Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 2014 | metadata_only
Book Section - Chapter

Learning Fine-Grained Spatial Models for Dynamic Sports Play Prediction


We consider the problem of learning predictive models for in-game sports play prediction. Focusing on basketball, we develop models for anticipating near-future events given the current game state. We employ a latent factor modeling approach, which leads to a compact data representation that enables efficient prediction given raw spatiotemporal tracking data. We validate our approach using tracking data from the 2012-2013 NBA season, and show that our model can make accurate in-game predictions. We provide a detailed inspection of our learned factors, and show that our model is interpretable and corresponds to known intuitions of basketball game play.

Additional Information

© 2014 IEEE.

Additional details

August 20, 2023
August 20, 2023