XN
i

½G̃ðFi; θÞ −Gðϵ; Fiðϵ; ρc;iÞÞ�2
σ2i

; ð2Þ

where i iterates over individual stellar solutions (i.e., central
densities), σi is a tolerance factor for the goodness-of-fit of
data point i, and N represents the number of central
densities the relations are evaluated at. In what follows
we use N ¼ 200 which ensures smooth relations and that
χ2=ðN − NpÞ, the χ2 per number of degrees of freedom
(with Np the number of parameters of the fit), is indepen-
dent of N.
Unless otherwise stated, we fit each relation on a grid of

NS central densities. We build a linear grid for each EoS
in the central rest-mass density, ρc, for 1.0M⊙ to Mmax, the
maximum TOV mass. We use only EoSs with a single
stable branch in theM − R relation. Both the choice of grid
used, and the truncation are inputs and represent a de facto
choice of relative significance weighting between mass
scales, which may or may not be realistic depending on the
true distribution of NS masses (equivalently, given an EoS,
the distribution of central densities). For most EoSs, the
spacing of central density favors higher masses; given the
uncertainty in populations of NSs, we do not attempt to
modify this distribution substantially. Implications of this
choice are discussed further in Sec. IV.
The tolerance factor σi can be freely chosen and, as its

name suggests, quantifies the degree of deviation from
EoS-independence we tolerate. Different choices for σi will
result in different best-fit θ parameters and goodness-of-fit
estimates. We discuss the tolerance factor extensively in the
next section.
Beyond a single EoS ϵ, we consider a (normalized)

distribution on EoSs PðϵÞ, potentially conditioned on
observations. The distribution-dependent goodness-of-fit
is then defined as the distribution average of χ2ϵ over PðϵÞ,

χ2ðθÞ≡
Z

χ2ϵðθÞPðϵÞdϵ ¼
X
ϵ

Pϵχ
2
ϵðθÞ; ð3Þ

where Pϵ is the weight of each EoS in the distribution PðϵÞ.
EoSs are sampled for the Monte Carlo sum by directly
sampling an EoS prior set for each distribution; we use the
same prior distributions as [53]. In Eq. (3) the fitting
parameters θ are shared among and fitted with all χ2ϵðθÞ–
this is equivalent to seeking a set of parameters which
are EoS-independent over PðϵÞ. In practice, we sample
EoSs uniformly from the approximate support of Pϵ, i.e.
fϵjPϵ > Pthg for some threshold Pth, and weigh each EoS
draw by Pϵ. This allows us to better resolve the “tails” of the
EoS distribution where χ2ϵ may be large. W sample 1000
draws from the given EoS set in order to approximate the
integral, as we found reasonable convergence of the total χ2

was achieved by this point for all EoS distributions
(see Sec. II C).

B. Role of the tolerance factor

Setting σi ¼ 1 would be sufficient to uniquely specify a
fitting problem for θ if the goal is simply to obtain a fit.
However, in this case, no information about goodness-of-fit
is contained in Eq. (3), because rescaling σi → ασi changes
χ2 → χ2=α2; any level of goodness-of-fit could be achieved
by rescaling. In fact, no specific fit corresponds in any
sense to the “best fit” possible as a different (non-constant)
σi would produce a different fit. This is analogous to a
nonlinear change of variables producing a different fit. We
instead select σi by considering the tolerance we have for
error in the EoS-independent relation. This results in a
χ2ðθÞ that is simultaneously used during the fitting pro-
cedure and whose (dimensionless) numerical value can be
interpreted as a goodness-of-fit.
To clarify, we dig further into a common application of

EoS-independent relations in inference, namely the com-
putation of certain NS properties from others without
knowledge of the EoS. The binary-Love relations [1,27]
facilitate the computation of the tidal deformability of one
NS Λ1 from that of anotherΛ2 given their mass ratio q [13].
The systematic error in the estimation of Λ1 due to the
relation’s error is δΛsys. Whether this systematic error is
tolerable in a GW analysis depends on the statistical
measurement uncertainty δΛstat. If δΛsys ≳ δΛstat, then
the application of the relation introduces an uncertainty
comparable to the statistical uncertainty, which is undesir-
able. If, however, δΛsys ≪ δΛstat, then the relation may be
useful as the statistical uncertainty dominates. This con-
sideration motivates choosing the tolerance factor σi to be
the approximate measurability of the quantity of interest.
In doing do, the goodness-of-fit χ2ðθÞ is a direct check of
the relation between δΛsys and δΛstat. Unless otherwise
stated, throughout this work we use a fiducial estimate of
δΛstat ¼ 210, a constant motivated by the tidal measure-
ment of GW170817 and rescaling the symmetric 90%
region to 1-σ [28]. Improvements in detector sensitivity
mean that a GW170817-like event observed today would
have a lower statistical uncertainty; per Eq. (2), halving
the statistical uncertainty in Λ would increase the χ2 (i.e.,
decrease the goodness-of-fit) by a factor of 4.
In certain cases the measurability of NS tidal deform-

ability is a very poor estimate for the measurability of other
NS properties. For example, for higher-mass NSs, the
compactness will likely be better measured by non-GW
techniques, such as X-ray pulse-profile modeling. In such
cases, we approximate statistical uncertainty by assuming
that the compactness, CðMÞ, can be measured to within
δC ¼ 0.02, a constant representing the uncertainty from
X-ray observations [63–67]. See Secs. III C and III E for
more details of how we simultaneously incorporate sepa-
rate estimates of NS measurability.
Generically, the χ2 value represents how poorly fit the

relation is to the EoS distribution. Per Eq. (2), χ2ϵ represents
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the square error in the quantity predicted by the relation
relative to the tolerance factor. Given a value for χ2, the
typical error in the underlying variable is

ΔG ∼ σðFÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2=Ndof

q
: ð4Þ

Here, σðFÞ represents the tolerance factor on the quantity F
used in evaluating the fit. This is to be taken as an order of
magnitude estimate, and is useful for quickly diagnosing
the error expected from applying an EoS-independent
relation. For example, if σðFÞ represents statistical meas-
urement uncertainty, then a χ2 value of 10−4 indicates that
systematic errors in parameters are of order 0.01 ¼ 1%
statistical uncertainties.
An alternative choice for the tolerance factor would be

σðFÞ ¼ GðFÞ: ð5Þ

This corresponds to constant tolerance for the fractional
error in the fit. This tolerance factor is independent of
measurement uncertainty, and so the best fit bears a
different interpretation. In many cases a constant relative
tolerance may be preferred, especially when an observable
varies over orders of magnitude. We give an example of a fit
where a constant fractional error tolerance gives a seem-
ingly better fit in Sec. III B 1. The χ2 in this case is a
measure of the total fractional deviation in the relation.
Nonetheless, there are subtleties to interpretation of

the χ2 value within the fractional uncertainty approach.
For example, assume we decided to try to identify EoS-
independent relations for RðMÞ or ΛðMÞ. Since RðMÞ is
approximately constant for a large class of EoSs, we adopt
a constant fit:

χ2 ¼
X
i

ðRðMiÞ − R̂Þ2
R̂2
0

; ð6Þ

with R̂ the universal predictor and R̂0 ¼ 12 km a crude
estimate of R̂. Since RðMÞ∈ ½10; 14� km for the majority of
astrophysical EoSs, we would find χ2=Ndof ∼ ð2=10Þ2 ¼
0.04. On the other hand, ΛðMÞ varies over orders of
magnitude, and Λ1.4 ∈ ½200; 800�, see Fig. 1. Then the
goodness-of-fit will average to χ2=Ndof ∼ ð300=500Þ2∼
0.36. The radius is relatively EoS-independent by this
metric under a fractional uncertainty approach; this con-
trasts with the use of measurement uncertainty as the
tolerance factor, where both relations would be comparably
poor. Therefore, the choice of tolerance factor sensitively
impacts what the resulting goodness-of-fit represents. This
is true even when only the fit parameters are of interest, as
those will also depend on the tolerance.
The tolerance factors we use are coarse heuristics for

potentially better-motivated choices. For example, a com-
plete GW simulation study would allow a precise estimate

of σΛ for a range of binary parameters and detector
sensitivities. There are additional choices for the tolerance
factor that we do not investigate, such as σΛ ¼ αδΛβ

stat, for
some (potentially dimensionful) constant α and exponent β.
Additionally, the tolerance factor may be designed to be
agnostic to errors of the fit in certain mass ranges; if for
example, sub-solar mass NSs cannot be formed astrophysi-
cally, then it is not necessary that the relation is well fit
below M⊙. This choice is degenerate, however, with a
choice of which NSs the χ2 is marginalized over; see the
discussion in Sec. IV.

C. EoS set

The final ingredient of the EoS-independent relation fits
is the EoS set and its distribution PðϵÞ. Since our goal is to
assess EoS-independence for flexible EoS sets, we use the
model-agnostic prior of Ref. [56], constructed to minimize
the impact of nuclear theory input.5 EoSs are drawn from
multiple Gaussian processes sampling a range of covari-
ance kernels (correlation scale and strength) between
different densities. Each EoS is stitched to a low-density
representation of the SLy4 EoS [68] at low densities.
The final EoS prior predicts NSs with a very wide range
of R∈ ð8; 16Þ km. We condition this set against radio
data [69–71] for the maximum NS mass, and refer to this
as the pulsar-informed set. We also consider an astrophysi-
cally informed set, obtained in [58] by further conditioning
on X-ray [64–67] and GW [48,59] data.6

Due to its flexible construction, both the pulsar-informed
and the astrophysically informed sets contain EoSs
with phase transitions, both strong and weak. We therefore
further split each set in EoSs without (referred to as
the hadronic set) and with (referred to as the mixed-
composition set) phase transitions. In order to identify
EoSs with phase transitions, we use the moment-of-inertia-
based feature extraction procedure from [57]. This pro-
cedure can identify both strong and weak phase transitions,
including phase transitions that do not result in multiple
stable branches or have a large impact on the macroscopic
observables. We set a high threshold for phase transitions,
requiring a change in internal energy per particle of
ΔðE=NÞ ≥ 30 MeV, see Ref. [57]. As before, we also
only use EoSs with a single stable branch in the M–R
relation. Including EoSs with multiple stable branches
would require choices in the construction of the χ2 to
weight each branch and exclude unstable branches, but

5Though certain EoS models are used to condition the process,
the final EoS distribution depends only weakly on those EoSs
which are used for conditioning, see [55,56].

6The astrophysical data we use are independent of any choice
of the EoS and do not use any EoS-independent relations.
Therefore the inclusion of additional data will only improve
the quality of fits if the data explicitly favor a set of EoSs which
are well fit by the relations.
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would likely decrease the goodness-of-fit of the relations to
the mixed composition EoS set.
Finally, for comparison, we repeat the same fits with

piecewise-polytropic and spectral EoSs, using the pulsar-
informed and astrophysically informed distributions
from Ref. [53]. We use a 4-parameter piecewise-polytrope
parametrization [42], with 2 fixed stitching densities, 3
sampled polytropic indices, and one sampled overall
pressure scaling. For the spectral EoS, we use a 4 parameter
EoS (i.e., 4 basis functions in the spectral exponent) [44],
and the parameter distribution given by Ref. [72], which
reduces the range of parameter space sampled while
significantly improving the fraction of EoS samples which
are physically viable. In both cases, we stitch to a low-
parameter representation of the Sly4 EoS, as described
in Ref. [73]. We follow Ref. [73] in allowing the EoS prior
to extend up to cs ≤ 1.1, in order to allow an acausal model
to represent a potential causal model which is not repre-
sentable by the parametrization. In Legred et al. [53],
this choice was found to affect the distribution on the
piecewise-polytrope EoS; it may additionally affect EoS-
independence by allowing additional (unphysical) variation
in the EoS.

III. EOS-INDEPENDENT RELATIONS

We fit a set of proposed EoS-independent relations to
different EoS distributions and evaluate their universality.
Throughout, unless otherwise stated, we use a fixed
tolerance factor value of σΛ ¼ 210.7 When Λ is not
predicted by the fit but it is the independent variable of
the relation, we propagate the uncertainty through the
relation to the dependent quantity. For example

σIðΛÞ ¼
dĨðΛ; θfÞ

dΛ

����
Λ
σΛ; ð7Þ

where θf are fiducial parameters of the fit, and Ĩ is the
EoS-independent predictor of I from Λ which depends on
Λ via the derivative of the predictor. When neither the
independent or dependent variable are Λ, we use a different
strategy; see Secs. III D and III E. For relations where Λ is
indeed the dependent quantity and the tolerance factor is
constant, this strategy results in optimization problems
which are mathematically identical to previous work,
e.g. [47]. Crucially though, now the goodness-of-fit statistic
can be interpreted as a measure of EoS-independence
relative to observations.
In this section we show plots for the nonparametric-

mixed and spectral astrophysically informed EoS

distributions. We display additional plots for the piece-
wise-polytrope and hadronic-nonparametric EoS distribu-
tions as well as fit parameters in the Appendix.

A. I–Love–Q
We begin with the I–Love–Q relations [11] for the

dimensionless quadrupole moment Q, moment of inertia I,
and tidal deformability Λ of a NS. The existence of such
relations, at least approximately, may not be surprising. In
Newtonian gravity, for example, the quadrupole moment
can be computed from the moment of inertia exactly. In
GR, however, the definitions of these quantities do not
coincide, which is to say the relationship of angular
momentum, angular velocity, and the second multipole
of the gravitational field is nontrivial for slowly spinning
compact objects [75].
We use a slightly modified form for the I–Love–Q

relations compared to Ref. [11], which was shown by
Ref. [47] to produce better behavior in the Newtonian limit:

ÎðΛ; a; b; KyxÞ ¼ KyxΛα 1þ
P

3
i¼1 aiΛ−i=5

1þP
3
i¼1 biΛ−i=5 ; ð8Þ

Q̂ðΛ; a; b; KyxÞ ¼ KyxΛα 1þ
P

3
i¼1 aiΛ−i=5

1þP
3
i¼1 biΛ−i=5 ; ð9Þ

ÎðQ; a; b; KyxÞ ¼ KyxQα 1þ
P

3
i¼1 aiQ

−i=5

1þP
3
i¼1 biQ

−i=5 : ð10Þ

Here, ai, bi, and Kyx are free parameters which are fit.
These forms ensure that when ai and bi are zero, these
relations limit to the Newtonian form. We display best-fit
parameters in Table VI.
We solve the TOVequations in the slow-rotation limit up

to second order [75] to compute the dimensionless moment
of inertia, quadrupole moment, and tidal deformability.8

We then fit the parameters of each relation using a nonlinear
least squares algorithm. We display the loss, i.e., best fit
χ2=Ndof value, of each fit for each EoS distribution in
Table I. In this context Ndof represents the number of
degrees of freedom in the data, which is the number of
points fit (200) minus the number of fitted parameters. The
loss measures the residuals in the fit relative to σΛ ¼ 210,
as described in Sec. II B.
The I–Love–Q relations hold independent of EoS dis-

tribution to very high precision, with loss values less than
3 × 10−3 for almost all relations. In particular IðQÞ, with
losses of ≲10−5 indicates that even with Oð10Þ improve-
ment in GW detector sensitivity, the systematic error of the
relation will still be at sub-percent level compared to
statistical uncertainties. Nonetheless, the parametric EoS

7Simulations suggest that measurement uncertainty in Λ is
approximately independent of the value of Λ (equivalently, the
NS mass) and inversely proportional to the signal strength [74].

8We thank Victor Guedes for the use of code to solve the TOV
equations in the slow-rotation limit up to second order.
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distributions display moderately better EoS-independence
than the corresponding nonparametric distributions, typi-
cally by a factor of 3-10. Similarly, the hadronic non-
parametric distribution is typically a factor of 2-3 better
than the corresponding mixed-composition distributions. In
all cases, the fits to pulsar-informed distributions show
higher losses than the ones conditioned on all astrophysical
data. For the spectral distributions, the difference is
marginal, about a factor of 2, whereas for the nonparametric
mixed distribution the difference is almost a factor of 20 for
the relations involving Λ.
We display the fits for the nonparametric mixed-

composition, and spectral EoS distributions in Figs. 2

and 3 respectively, again each distribution conditioned
on all astrophysical data. For other distributions, see the
Appendix. The higher degree of EoS-independence in the
spectral fit is apparent in the residuals, which are several
times smaller than the nonparametric residuals.
The I–Q relation shows the smallest loss in EoS-inde-

pendence (by a factor of 10) when moving from the spectral
pulsar-informed distribution to the equivalent nonparametric
distribution. This indicates that the I–Q relation is funda-
mentally more EoS-independent than relations involving Λ.
This is potentially related to the discussion of emergent
symmetries in Ref. [3], which demonstrated that the I–Q
relation is indeed EoS-independent under the elliptical
isodensity approximation, which is nearly true in astrophysi-
cally relevant NSs [3].

B. Binary-Love

The binary-Love relation allows us to estimate the tidal
deformability of one NS in a binary given its NS com-
panion’s deformability. The expression is given in terms
of the symmetric deformability Λs ≡ ðΛ1 þ Λ2Þ=2 and the
antisymmetric deformability, Λa ¼ ðΛ2 − Λ1Þ=2 where Λ1

and Λ2 are the deformabilities of two NSs [27]:

ΛaðΛs; q; b; cÞ ¼ FnðqÞΛs

1þP
3
i¼1

P
2
j¼1 q

jbijΛ
−1=5
s

1þP
3
i¼1

P
2
j¼1 q

jcijΛ
−1=5
s

:

ð11Þ

Here bij, and cij are parameters which are fit. For the
Binary-Love relation, we use a NS distribution truncated
at 0.8M⊙ rather than 1.0M⊙, this is necessary to allow the

FIG. 2. Top, each panel: EoSs drawn from nonparametric mixed-composition EoS distribution conditioned on all astrophysical data
(in blue), along with the best-fits (black dashed). From left to right we display the I-Love, I-Q, and Q-Love relations. Bottom, each panel:
residuals of the fit relative to each of the sampled EoSs. This represents a measure of the “error” of using the particular relation with the
given EoS set.

TABLE I. Table χ2=Ndof for the I–Love–Q relations for several
EoS distributions. Here GP represents the nonparametric (Gaus-
sian process) distributions, SP represents the spectral distribu-
tions, and PP represents the piecewise-polytrope distributions.
We show results for each of the pulsar-informed distributions
(psr), and fully astrophysically informed distributions (astro).

χ2=Ndof

Relation

EoS distribution IðΛÞ IðQÞ QðΛÞ
GP-hadronic (astro) 4.6 × 10−5 2.9 × 10−7 6.9 × 10−4

GP-hadronic (psr) 5.3 × 10−4 6.2 × 10−7 8.9 × 10−3

GP-mixed (astro) 1.5 × 10−4 5.0 × 10−7 2.0 × 10−3

GP-mixed (psr) 2.6 × 10−3 7.9 × 10−7 3.9 × 10−2

SP (astro) 5.9 × 10−7 8.4 × 10−8 3.3 × 10−5

SP (psr) 3.1 × 10−6 1.2 × 10−7 1.0 × 10−4

PP (astro) 4.2 × 10−6 2.7 × 10−7 2.1 × 10−4

PP (psr) 4.1 × 10−5 1.3 × 10−6 4.2 × 10−3
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relationship to be evaluated over a wider range of mass
ratios q. Fit coefficients for the astrophysically informed
EoS sets are given in Table VII. Here, and in the rest of the
paper, we solve the TOVequations only to first order in the
small spin parameter using the approach from [76].
We display the fit losses in Table II, and additionally plot
them in Fig. 4.
The losses are noticeably higher than any of the

I–Love–Q relations for corresponding EoS sets, indicating
the relation is less EoS-independent. The use of lower mass
cutoff inevitably leads to an increase in loss for the relation,
as low-mass NSs have larger tidal deformabilities; however,
raising the mass cutoff toMmin ¼ 0.9 lowers losses by only
a factor of ∼2–3. This indicates that the fits are indeed
worse than the I–Love–Q relations.
Nonetheless, the spectral EoS distribution fits are ∼50

times better than the nonparametric and piecewise-polytrope

distributions. The better fit to the spectral distribution might
be due to large correlations between density scales. Such
correlations may reduce the variation in Λ across mass
scales, making the relation between Λðm1Þ and Λðm2Þ more
EoS-independent. The astrophysically informed fits show
improvement over pulsar-informed fits, with typical loss
values 3-5 times better. The piecewise polytrope is by far the
most improved distribution upon inclusion of more data,
with losses decreasing by factors of more than 10. In all
cases the hadronic distributions give improved fits relative to
the mixed composition distributions, typically by a factor
of 10 in loss. For theworst-fit case, the nonparametric pulsar-
informed mixed distribution, the fit quality (χ2=Ndof ¼
2.6×10−1) may be poor enough to pose challenges for
current-generation GW detectors, as it indicates systematic
errors of order 60% in the predicted value of Λa relative to

FIG. 3. The same as Fig. 2 but with the spectral EoS distribution conditioned on all astrophysical data. We use identical axes ranges
between the two figures. Worst-case residuals are of order 10 times smaller than the nonparametric mixed-composition distribution seen
in Fig. 2.

TABLE II. Table χ2=Ndof for the binary-Love relations for
several distributions on the EoS and binary mass ratios.

χ2=Ndof

Relation

EoS distribution q ¼ 0.55 q ¼ 0.75 q ¼ 0.9

GP-hadronic (astro) 6.6 × 10−3 1.8 × 10−2 9.1 × 10−3

GP-hadronic (psr) 2.7 × 10−2 1.0 × 10−1 8.5 × 10−2

GP-mixed (astro) 1.0 × 10−2 5.2 × 10−2 4.9 × 10−2

GP-mixed (psr) 5.5 × 10−2 2.6 × 10−1 2.2 × 10−1

SP (astro) 3.3 × 10−3 6.5 × 10−3 2.0 × 10−3

SP (psr) 6.7 × 10−3 1.0 × 10−2 2.9 × 10−3

PP (astro) 3.5 × 10−3 1.6 × 10−2 1.1 × 10−2

PP (psr) 6.2 × 10−2 2.2 × 10−1 9.6 × 10−2 FIG. 4. The costs shown in Table II. The spectral costs are in
general the lowest, especially for more equal-mass binaries.
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statistical uncertainties. Figure 5 shows nonparametric
mixed and spectral fits relative to sampled EoSs. The larger
variation of the nonparametric EoS set relative to the spectral
set is apparent.
The large differences in fit quality for nonparametric

distribution with mixed composition and hadronic compo-
sition are consistent with observations of the binary-Love
relation (as presented here) failing to describe effectively
EoSs with phase transitions [47,61]. This could potentially
lead to analyses using Binary-Love relations artificially
downranking EoSs which support hybrid stars. This effect
will likely be smaller than an e-fold in likelihood for
any individual event, but such effects may multiply in a
hierarchical analysis, leading to large errors after many
events.

1. Changing fit quality with the tolerance factor

The deteriorating quality of the fit at low values of Λs is
apparent in Fig. 5, left panel. This is because assuming a
constant tolerance factor for Λ upweights relative errors
where Λ is large, i.e. the regime where small relative
differences lead to very large χ2 values. It is possible to use
the tolerance factor to improve the fit quality at low Λ.
Instead of choosing an observational value for the tolerance

factor σðΛsÞ, we set σðΛsÞ ¼ ΛaðΛsÞ. Such a fit may be
useful for tidal analyses of binaries containing a massive
NS, as it gives constant relative uncertainty and therefore
tolerates only small errors in Λa when Λa itself is small. We
plot the fit achieved in Fig. 6, scaling the uncertainty by a
factor of 0.5 for display purposes. We additionally plot the
region encompassed by �σðΛsÞ and shade the region in
between for the q ¼ 0.9 fit. This demonstrates the role of
tolerance factors and the flexibility they offer.

C. C–Love
Another established EoS-independent relation relates

compactness to tidal deformability [11,54]. This relation
is useful for determining the radii of NS with measured
tidal deformabilities and masses from GW observations.
Such a relation is plausible: radius and tidal deformability
are linked by definition

Λ ¼ 2

3
k2ðmÞðR=mÞ5 ¼ 2

3
k2C−5; ð12Þ

though a truly EoS-independent description would require
k2, the tidal Love number, to be either independent of the
EoS or expressible only as a function of C.

FIG. 5. Similar to Fig. 2. Left: the Binary-Love relation fitted, along with all EoSs for the nonparametric EoS distribution with mixed
composition when conditioning on all astrophysical data. We plot each fit for three different mass ratios, q ¼ 0.55, q ¼ 0.75, and
q ¼ 0.9. Right: the same for the spectral EoS distribution.
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The relation is given as follows, again using a fitting
form from Ref. [47]

C ¼ KCΛ
1þP

3
i¼1 aiΛ−i=5

1þP
3
i¼1 biΛ−i=5 : ð13Þ

Similar to the I-Love-Q case, ai, bi, and KCΛ are param-
eters to be fit. As before, we propagate a constant
Λ uncertainty to a C uncertainty. However, for high-
compactness stars, GWs are expected to be weakly inform-
ative probe, leading to poor fits for the high-compactness
part of the relation. Moreover, x-ray probes of compactness
can provide complementary constraints [64,66]. We there-
fore hybridize two tolerance factors:

σ−2C ¼ σ−2C;x−ray þ σ−2C;GW: ð14Þ

The X-ray uncertainty σ−2C;x−ray is negligible for C ≲ 0.16,
while the GW uncertainty σC;GW is negligible for C≳ 0.2.
This corresponds to a transition from X-ray to GW data
dominating constraints near Λ ¼ 200–500. The total tol-
erance factor is not representative of any particular meas-
urement, but rather provides a holistic picture of the
statistical uncertainty.

Results are shown in Table III. We find the fit qualities
to be ∼100 times poorer than for the I–Love–Q relations,
even for the parametric distributions. Contrary to the binary-
Love case, the C–Love goodness-of-fit is relatively inde-
pendent of conditioning on additional data, with the loss
changing by ≲2 in all cases when additional astrophysical
data are included. Also, for the nonparametric EoSs, the
C–Love relation is not appreciably better fit to the hadronic
distribution than to the mixed distribution. Similarly to the
binary-Love relations, the mixed-composition nonparamet-
ric distribution conditioned only on heavy pulsar mass
measurements shows a loss of 3.6 × 10−1, indicating sys-
tematic errors are already comparable to statistical uncer-
tainties. The same holds true for the piecewise-polytrope
distribution, though the piecewise-polytrope loss decreases
by almost a factor of 10 upon the introduction of additional
astrophysical data, while the nonparametric distribution
decreases by only a factor of 3. This is consistent with
the discussion in Sec. III B, and indicates that the large
variance in the piecewise-polytrope distribution that leads to
large losses is not consistent with current astrophsyical data
from x-ray pulsars and gravitational waves.
Finally, we also display the fits to the nonparametric

mixed-composition and spectral EoS distributions condi-
tioned on all astrophysical data in Fig. 7. The nonpara-
metric EoSs have residuals larger by about a factor of 2,
as in the previous examples. Fit parameters are given in
Table VIII.
The relatively large losses in the C–Love relation are

consistent with the existence of doppelgangers [77,78]:
EoSs with similar Λ across the parameter space, ΔΛ < 30,
but different R, ΔR up to 0.5 km. This phenomenon is due
to variability in the EoS at densities below 2ρnuc; the
nonparametric EoS prior contains a wide range of low-
density behaviors and thus produces EoSs with similar
features. Approximating the nonparametric EoS distribu-
tion with this relation may result in errors in compactness
ΔC ∼ 0.02, although typical errors are ΔC≲ 0.01.
Choosing a fiducial NS radius of 10.5 km, and a fiducial

FIG. 6. The binary-Love fit to the mixed nonparametric,
astrophysically informed EoS distribution when applying a
modified tolerance factor that favors better fits at low-Λ values.
The best fit line is in dashed black, plotted over draws from the
nonparametric distribution in blue. For comparison, we plot in
dashed red the best-fit line for the uniform tolerance factor fit to
the same distribution, the same as Fig. 5. We shade the σðΛsÞ=2
area away from best fit q ¼ 0.9 curve in pink for the uniform
tolerance factor, and in gray for the modified, constant relative
tolerance factor. The fit requires better agreement at low Λa in
order to achieve low cost, and therefore tit appears better by eye
than the fit in Fig. 5, especially on a log-log plot.

TABLE III. Table χ2=Ndof for the C–Love relations for several
distributions on the EoS.

χ2=Ndof

Relation

EoS distribution CðΛÞ
GP-hadronic (astro) 7.2 × 10−2

GP-hadronic (psr) 2.2 × 10−1

GP-mixed (astro) 1.2 × 10−1

GP-mixed (psr) 3.6 × 10−1

SP (astro) 1.6 × 10−2

SP (psr) 2.6 × 10−2

PP (astro) 6.4 × 10−2

PP (psr) 4.7 × 10−1
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mass of 1.4M⊙, this error can be translated to maximal
radius uncertainty of ∼1 km, with typical errors half that, in
line with Refs. [77,78]. The presence of these features is
additionally consistent with Fig. 1; the nonparametric
EoS distribution shows a less EoS-independent relations
between R and Λ. This indicates that independent radius
and tidal deformability measurements will be required in
order to effectively constrain the EoS at intermediate
(∼1–2ρnuc) densities.

D. R1.4–Λ̃
An additional relation between NS tidal properties and

the radius has been proposed by Refs. [14,29,30]. The
relation leverages the relative insensitivity of Λ̃, the leading
order tidal parameter in the post-Newtonian expansion of
the GW phase [74,79] as a function of q, and the relation
given in Eq. (12): Λ̃ðR1.4;McÞ. That is, we write the tidal
deformability as a EoS-independent function of typical star
radius and the chirp mass,Mc≡ðm1m2Þ3=5=ðm1þm2Þ1=5,
of the binary.
The relation is given, following Ref. [14], by

a

Λ̃

�
R1.4

Mc

�
6

¼ 1: ð15Þ

For it to be useful, it should hold for some (perhaps narrow)
range of mass ratios, chirp masses, and for a wide range of
EoSs for some constant a. In practice, the relation is used to
infer R1.4 so we use this to define the uncertainty in this
case (unlike all other examples), we can no longer only
propagate uncertainty from Λ measurements because the
chirp mass is also uncertain. We assume a fiducial
uncertainty ofΔR1.4 ¼ 1.0 km, which represents a ∼� 8%
measurement of the radius of a NS and use a typical R1.4
value of 12 km; we select a fiducial grid of Mc for each
EoS, induced by requiring both components to be below
Mmax and above 1.05M⊙. We find that additionally by
fixing the chirp mass, the loss of the fit may decrease by a
factor of 5 for the spectral distribution, but by only a factor
of 2 for the nonparametric distribution, and a factor of 1.5
for the piecewise-polytropic distribution. The χ2 in this case
is then

χ2ðaÞ ¼
X
i

X
j

PðϵiÞ
�
1
a Λ̃

1=6
ðiÞ M

ðjÞ
c − RðiÞ

1.4

�
2

ΔR2
1.4

: ð16Þ

Where RðiÞ
1.4 depends on the EoS(ϵi), and Λ̃ði;jÞ depends on

the EoS and the binary parameters, but R1.4, the fiducial

FIG. 7. Left: the C–Love relation fitted along sampled EoSs for the nonparametric EoS distribution with mixed composition when
conditioning on all astrophysical data. Right: the same for the spectral parametrization. Relative errors are larger for the C–Love relation
than for the I–Love–Q relation, and the nonparametric mixed distribution shows greater variability than the spectral distribution.
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radius value, is independent of both EoS and binary
parameters. In this case the optimal solution can be
obtained analytically by differentiating the cost with
respect to 1=a. The loss is then given by χ2ða�Þ, with a�
the optimal solution; it is shown in Table IV. Fit parameters
are given in Table IX.
The spectral EoS distributions again show greater levels

of EoS-independence than the nonparametric distribution,

indicating a tighter relationship between R1.4 and Λ in the
spectral model, consistent with Fig. 1. However, fits are
typically poorer relative to the I–Love–Q relations and
more consistent with the binary-Love relations. Similar to
the binary-Love case, the nonparametric and piecewise-
polytrope, pulsar-informed distributions show nearly
identical loss, ∼1.3–1.7 × 10−1. The mixed composition
distribution shows marginally worse fits, with losses
about 1.3 times worse for the pulsar-informed distribu-
tions. When conditioning on additional astrophysical
data, the piecewise-polytrope distribution is better fit
with the relation, improving by a factor of 2, while the
nonparametric distributions improve by less than 25%.
This distinction is likely due to relatively strong corre-
lations between ∼ρnuc and higher densities in the piece-
wise-polytrope distribution, which are absent in the
nonparametric EoS distribution. See, e.g., Fig. 5 of [53].
These correlations cause astrophysical measurements to
be highly informative at and below nuclear densities in
the piecewise-polytrope case, and therefore likely rule out
many of the configurations which lead to “dopple-
ganger”-like behavior [77,78]. This leads to less variation
in the relation between R and Λ and therefore improves
the quality of the fit. By contrast, there is still a range

TABLE IV. Table χ2=Ndof for the R1.4–Λ̃ relations for several
distributions on the EoS.

χ2=Ndof

Relation

EoS distribution R1.4–Λ̃

GP-hadronic (astro) 1.2 × 10−1

GP-hadronic (psr) 1.3 × 10−1

GP-mixed (astro) 1.4 × 10−1

GP-mixed (psr) 1.7 × 10−1

SP (astro) 2.5 × 10−2

SP (psr) 1.8 × 10−2

PP (astro) 7.7 × 10−2

PP (psr) 1.4 × 10−1

FIG. 8. Similar to Fig. 2 but for the αc–C relation. Left: the relations between αc and C for the nonparametric EoS model with
mixed composition conditioned on all astrophysical data. Right: the same for the spectral parametrization, conditioned on all
astrophysical data.
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of low-density behavior within the nonparametric pos-
terior [53], which likely increases the range of behaviors
seen in the Λ–R relations of nonparametric EoSs. This
variability would be associated with a lower degree of
EoS-independence in the R1.4–Λ̃ relation.

E. αc–C

A EoS-independent relation between αc ≡ pc=ϵc and
compactness C was proposed by Ref. [6]. The quantity αc
is most sensitive to the EoS only at the highest densities in a
star, while the compactness depends on the all densities in
the star. Therefore we would expect EoS parametrizations
which impose strong inter-density correlations to be most
consistent with the relation. The expression to be fit is [6]

lnðαcÞ ¼
X5
j¼0

aj lnðCÞ5: ð17Þ

The parameters to be fit are aj. We define a tolerance factor
for this relation by propagating the uncertainty inΛ through
the C–Love relation, and then through the αc–C relation,
using fiducial parameters for the C–Love relation given
by [47] and for the αc–C relation given by [6]. In Fig. 8 we
display the fit and residuals of this relation to our non-
parametric, mixed composition, astrophysically informed
EoS distribution, and to the corresponding astrophysically
informed spectral EoS distribution. Fit coefficients are
given in Table X.
We show in Table V the losses for this relation for all

of the distributions studied. This relation, like all others
studied, shows higher losses than the I–Love–Q relations.
Also similar to other relations, the nonparametric distribu-
tions show higher losses than the parametric distributions,
typically by orders of magnitude. Likewise the hadronic
nonparametric distributions show improvements in loss

compared to the mixed distributions, though effects are less
than an order of magnitude.
In contrast to the other relations, however, the αc–C

relations show losses greater than one for the nonpara-
metric EoS distributions. This indicates that systematic
errors are likely greater than statistical uncertainties for this
relation. Additionally the large errors for the piecewise-
polytrope and spectral distributions relative to other rela-
tions demonstrate that, even for these distributions, the
EoS independence is questionable. The tolerance factor we
use is conservative, though removing the component which
models X-ray mass-radius measurability still gives loss
values greater than one, which indicates this relation very
poorly models the nonparametric EoS distributions even for
just the purposes of GW observations.
The appearance of EoS independence in, e.g., the

spectral model, even though it is weak, is likely due to
model-dependent correlations. Under the spectral distribu-
tion, strong correlations appear between density scales
which can lead to, e.g., the compactness (a function of the
entire matter profile of the star) being correlated with the
central pressure-energy density. These correlations are not
present for the nonparametric EoS distributions, and are
present to a weaker extent in the piecewise-polytropic
EoS distributions.

IV. DISCUSSION

In this paper, we tested the EoS-independence of
relations between NS properties under multiple EoS mod-
els, including parametric and nonparametric distributions.
In particular, we used a nonparametric EoS distribution,
and evaluated the goodness-of-fit of the relations both to
subsets mimicking hadronic EoSs or mixed-composition
EoSs. We found that effectively all relations are better fit by
parametric models. Additionally within the nonparametric
distributions, relations are better satisfied by EoSs which do
not show signs of phase transitions.
The I–Love–Q relation is qualitatively better than other

proposed relations, with typical loss values of 10−3 or
below. In particular, the I–Q relation is very well fit by all
EoS distributions. This could be expected based on
Ref. [3], which indicated that the I–Q relation should
indeed be mostly EoS independent due to the near self-
similarity of isodensity contours and near EoS independ-
ence of the ellipticity profile of NSs. In fact, the best-fit
relations we studied are I–Q relations under the spectral
distributions, with prediction errors of jΔIj=I ∼ jΔQj=Q∼
0.001, in line with Refs. [11,47]. The piecewise-polytrope
and nonparametric distributions are worse fit, especially
for relations involving Λ. Nonetheless even the worst-fit
relation, QðΛÞ, still has prediction errors at percent level
(ΔQ=Q≲ 0.1). For the piecewise-polytrope model, this is
qualitatively similar to the findings of Ref. [31]. Systematic
errors of ∼1–10% are comparable to systematic errors from

TABLE V. Table χ2=Ndof for the αc − C relations for several
distributions on the EoS. The quality of the fit decreases for all
distributions except the piecewise-polytrope upon incorporating
more astrophysical data, unlike the bulk of all the relations
we study.

χ2=Ndof

Relation

EoS distribution αcðCÞ
GP-hadronic (astro) 2.7 × 10−1

GP-hadronic (psr) 1.8 × 100

GP-mixed (astro) 1.4 × 100

GP-mixed (psr) 5.8 × 100

SP (astro) 2.9 × 10−2

SP (psr) 7.2 × 10−2

PP (astro) 1.5 × 10−1

PP (psr) 2.9 × 10−1
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many other factors, such as detector calibration [80], and
waveform modeling [81–85].
At a comparable precision to the errors presented here, the

quality of numerical solutions to the TOV equations may
become important for stars containing sharp phase transi-
tions [86]. Because the speed of sound of Gaussian process
draws is analytically greater than zero, we are not subject to
this concern, we do not have truly sharp transitions, and
therefore standard techniques for computing the tidal Love
numbers is sufficient. Nonetheless, improved accuracy in
TOV solutions will likely be important in future analyses
with much improved detector sensitivities.
In contrast, the other relations involving tidal deform-

ability show worse fits, especially among nonparametric
EoSs not informed by all astrophysical measurements. All
of the C–Love, binary-Love, and R1.4–Λ̃ relations show
losses of order 10−1 or more for the mixed-composition
nonparametric EoS distribution. This indicates systematic
errors from these relations are already of order the statistical
uncertainties. All relations, though, do improve with the
inclusion of additional astrophysical data, which indicates
that data have ruled out some EoS candidates inconsistent
with the relations posed.
In fitting the binary-Love relation, the inclusion of

phase transition EoSs appreciably worsens the fit to the
nonparametric EoS distribution, increasing losses by a
factor of 10 in the astrophysically informed case. This is
consistent with Ref. [47] which found that hybrid EoSs
are poorly modeled with a binary-Love relation. In
particular, Carson et al. [47] found that hybrid EoSs
would likely have residuals of order Λa ∼ 50 at Λs ∼ 100,
which is consistent with the worst-case residuals we find
in Fig. 5. However, the mixed-composition distributions
are not universally worse-fit among relations, the C–Love
fit sees comparable losses among the two distributions,
indicating this relation is essentially insensitive to the
presence of a phase transition.
On the other hand, the αc–C relation is the only relation

we studied with loss values greater than 1 for the non-
parametric EoS distribution. A similar near total-loss of
universality was observed for modes in hybrid stars [87],
which could be a useful target for future work. The loss
values for the nonparametric distribution are almost 100
times worse for the nonparametric distributions than for the
spectral distributions, indicating that modeling systematics
are likely responsible for the appearance of EoS independ-
ence in this relation. Nonetheless, the improvement of EoS
independence in the hadronic nonparametric case, espe-
cially upon the inclusion of additional astrophysical data,
may indicate that this relation does hold universally for
certain classes of EoSs (e.g., hadronic EoSs), under certain
assumptions (such as astrophysically reasonable compact-
ness-mass-radii) relations. For this reason, even relations
which are not truly EoS independent may still be useful,
depending on the use cases intended.

The goodness-of-fit improvement seen when using para-
metric models rather than nonparametric models is not
surprising. The parametric models have fixed functional
forms which forces consistency across EoS samples within
each of these sets. Contrarily, the nonparametric EoS
distribution produces EoSs with no fixed functional form
and therefore no guarantee of displaying any particular
phenomenology. Therefore, we expect a much larger
variety of EoS behaviors from the nonparametric distribu-
tion compared to the parametric distributions.
These results are all dependent on the choice of tolerance

factor; it is difficult to chose a completely realistic
representation when many different potential sources of
NS measurements exist. Nonetheless, certain conclusions,
such as the relatively poor fits to the nonparametric mixed
distribution relative to the spectral distribution, are inde-
pendent of choice of tolerance factor. Additionally the
distribution of points (NSs) that the relations are evaluated
with cannot be prescribed universally. A potentially more
physical choice that uniform-in-central-density would be a
distribution which is consistent with the known population
of NS sources:

χ2 ¼
Z

PðϵÞπðmÞχ2ðG;F; ϵÞdmdϵ; ð18Þ

where πðmÞ is the distribution of NS masses, and F is a
generic NS property which serves as the independent
variable for a relation and G is the dependent variable
of the relation. A mapping from FðmÞ, GðmÞ must be
chosen in the case that EoSs with multiple stable
branches in the M–R relation are used. Then the loss
would be equal to the expected failure of the EoS-
independent relation to correctly model the next NS
source detected. However, the population of NSs
observable via GWs is still poorly known [88,89].
Mathematically, such modifications to the analysis are
equivalent to changes to the tolerance factor, though they
have different physical interpretation.
It is important to recognize the sensitivity of the loss to

choices such as the distribution of NSs used in evaluating
each EoS χ2 and in the tolerance factor chosen for each NS.
As seen in, e.g., Fig. 5, the highest χ2 contributions appear
at high Λ values for relations involving Λ, equivalent to
larger residuals there (under the constant uncertainty
model). There may not exist merging BNSs with symmetric
tidal deformabilities as high as 104, or they may be
exceedingly rare. However, Fig. 5 also demonstrates that
at Λ ∼ 103, deviations from the EoS-independent relation
of order 100 or larger are still possible within the non-
parametric model. Therefore, we expect variation in the
loss based on choices in the truncation of the population,
though we do not expect the relationship between losses for
the various models to change appreciably under different
assumptions. Additionally, assessing the EoS independence

LEGRED, SY-GARCIA, CHATZIIOANNOU, and ESSICK PHYS. REV. D 109, 023020 (2024)

023020-14



of relations when matter is not in cold β-equilibrium, or
when NSs are not isolated and nonspinning [90], may be
challenging. In particular, NS merger remnants may be
highly spinning, hot, and dynamically perturbed, so the
cold relations explored here, and the strategy used to
evaluate them, will likely have to be extended. Longer-
term EoS independence tests will likely have to carefully
examine all of these factors in order to determine, with
higher fidelity, the usefulness of EoS-independent relations
to our understanding of NSs and the nuclear EoS.
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APPENDIX: ADDITIONAL FIGURES
AND TABLES

In this appendix we display results for the piecewise-
polytrope and nonparametric hadronic EoS distributions, in
similar form as the main text results for the spectral and
nonparametric mixed distributions. The χ2 values for each
fit are given in the main text tables. We use the astrophysi-
cally informed EoS distributions, again because we do not
find significant differences modulo improvements of order
no more than 10 to the fit quality upon conditioning.
For the I–Love–Q relation, we display the fits for the

hadronic nonparametric distribution in Fig. 9, and for the
piecewise-polytrope EoS distribution in Fig. 10. I–Q is still
the best fit EoS-independent relation. We also give fitting
coefficients in Table VI.
We display the fits for the binary-Love relation for the

hadronic nonparametric distribution and piecewise-
polytrope distribution in Fig. 11. We display the best-fit
coefficients in Table VII.
We display the fits for the C–Love relation for the

hadronic nonparametric distribution and piecewise-
polytrope distribution in Fig. 12. We display the best-fit
coefficients in Table VIII.
For the Λ̃–R1.4 relation we display the value for the

coefficient a for all of the EoS sets in Table IX.
We display the fits to the αc–C EoS-independent relation

for the nonparametric hadronic, and piecewise-polytrope
distribution both conditioned only on mass measurements
of heavy pulsars, and conditioned on all astrophysical data
in Fig. 13. The piecewise-polytropic distribution is the only
one which is better fit by the αc–C relation after the
inclusion of GW mass-tidal deformability and x-ray mass-
radius measurements. This can be attributed to a priori
large values of αc in the cores of the most massive neutron
stars under the piecewise-polytrope models.

FIG. 9. The same as Fig. 2, but with the hadronic nonparametric distribution conditioned on all astrophysical data.
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FIG. 10. The same as Fig. 2 but with the piecewise-polytrope EoS distribution conditioned on all astrophysical data.

TABLE VI. Table of coefficients for the I–Love–Q relations for the nonparametric mixed-composition, spectral, and piecewise-
polytrope astrophysical posterior EoS distributions. See Eqs. (8)–(10) respectively.

GP-mixed (astro) SP (astro) PP (astro)

Coefficient IðΛÞ QðΛÞ IðQÞ IðΛÞ QðΛÞ IðQÞ IðΛÞ QðΛÞ IðQÞ
α 2=5 1=5 2 2=5 1=5 2 2=5 1=5 2
Kyx 0.5356 0.0072 0.0072 0.5139 0.0052 0.0052 0.4192 0.0007 0.0007
a1 1.7583 11.1589 11.1589 2.0486 12.1774 12.1774 2.2881 30.3545 30.3545
a2 1.3883 −37.6926 −37.6926 0.8249 −37.0504 −37.0504 −3.7192 −16.5079 −16.5079
a3 −5.6089 42.7718 42.7718 6.7629 43.0395 43.0395 72.9633 48.3485 48.3485
b1 −0.7071 −2.5557 −2.5557 −1.0615 −2.6161 −2.6161 −3.5874 −2.7902 −2.7902
b2 −0.9748 2.3251 2.3251 2.2034 2.4074 2.4074 16.8924 2.6775 2.6775
b3 0.5105 −7.3937 −7.3937 −0.9326 −7.6697 −7.6697 −7.6431 −8.7651 −8.7651

TABLE VII. Table of coefficients for the binary-Love relations for the nonparametric mixed-composition, spectral, and piecewise-
polytrope posterior EoS distributions. See Eq. (11).

GP-mixed (astro) SP (astro) PP (astro)

Coefficient q ¼ 0:55 q ¼ 0:75 q ¼ 0:9 q ¼ 0:55 q ¼ 0:75 q ¼ 0:9 q ¼ 0:55 q ¼ 0:75 q ¼ 0:9

b11 −13.6363 −13.0286 −35.8727 89.3902 −114.1202 −13.7126 −13.318 −16.0181 −14.2241
b12 16.6082 11.9352 38.1073 −199.4862 153.6543 14.5353 14.5180 13.5785 14.6087
b21 60.9451 49.595 17.3353 137.5437 65.0962 30.3579 60.5649 60.5607 29.9721
b22 −22.4131 −15.7433 −10.7606 −97.1215 −86.1626 −36.4909 −17.0596 −9.8172 −33.4993
b31 −132.7392 −95.409 −85.2499 −227.1308 −150.6500 −21.6415 −125.4819 −117.0661 −22.0825
b32 −35.1957 −33.9646 66.3908 −12.4604 −37.6394 20.1071 −31.7949 −50.6147 20.6718
c11 −36.1830 −121.3958 20.9222 −34.3331 −17.6402 −1.2833 −27.6276 −79.3091 −14.3035
c12 62.3338 157.5113 −24.9027 49.3492 30.3484 0.9211 43.9329 99.8593 15.0504
c21 60.2142 57.6574 44.7671 69.5378 −46.8838 34.3594 63.5022 62.0146 35.7453
c22 −27.5988 −38.6213 −42.4961 24.7469 2.4981 −43.3557 −30.8961 −31.4480 −43.0991
c31 −132.3099 −89.4668 −25.8278 −193.2270 −145.6506 −29.3931 −125.3372 −101.7505 −28.5082
c32 −18.1968 −6.9804 4.5299 −43.5078 142.7302 36.7860 −11.8738 −18.4297 35.8010
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FIG. 11. The same as Fig. 5, but with the hadronic nonparametric EoS distribution on the left, and the piecewise-polytrope distribution
on the right.

FIG. 12. The same as Fig. 7, but with the hadronic nonparametric EoS distribution on the left, and the piecewise-polytrope EoS
distribution on the right. Both distributions are conditioned on all astrophysical data.
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TABLE IX. Table of coefficients for the R1.4–Λ̃ relation. See Eq. (15).

Coefficient GP-mixed (astro) SP (astro) PP (astro)

a 3.6387 3.7867 3.8086

TABLE VIII. Table of coefficients for the C–Love relations for the nonparametric mixed-composition, spectral,
and piecewise-polytrope astrophysical posterior EoS distributions. See Eq. (13).

GP-mixed (astro) SP (astro) PP (astro)

Coefficient CðΛÞ CðΛÞ CðΛÞ
Kyx 0.0833 1.9392 3.5446
a1 −529.6368 −96.4366 −28.1750
a2 666.1701 −69.8059 −127.7955
a3 −1119.5632 −191.0251 −43.2623
b1 −84.2438 −360.1569 −191.1053
b2 144.0589 152.5207 −433.2343
b3 −2.7723 −1702.2789 −1318.6131

TABLE X. Table of coefficients for the αc–C relation for the nonparametric mixed-composition and Spectral
posterior EoS distributions. See Eq. (17).

GP-mixed (astro) SP (astro) PP (astro)

Coefficient αcðCÞ αcðCÞ αcðCÞ
a0 −7.3477 −5.1067 −4.7738
a1 88.5223 49.9461 45.8993
a2 −591.4298 −379.9054 −389.7208
a3 1960.4713 1729.6551 2051.4967
a4 −2799.1485 −3988.1116 −5396.4668
a5 1215.7415 3783.0214 5.6082
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