NuSTAR Observations of GRB 130427A Establish a Single Component Synchrotron Afterglow Origin for the Late Optical to Multi-GeV Emission
Abstract
GRB 130427A occurred in a relatively nearby galaxy; its prompt emission had the largest GRB fluence ever recorded. The afterglow of GRB 130427A was bright enough for the Nuclear Spectroscopic Telescope ARray (NuSTAR) to observe it in the 3-79 keV energy range long after its prompt emission (~1.5 and 5 days). This range, where afterglow observations were previously not possible, bridges an important spectral gap. Combined with Swift, Fermi, and ground-based optical data, NuSTAR observations unambiguously establish a single afterglow spectral component from optical to multi-GeV energies a day after the event, which is almost certainly synchrotron radiation. Such an origin of the late-time Fermi/Large Area Telescope >10 GeV photons requires revisions in our understanding of collisionless relativistic shock physics.
Additional Information
© 2013 American Astronomical Society. Received 2013 October 15; accepted 2013 November 7; published 2013 November 21. This work was supported under NASA Contract NNG08FD60C, and made use of data from the NuSTAR mission, a project led by CalTech, managed by JPL, and funded by NASA. We thank the NuSTAR Operations, Software and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and CalTech. This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester. The Fermi/LAT Collaboration acknowledges support from NASA and DOE (U.S.), CEA/Irfu and IN2P3/CNRS (France), ASI and INFN (Italy), MEXT, KEK, and JAXA (Japan), and the K.A. Wallenberg Foundation, the Swedish Research Council and the National Space Board in Sweden. Additional support from INAF in Italy and CNES in France for science analysis during the operations phase is also gratefully acknowledged. The Liverpool Telescope is operated by Liverpool John Moores University at the Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. C.G.M. acknowledges support from the Royal Society.Attached Files
Published - 2041-8205_779_1_L1.pdf
Submitted - 1311.5245v1.pdf
Files
Name | Size | Download all |
---|---|---|
md5:ab1d0c7f07326dd80ba32555b3aed094
|
406.4 kB | Preview Download |
md5:7b5d5a4d634101065591ac48399d98af
|
327.4 kB | Preview Download |
Additional details
- Eprint ID
- 43256
- Resolver ID
- CaltechAUTHORS:20140108-072801401
- NASA
- NNG08FD60C
- NASA/JPL/Caltech
- Department of Energy (DOE)
- Institut de recherche sur les lois fondamentales de l'Univers (Irfu)
- Institut National de Physique Nucléaire et de Physique des Particules (IN2P3)
- Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium)
- Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- KEK (Japan)
- Japan Aerospace Exploration Agency (JAXA)
- Knut and Alice Wallenberg Foundation
- Swedish Research Council
- Swedish National Space Board (SNSB)
- Istituto Nazionale di Astrofisica (INAF)
- Centre National d'Études Spatiales (CNES)
- Royal Society
- Commissariat à l'Energie Atomique (CEA)
- Centre National de la Recherche Scientifique (CNRS)
- Created
-
2014-01-08Created from EPrint's datestamp field
- Updated
-
2021-11-10Created from EPrint's last_modified field
- Caltech groups
- NuSTAR, Space Radiation Laboratory