Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published April 9, 2010 | public
Journal Article

Energy-stepping integrators in Lagrangian mechanics


We present a class of integration schemes for Lagrangian mechanics, referred to as energy-stepping integrators, that are momentum and energy conserving, symplectic and convergent. In order to achieve these properties we replace the original potential energy by a piecewise constant, or terraced approximation at steps of uniform height. By taking steps of diminishing height, an approximating sequence of energies is generated. The trajectories of the resulting approximating Lagrangians can be characterized explicitly and consist of intervals of piecewise rectilinear motion. We show that the energy-stepping trajectories are symplectic, exactly conserve all the momentum maps of the original system and, subject to a transversality condition, converge to trajectories of the original system when the energy step is decreased to zero. These properties, the excellent long-term behavior of energy-stepping and its automatic time-step selection property, are born out by selected examples of application, including the dynamics of a frozen Argon cluster, the spinning of an elastic cube and the collision of two elastic spheres.

Additional Information

© 2009 John Wiley & Sons, Ltd. Received 26 March 2009; Revised 21 August 2009; Accepted 24 August 2009. Published online 15 October 2009. The authors gratefully acknowledge the support of the US Department of Energy through Caltech's PSAAP Center for the Predictive Modeling and Simulation of High-Energy Density Dynamic Response of Materials.

Additional details

August 21, 2023
October 20, 2023