Supporting Information
Synthesis,
Spectroscopy
, and Electrochemistry
of
Manganese(I) and Rhenium(I) Quinoline Oximes
Danh X. Ngo,
Wesley W. Kramer, Brendon J. McNicholas, Harry B. Gray*, Bradley J. Brennan*
Division of Chemistry and Chemical Engineering, C
alifornia Institute of Technology, Pasadena,
CA 91125, USA.
* hbgray@caltech.edu
* bradley.brennan@gmail.com
Experimental Data for XRD
S2
Figure S1. UV
-Visible spectra of ligands
S2
Table S1. Summary of
Complex UV-
Visible Spectra
S3
Figure
s S 2- S12.
1
H NMR Spectra
S4- S14
Figure
s S13-
S17.
19
F NMR S
pectra
S15-
S19
Figure
s S18-
S33. IR Spectra
S20-
S35
Figure S
34. Scan Rate CV Spectra for Re
-4im
S36
Figures
S 35-
38. N
2
, CO
2
, CO
2
+ Acid CVs for Re
-4im, Mn
-5, Re
-5, Re
-6
S37-
40
Figure S39. GS Calibration Curve for Bulk Electrolysis
S41
Table S2. Bulk Electrolysis Data Summary
S4
2
Table S3
. DFT
-Calculated Orbital Energies and Compositions
S4
3
Figures S
40-
41. DFT
-Calculated Orbitals for Re
-4im, Re
-5, Re
-6
S4
4- 45
Tables S4
-S9
. Calculated and Experimental Bond Lengths and Angles
S4
6- S5
4
Re
-4im Elemental Analysis
S55
S1
S2
X-Ray Diffraction.
Crystals were grown by slow diffusion of pentane into concentrated
solutions of the complexes dissolved in THF. Low
-temperature diffraction data (
φ
-and
ω
-scans)
were collected on a Bruker AXS D8 VENTURE KAPPA diffractometer coupled to a PHOTON
100 CMOS detector with Mo
K
α
radiation (
λ
= 0.71073 Å) from an I
μ
S micro
-source. The
structure was solved by direct methods using SHELXS and refined against
F
2
on all data by full
-
matrix least squares with SHELXL
-2014 using established refinement techniques. All non-
hydrogen atoms were refined anisotropically. All hydr
ogen atoms were included into the model
at geometrically calculated positions and refined using a riding model. The isotropic
displacement parameters of all hydrogen atoms were fixed to 1.2 times the
U
value of the atoms
they are linked to (1.5 times for m
ethyl groups).
200
250
300
350
0.0
0.2
0.4
0.6
0.8
1.0
Absorbance
Wavelength (nm)
ligand
4
ligand 5
ligand 6
Figure S1.
UV
-Visible
spectra of ligands in MeCN. Spectra normalized at
the highest value.
S3
Table S
1.
Summary of
UV
-Visible spectra
.
Molecule
λ
peak
(nm)
Extinction Coefficient
(M
-1
cm
-1
)
Re
-4im
421
4900
302
9400
217
40500
Mn
-5
388
3400
295
7600
217
42900
Re
-5
382
4300
296
7500
242
16200
Mn
-6
458
2900
322
6400
300
7100
256
22500
Re
-6
412
4900
332
7200
256
20700
205
36600
S4
1
H NMR spectroscopy
-2
-1
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Chemical Shift (ppm)
6.5
6.6
6.7
6.8
6.9
7.0
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
8.0
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
9.0
9.1
Chemical Shift (ppm)
Figure S
2.
1
H NMR (500 MHz, CDCl
3
) spectrum of Compound
1
.
1
H NMR (500 MHz, CDCl
3
)
δ 8.96 (dd,
J
= 4.1, 1.8 Hz, 1H), 8.14 (d,
J
= 8.3 Hz, 1H), 8.13 (t,
J
= 8.1 Hz, 1H), 7.83 (dd,
J
=
8.2, 1.4 Hz, 1H), 7.61 (dd,
J
= 8.1, 7.3 Hz, 1H), 7.40 (dd,
J
= 8.3, 4.1 Hz, 1H), 6.81 (q,
J
= 6.6
Hz, 1H), 0.12 (s, 9H).
N
OTMS
F
3
C
S5
-0.
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5
10.0
f1 (ppm)
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
f1 (ppm)
Figure S
3.
1
H NMR (
500 MHz, CDCl
3
) spectrum of Compound
2
.
δ 9.01 (s, 1H), 8.87 (dd,
J
=
4.3, 1.8 Hz, 1H), 8.29 (dd,
J
= 8.4, 1.8 Hz, 1H), 7.91 (dd,
J
= 8.2, 1.4 Hz, 1H), 7.70 (ddt,
J
= 7.1,
1.6, 0.8 Hz, 1H), 7.62 (dd,
J
= 8.2, 7.1 Hz, 1H), 7.52 (dd,
J
= 8.3, 4.3 Hz, 1H), 5.49 (q,
J
= 7.8
Hz, 1H).
N
OH
F
3
C
S6
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5
Chemical Shift (ppm)
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5
10.0
10.5
11.0
11.5
12.0
12.5
Chemical Shift (ppm)
Figure S
4.
1
H NMR (
500 MHz, CD
3
CN) spectrum
(top)
and
1
H NMR (
300 MHz, CD
3
OD)
spectrum
(bottom)
of Compound
3
. CD
3
CN:
δ
(ketone)
8.99 (dd,
J
= 4.2, 1.7 Hz, 1H), 8.45 (d,
J
= 1.8 Hz, 1H), 8.44 (d,
J
= 1.7 Hz, 1H), 8.26 (dd,
J
= 8.2, 1.4 Hz, 1H), 8.03 (dd,
J
= 7.1, 1.4 Hz,
1H), 7.78 (d,
J
= 7.1 Hz, 1H). δ
(hydrated ketone)
8.92 (dd,
J
= 4.3, 1.8 Hz, 1H), 8.49 (dd,
J
=
8.4, 1.8 Hz, 1H), 8.47 (s, 2H), 8.20 (d,
J
= 7.4 Hz, 1H), 8.10 (dd,
J
= 8.3, 1.4 Hz, 1H), 7.75 (dd,
J
= 8.2, 7.4 Hz, 1H), 7.65 (dd,
J
= 8.4, 4.3 Hz, 1H).
CD
3
OD:
δ 8.90 (dd,
J
= 4.4, 1.7 Hz, 1H), 8.51
(dd,
J
= 8.4, 1.8 Hz, 1H), 8.11 (dd,
J
= 8.3, 1.4 Hz, 1H), 8.04 (d,
J
= 7.2 Hz, 1H), 7.74 (t,
J
= 7.8
Hz, 1H), 7.64 (dd,
J
= 8.4, 4.3 Hz, 1H), 5.49 (s, 1H).
N
OH
F
3
C
OH
N
O
F
3
C
H
2
O
-H
2
O
N
OH
F
3
C
OH
N
O
F
3
C
H
2
O
-H
2
O
S7
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5
10.0
10.5
11.0
11.5
12.0
f1 (ppm)
7.5
8.0
8.5
9.0
9.5
10.0
10.5
f1 (ppm)
Figure
S5.
1
H NMR (
500 MHz, CD
3
CN)
spectrum of Compound
4
.
δ 10.16 (
br s, 0.6H), 8.95 (
m,
1H), 8.39 (ddt,
J
= 8.4, 1.8, 0.5 Hz, 1H), 8.14 – 8.10 (m, 1H), 7.85 – 7.73 (m, 0.4H), 7.73 – 7.66
(m, 1
.6H), 7.60 (
m, 1H).
N
NOH
F
3
C
S8
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5
10.0
10.5
11.0
11.5
12.0
Chemical Shift (ppm)
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5
10.0
10.5
11.0
11.5
12.0
Chemical Shift (ppm)
Figure S
6.
1
H NMR (500 MHz, CD
3
CN) spectrum of
Re
-4im
.
δ 9.69 (dd,
J
= 5.2, 1.7 Hz, 1H),
8.72 (dd,
J
= 8.3, 1.7 Hz, 1H), 8.49 – 8.41 (m, 2H), 7.91 (t,
J
= 7.9 Hz, 1H), 7.70 (dd,
J
= 8.2, 5.2
Hz, 1H), 5.96 (t,
J
= 53.2 Hz, 1H)
.
R
e
CO
CO
Cl
CO
N
N
H
F
3
C
S9
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5
10.0
10.5
11.0
11.5
12.0
Chemical Shift (ppm)
7.5
8.0
8.5
9.0
9.5
Chemical Shift (ppm)
Figure S
7.
1
H NMR (
500 MHz, CD
3
CN)
spectrum of Compound
5
.
δ
10.66 (br s, 1H), 9.60 (d,
J
= 3.2 Hz, 1H), 8.31 (d,
J
= 8.6 Hz, 1H), 8.31 (s, 1H), 8.07 (dq,
J
= 8.5, 0.9 Hz, 1H), 7.99 (d,
J
=
8.6 Hz, 1H), 7.98 (dd,
J
= 8.4, 1.4 Hz, 1H), 7.81 (ddd,
J
= 8.4, 6.9, 1.5 Hz, 1H), 7.66 (ddd,
J
=
8.1, 6.9, 1.2 Hz, 1H).
N
H
NOH
S10
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5
Chemical Shift (ppm)
7.6
7.7
7.8
7.9
8.0
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
9.0
Chemical Shift (ppm)
Figure S
8.
1
H NMR (
500 MHz, CD
3
CN
) spectrum of
Mn
-5
.
δ 8.86 (d,
J
= 8.9 Hz, 1H), 8.74 (s,
1H), 8.60 (d,
J
= 8.2 Hz, 1H), 8.17 – 8.11 (m, 1H), 8.08 (ddd,
J
= 8.6, 6.9, 1.5 Hz, 1H), 7.89 (d,
J
= 8.2 Hz, 1H), 7.85 (t,
J
= 7.5 Hz, 1H).
Mn
CO
CO
Br
CO
N
N
OH
H
S11
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5
10.0
10.5
11.0
Chemical Shift (ppm)
7.5
8.0
8.5
9.0
9.5
10.0
10.5
11.0
Chemical Shift (ppm)
Figure S
9.
1
H NMR (
500 MHz, CD
3
CN)
spectrum of
Re
-5
.
δ
10.66 (br s, 1H), 9.07 (s, 1H), 8.72
(d,
J
= 5.8 Hz, 1H), 8.71 (d,
J
= 6.7 Hz, 1H), 8.17 (dd,
J
= 8.2, 1.5 Hz, 1H), 8.10 (ddd,
J
= 8.7,
6.9, 1.5 Hz, 1H), 8.00 (d,
J
= 8.5 Hz, 1H), 7.89 (ddd,
J
= 8.1, 6.9, 1.0 Hz, 1H).
Re
CO
CO
Cl
CO
N
N
OH
H
S12
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5
10.0
10.5
11.0
11.5
12.0
Chemical Shift (ppm)
Figure
S10.
1
H NMR (
500 MHz, CD
3
CN)
spectrum of Compound
6
.
δ 9.34 (s, 1H), 9.19 (s,
1H),
8.98 (dd,
J
= 4.2, 1.8 Hz, 1H), 8.36 (dd,
J
= 8.3, 1.8 Hz, 1H), 8.25 (dd,
J
= 7.3, 1.4 Hz, 1H), 8.03
(dd,
J
= 8.2, 1.4 Hz, 1H), 7.67 (t,
J
= 7.7 Hz, 1H), 7.58 (dd,
J
= 8.3, 4.1 Hz, 1H).
N
NOH
H
S13
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5
10.0
10.5
11.0
11.5
12.0
Chemical Shift (ppm)
7.5
7.7
7.9
8.1
8.3
8.5
8.7
8.9
9.1
9.3
9.5
9.7
9.9
Chemical Shift (ppm)
Figure S
11.
1
H NMR (
500 MHz, CDCl
3
) spectrum of Compound
Mn
-6
.
δ 9.78 (s, 1H), 8.83 (s,
1H), 8.59 (s, 1H), 8.38 (s, 1H), 8.05 (d,
J
= 7.4 Hz, 1H), 7.88 (s, 1H), 7.77 (s, 1H), 7.64 (s, 1H).
M
n
C
O
CO
Br
C
O
N
N
OH
H
S14
-2
-1
0
1
2
3
4
5
6
7
8
9
10
11
12
13
4
Chemical Shift (ppm)
7.0
7.4
7.8
8.2
8.6
9.0
9.4
9.8
10.2
Chemical Shift (ppm)
Figure S
12.
1
H NMR (
500 MHz, CD
3
CN)
spectrum of Compound
Re
-6
.
δ 9.67 (dd,
J
= 5.2, 1.7
Hz, 1H), 9.43 (s, 1H), 8.71 (dd,
J
= 8.4, 1.4 Hz, 1H), 8.70 (d,
J
= 0.6 Hz, 1H), 8.31 (dd,
J
= 8.4,
1.4 Hz, 1H), 8.10 (ddd,
J
= 7.3, 1.6, 0.6 Hz, 1H), 7.86 (dd,
J
= 8.2, 7.2 Hz, 1H), 7.69 (dd,
J
= 8.3,
5.3 Hz, 1H).
S15
19
F NMR spectroscopy
-20
-190
-180
-170
-160
-150
-140
-130
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
10
20
0
Chemical Shift (ppm)
-78.2
-78.0
-77.8
-77.6
-77.4
-77.2
-77.0
-76.8
Chemical Shift (ppm)
Figure S
13.
19
F NMR (
282 MHz, CDCl
3
) spectrum of Compound
1
.
δ
-77.57 (d,
J
= 6.5 Hz).
N
OTMS
F
3
C
S16
-20
-190
-180
-170
-160
-150
-140
-130
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
10
20
0
Chemical Shift (ppm)
-78.2
-78.1
-78.0
-77.9
-77.8
-77.7
-77.6
Chemical Shift (ppm)
Figure S
14.
19
F NMR (
282 MHz, CDCl
3
) spectrum of Compound
2
.
δ
-77.86 (d,
J
= 7.8 Hz).
N
O
H
F
3
C
S17
-20
-190
-180
-170
-160
-150
-140
-130
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
10
20
0
Chemical Shift (ppm)
-87.0
-86.5
-86.0
Chemical Shift (ppm)
Figure S
15.
19
F NMR (
282 MHz, CD
3
OD) spectrum of Compound
3
.
δ
-86.25.
N
OH
F
3
C
OH
N
O
F
3
C
H
2
O
-H
2
O
S18
-20
-190
-180
-170
-160
-150
-140
-130
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
10
20
0
Chemical Shift (ppm)
Figure S
16.
19
F NMR (
282 MHz, CD
3
CN) spectrum of Compound
4
.
δ
-65.23 (33%), -
67.57
(67%).
N
NOH
F
3
C
S19
-20
-190
-180
-170
-160
-150
-140
-130
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
10
20
0
Chemical Shift (ppm)
Figure S
17.
19
F NMR (282 MHz, CD
3
CN) spectrum of
Re
-4im
. δ
-65.56.
Re
CO
CO
Cl
CO
N
N
H
F
3
C
S20
IR (ATR) Spectroscopy
4000
3500
3000
2500
2000
1500
1000
30
40
50
60
70
80
90
100
Transmittance (%)
Wavenumber (cm
-1
)
Figure S
18.
IR (ATR) spectrum of Compound
1
.
N
OT
MS
F
3
C
S21
4000
3500
3000
2500
2000
1500
1000
40
50
60
70
80
90
100
Transmittance (%)
Wavenumber (cm
-1
)
Figure S
19.
IR (ATR) spectrum of Compound
2
.
N
O
H
F
3
C
S22
4000
3500
3000
2500
2000
1500
1000
40
50
60
70
80
90
100
Transmittance (%)
Wavenumber (cm
-1
)
Figure S
20.
IR (ATR) spectrum of Compound
3
.
N
OH
F
3
C
OH
N
O
F
3
C
H
2
O
-H
2
O
S23
4000
3500
3000
2500
2000
1500
1000
40
50
60
70
80
90
100
Transmittance (%)
Wavenumber (cm
-1
)
Figure S
21.
IR (ATR) spectrum of Compound
4
.
N
NOH
F
3
C
S24
3500
3000
2500
2000
1500
1000
80
90
100
Transmittance (%)
Wavenumber (cm
-1
)
Figure S
22.
IR (ATR) spectrum of Com
pound
Re
-4im
.
ν
/cm
-1
: 3205 br
, 3140 sh
(
ν
N-H
).
R
e
C
O
CO
C
l
C
O
N
N
H
F
3
C
S25
2200
2150
2100
2050
2000
1950
1900
1850
1800
50
60
70
80
90
100
Transmittance (%)
Wavenumber (cm
-1
)
Figure S2
3.
IR (MeCN) spectrum of Compound
Re
-4im
.
ν
/cm
-1
: [ 2025, 1922, 1904 (
ν
C≡O
)].
S26
3500
3000
2500
2000
1500
1000
30
40
50
60
70
80
90
100
Transmittance (%)
Wavenumber (cm
-1
)
Figure S2
4.
IR (ATR) spectrum of compound
5
.
ν
/cm
-1
: 3168 (
ν
O-H
).
N
H
N
O
H
S27
3000
2500
2000
1500
1000
40
50
60
70
80
90
100
Transmittance (%)
Wavenumber (cm
-1
)
Figure S2
5.
IR (ATR) spectrum of
Mn
-5
.
ν
/cm
-1
: 3376 (
ν
O-H
).
Mn
CO
CO
Br
CO
N
N
OH
H
S28