of 12
Search for sub-solar mass ultracompact binaries in Advanced LIGO’s first observing
run
The LIGO Scientific Collaboration and The Virgo Collaboration
(Dated: August 19, 2018)
We present the first Advanced LIGO and Advanced Virgo search for ultracompact binary systems
with component masses between 0.2
M
– 1.0
M
using data taken between September 12, 2015
and January 19, 2016. We find no viable gravitational wave candidates. Our null result constrains
the coalescence rate of monochromatic (delta function) distributions of non-spinning (0.2
M
, 0.2
M
) ultracompact binaries to be less than 1
.
0
×
10
6
Gpc
3
yr
1
and the coalescence rate of a similar
distribution of (1.0
M
, 1.0
M
) ultracompact binaries to be less than 1
.
9
×
10
4
Gpc
3
yr
1
(at
90% confidence). Neither black holes nor neutron stars are expected to form below
1
M
through
conventional stellar evolution, though it has been proposed that similarly low mass black holes
could be formed primordially through density fluctuations in the early universe. Under a particular
primordial black hole binary formation scenario, we constrain monochromatic primordial black hole
populations of 0.2
M
to be less than 33% of the total dark matter density and monochromatic
populations of 1.0
M
to be less than 5% of the dark matter density. The latter strengthens the
presently placed bounds from micro-lensing surveys of MAssive Compact Halo Objects (MACHOs)
provided by the MACHO and EROS collaborations.
INTRODUCTION
The era of gravitational wave astronomy began
with the observation of the binary black hole merger
GW150914 [1]. Since then, four additional binary black
hole mergers [2–5] and one binary neutron star merger [6]
have been announced as of November 2017. Thus far, Ad-
vanced LIGO and Advanced Virgo searches have targeted
binary systems with total masses from 2–600
M
[7, 8],
but the LIGO and Virgo detectors are also sensitive to
ultracompact binaries with components below 1
M
if
the compactness (mass to radius ratio) is close to that of
a black hole. White dwarf binaries, while often formed
with components below one solar mass, are not suffi-
ciently compact to be a LIGO/Virgo gravitational wave
source. Neutron stars or black holes are sufficiently com-
pact as would be other exotic compact objects. Previous
gravitational wave searches for sub-solar mass ultracom-
pact binaries used data from initial LIGO observations
from Feb 14, 2003 – March 24, 2005 [9, 10]. Advanced
LIGO [11] presently surveys a volume of space approx-
imately 1000 times larger than the previous search for
sub-solar mass ultracompact objects therefore improving
the chances of detecting such a binary 1000-fold.
In conventional stellar evolution models, the lightest
ultracompact objects are formed when stellar remnants
exceed
1
.
4
M
, the Chandrasekhar mass limit [12, 13].
Beyond the Chandrasekhar mass limit, electron degen-
eracy pressure can no longer prevent the gravitational
collapse of a white dwarf. The lightest remnants that
exceed the Chandrasekhar mass limit form neutron stars
[14]. When even the neutron degeneracy pressure cannot
prevent collapse, heavier stellar remnants will collapse to
black holes. Some equations of state predict that neu-
tron stars remain stable down to
0
.
1
M
[15]; there
is no widely accepted model for forming neutron stars
below
1
M
, though a recent measurement does not
exclude the possibility of 0
.
92
M
neutron star [16]. Ob-
servationally, black holes appear to have a minimum mass
of
5
M
with a gap between the observed neutron star
masses and black hole masses [17–19]. Detecting ultra-
compact objects below one solar mass could challenge
our ideas about stellar evolution or possibly hint at new,
unconventional formation scenarios.
Beyond conventional stellar evolution, one of the most
prolific black hole formation models posits that primor-
dial black holes (PBHs) could have formed in the early
universe through the collapse of highly over-dense re-
gions [20–24]. It has been suggested that PBHs could
constitute a fraction of the missing dark matter [24],
though this scenario has been constrained [25]. LIGO’s
detections have revived interest in black hole formation
mechanisms and, in particular, the formation of primor-
dial black holes (PBHs) [26, 27]. Though there are pro-
posals on how to distinguish a primordial black hole
distribution from an astrophysical one [28], disentan-
gling them is challenging when the populations overlap
in mass. Hence, detection of sub-solar mass ultracom-
pact objects would provide the cleanest signature for de-
termining primordial formation. Still, recent proposals
for non-baryonic dark matter models can produce sub-
solar mass black holes either by allowing a lower Chan-
drasekhar mass in the dark sector [29], or by triggering
neutron stars to collapse into
1
M
black holes [30].
This letter describes a gravitational wave search for ul-
tracompact binary systems with component masses be-
tween 0.2
M
and 1.0
M
using data from Advanced
LIGO’s first observing run . No viable gravitational wave
candidates were identified. We briefly describe the data
analyzed and the anticipated sensitivity to sub-solar mass
ultracompact objects, as well as the search that was con-
ducted, which led to the null result. We then describe
arXiv:1808.04771v2 [astro-ph.CO] 15 Aug 2018
2
FIG. 1. Distance to which an optimally oriented and aligned
equal-mass ultracompact binary merger would produce at
least SNR 8 in each of the LIGO Livingston and LIGO Han-
ford detectors as a function of component mass, based on the
median sensitivity obtained from our analyzed data.
how the null result constrains the merger rate of sub-solar
mass binaries in the nearby universe. We consider the
merger rate constraints in the context of binary merger
rate estimates most recently given by Sasaki et al [27]
thereby constraining the fraction of dark matter density
made up of PBHs between 0.2
M
and 1.0
M
. Finally,
we conclude with a discussion of future work.
SEARCH
We report on data analyzed from Advanced LIGO’s
first observing run, taken from September 12, 2015 –
January 19, 2016 at the LIGO Hanford and LIGO Liv-
ingston detectors. After taking into account data quality
cuts [31] and detector downtime, we analyzed a total of
48.16 days of Hanford-Livingston coincident data. The
data selection process was identical to that used in pre-
vious searches [32].
During Advanced LIGO’s first observing run, each
LIGO instrument was sensitive to sub-solar mass ultra-
compact binaries at extra-galactic distances. Figure 1
shows the maximum distance to which an equal-mass
compact binary merger with given component masses
would be visible at a signal-to-noise ratio of 8 in either
LIGO Hanford or LIGO Livingston.
The search was conducted using standard gravitational
wave analysis software [33–38]. Our search consisted of a
matched-filter stage that filtered a discrete bank of tem-
plates against the LIGO data. The peak SNR for each
template for each second was identified and recorded as a
trigger. Subsequently, a chi-squared test was performed
that checked the consistency of the trigger with a sig-
nal [34]. The triggers from each LIGO detector and grav-
itational wave template were combined and searched for
coincidences within 20 ms. Candidates that pass coinci-
dence were assigned a likelihood ratio,
L
, that accounts
for the relative probability that the candidates are signal
versus noise as a function of SNR, chi-squared, and time
delay and phase offset between detectors. Larger values
of
L
were deemed to be more signal-like. The rate at
which noise produced candidates with a given value of
L
was computed via a Monte Carlo integral of the noise
derived from non-coincident triggers, which we define as
the false alarm rate of candidate signals.
Our discrete bank of 500 332 template waveforms [39]
conformed to the gravitational wave emission expected
from general relativity [40, 41]. The bank covered com-
ponent masses in the detector frame between 0.19 – 2.0
M
with 97% fidelity. While we restrict our analysis of
the search results to the sub-solar region, we have allowed
for the possibility of high mass ratio systems. Our tem-
plate bank assumed that each binary component has neg-
ligible spin. Relaxing that assumption is a direction for
future work, but is a computationally challenging prob-
lem requiring resources well beyond those used for this
and previous LIGO analyses. We integrated the tem-
plate waveforms between 45–1024 Hz, with the longest
waveform lasting about 470 seconds. Advanced LIGO
is sensitive down to
15 Hz, but integrating from that
frequency would have been too computationally burden-
some. Our choice to integrate from 45 Hz to 1024 Hz
recovered 93.0% of the total possible SNR that integra-
tion over the full band would have provided. Additional
details are described in [39].
No viable gravitational wave candidates were found.
Our loudest gravitational wave candidate was consistent
with noise and had a false alarm rate of 6.19 per year.
CONSTRAINT ON BINARY MERGER RATE
We constrained the binary merger rate in this mass re-
gion by considering nine monochromatic mass distribu-
tions with equal component masses and negligible spin.
We constructed sets of simulated signals with component
masses
m
i
∈{
0
.
2
,
0
.
3
,...,
1
.
0
}
M
distributed uniformly
in distance and uniformly on the sky. We injected 374 480
simulated signals into the LIGO data and conducted a
gravitational wave search with the same parameters as
described in section . We then calculated our detection
efficiency as a function of distance,

i
(
r
). This allowed us
to compute the volume-time,
V T
, that was accessible
3
0
.
2
0
.
4
0
.
6
0
.
8
1
.
0
Component Mass (
M
)
10
4
10
5
10
6
10
7
R
90
(Gpc
3
yr
1
)
Excluded
Allowed
FIG. 2. Constraints on the merger rate of equal-mass ultra-
compact binaries at the 9 masses considered. The gray re-
gion represents an exclusion at 90% confidence on the binary
merger rate in units of Gpc
3
yr
1
. These limits are found
using the loudest event statistic formalism, as described in
section III and [42]. The bounds presented here are
3 or-
ders of magnitude stricter than those found in initial LIGO’s
search for sub-solar mass ultracompact objects [9, 10]
for our search via,
V T
i
=
T
4
πr
2

i
(
r
)
dr,
(1)
where
T
is 48.16 days. We then used the loudest event
statistic formalism [42] to compute an upper limit on the
binary merger rate in each mass bin to 90% confidence,
R
90
,i
=
2
.
3
V T
i
.
(2)
We report the upper limits on the binary merger rate
in Fig. 2. Several factors in our analysis could lead to
uncertainty in
R
90
at the 25% level, including LIGO cal-
ibration errors and Monte Carlo errors. However, these
errors are far smaller than potential systematic errors in
the models we will be considering in the next section, so
we do not attempt to further quantify them in this work.
CONSTRAINT ON PRIMORDIAL BLACK
HOLES AS DARK MATTER
The constraint on the binary merger rate places
bounds on the total fraction of dark matter made of
primordial black holes,
f
. These bounds are derived
from the expected event rate for a uniform distribution of
monochromatic PBHs with mass
m
i
as considered above.
We follow a method originally proposed by [43, 44] and
recently used to constrain
30
M
PBH mergers by [27].
We assume an initial, early-universe, monochromatic
distribution of PBHs. As the universe expands, the en-
ergy density of a pair of black holes not too widely sep-
arated becomes larger than the background energy den-
sity. The pair decouples from the cosmic expansion and
can be prevented from prompt merger by the local tidal
field, determined primarily by a third black hole near-
est the pair. The initial separation of the pair and the
relative location of the primary perturber determine the
parameters of the initial binary. From those, the coa-
lescence time can be determined. Assuming a spatially
uniform initial distribution of black holes, the distribu-
tion of coalescence times for those black holes that form
binaries is
dP
=
3
f
37
8
58
f
29
8
(
t
t
c
)
3
37
(
t
t
c
)
3
8
dt
t
, t < t
c
3
f
37
8
58
f
29
8
(
t
t
c
)
1
7
(
t
t
c
)
3
8
dt
t
, t
t
c
(3)
where
t
c
is a function of the mass of the PBHs and the
fraction of the dark matter they comprise:
t
c
=
3
170
c
5
(
Gm
i
)
5
/
3
f
7
(1 +
z
eq
)
4
(
8
π
3
H
2
0
DM
)
4
/
3
(4)
This expression is evaluated at the time today,
t
0
, then
multiplied by
n
BH
, the current average number density
of PBHs, to get the model event rate [27]:
R
model
=
n
BH
dP
dt
t
=
t
0
.
(5)
Given the measured event rate,
R
90
,i
, and a particular
mass, the above expression can be inverted to find a con-
straint on the fraction of dark matter in PBHs at that
mass. The results of this calculation using the measured
upper limits on the merger rate are shown in Fig. 3. A
discussion on how some assumptions of this model may
affect the constraints on
f
shown in Fig. 3, are discussed
in [39]. The non-detection of a stochastic background in
the first observing run of Advanced LIGO [45] also im-
plies an upper limit on the merger rate and therefore the
PBH abundance. In particular, it is shown that the non-
detection of a stochastic background yields constraints
that are about a factor of two weaker than the targeted
search [46–49].
CONCLUSION
We presented the first Advanced LIGO and Advanced
Virgo search for ultracompact binary mergers with com-
4
FIG. 3. Constraints on the fraction of dark matter com-
posed of primordial black holes for monochromatic distribu-
tions (
f
= Ω
PBH
/
DM
). Shown in black are the results for
the nine mass bins considered in this search. For this model
of primordial black hole formation, LIGO finds constraints
tighter than those of the MACHO collaboration [50] for all
mass bins considered and tighter than the EROS collabora-
tion [51] for
m
i
(0
.
7
,
1
.
0)
M
. The curves shown in this
figure are digitizations of the original results from [50–53].
We use the Planck “TT,TE,EE+lowP+lensing+ext” cosmol-
ogy [54].
ponents below 1
M
. No viable gravitational wave can-
didates were found. Therefore, we were able to constrain
the binary merger rate for monochromatic mass functions
spanning from 0.2 – 1.0
M
. Using a well-studied model
from the literature [27, 43, 44], we constrained the abun-
dance of primordial black holes as a fraction of the total
dark matter for each of our nine monochromatic mass
functions considered.
This work was only the first step in constraints by
LIGO on new physics involving sub-solar mass ultra-
compact objects. The constraints presented in Fig. 2
(and consequently those that arise from the model of bi-
nary formation we consider shown in Fig. 3) may not
apply if the ultracompact binary components have non-
negligible spin since the waveforms used for signal recov-
ery were generated only for non-spinning binaries. Fu-
ture work may either quantify the extent to which the
present search could detect spinning components, or ex-
pand the template bank to include systems with spin.
Third, we should consider more general distributions of
primordial black hole masses; extended mass functions
allow for the possibility of unequal mass binaries, and
the effect of this imbalance on the predicted merger rate
has not been quantified. We also stress that our present
results do not rule out an extended mass function that
peaks below 0.2
M
and extends all the way to LIGO’s
currently detected systems at or above 30
M
. Each
model would have to be explicitly checked by producing
an expected binary merger rate density that could be in-
tegrated against Advanced LIGO and Advanced Virgo
search results.
The first two areas of future work are computational
challenges. Lowering the minimum mass and including
spin effects in the waveform models could easily increase
the computational cost of searching for sub-solar mass ul-
tracompact objects by an order of magnitude each, which
would be beyond the capabilities of present LIGO data
grid resources.
Advanced LIGO and Advanced Virgo have not reached
their final design sensitivities. The distance to which
Advanced LIGO will be sensitive to the mergers of ultra-
compact binaries in this mass range should increase by a
factor of three over the next several years [55]. Further-
more, at least a factor of ten more data will be available
than what was analyzed in this work. These two facts
combined imply that the merger rate constraint should
improve by
'
2 orders of magnitude in the coming years.
ACKNOWLEDGMENTS
The authors gratefully acknowledge the support of the
United States National Science Foundation (NSF) for
the construction and operation of the LIGO Laboratory
and Advanced LIGO as well as the Science and Tech-
nology Facilities Council (STFC) of the United King-
dom, the Max-Planck-Society (MPS), and the State of
Niedersachsen/Germany for support of the construction
of Advanced LIGO and construction and operation of
the GEO600 detector. Additional support for Advanced
LIGO was provided by the Australian Research Council.
The authors gratefully acknowledge the Italian Istituto
Nazionale di Fisica Nucleare (INFN), the French Centre
National de la Recherche Scientifique (CNRS) and the
Foundation for Fundamental Research on Matter sup-
ported by the Netherlands Organisation for Scientific Re-
search, for the construction and operation of the Virgo
detector and the creation and support of the EGO consor-
tium. The authors also gratefully acknowledge research
support from these agencies as well as by the Council
of Scientific and Industrial Research of India, the De-
partment of Science and Technology, India, the Science
& Engineering Research Board (SERB), India, the Min-
istry of Human Resource Development, India, the Span-
ish Agencia Estatal de Investigaci ́on, the Vicepresid`encia
i Conselleria d’Innovaci ́o, Recerca i Turisme and the Con-
selleria d’Educaci ́o i Universitat del Govern de les Illes
Balears, the Conselleria d’Educaci ́o, Investigaci ́o, Cul-
tura i Esport de la Generalitat Valenciana, the National
5
Science Centre of Poland, the Swiss National Science
Foundation (SNSF), the Russian Foundation for Basic
Research, the Russian Science Foundation, the European
Commission, the European Regional Development Funds
(ERDF), the Royal Society, the Scottish Funding Coun-
cil, the Scottish Universities Physics Alliance, the Hun-
garian Scientific Research Fund (OTKA), the Lyon In-
stitute of Origins (LIO), the Paris
ˆ
Ile-de-France Region,
the National Research, Development and Innovation Of-
fice Hungary (NKFI), the National Research Foundation
of Korea, Industry Canada and the Province of Ontario
through the Ministry of Economic Development and In-
novation, the Natural Science and Engineering Research
Council Canada, the Canadian Institute for Advanced
Research, the Brazilian Ministry of Science, Technol-
ogy, Innovations, and Communications, the International
Center for Theoretical Physics South American Insti-
tute for Fundamental Research (ICTP-SAIFR), the Re-
search Grants Council of Hong Kong, the National Natu-
ral Science Foundation of China (NSFC), the Leverhulme
Trust, the Research Corporation, the Ministry of Science
and Technology (MOST), Taiwan and the Kavli Foun-
dation. The authors gratefully acknowledge the support
of the NSF, STFC, MPS, INFN, CNRS and the State of
Niedersachsen/Germany for provision of computational
resources.
Funding for this project was provided by
the Charles E. Kaufman Foundation of The Pittsburgh
Foundation. Computing resources and personnel for this
project were provided by the Pennsylvania State Univer-
sity. This article has been assigned the document number
LIGO-P1800158-v12.
[1] B. P. Abbott et al. Observation of Gravitational Waves
from a Binary Black Hole Merger.
Phys. Rev. Lett.
,
116(6):061102, 2016.
[2] B. P. Abbott et al. GW151226: Observation of Gravi-
tational Waves from a 22-Solar-Mass Binary Black Hole
Coalescence.
Phys. Rev. Lett.
, 116(24):241103, 2016.
[3] Benjamin P. Abbott et al. GW170104: Observation of a
50-Solar-Mass Binary Black Hole Coalescence at Redshift
0.2.
Phys. Rev. Lett.
, 118(22):221101, 2017.
[4] B.. P.. Abbott et al. GW170608: Observation of a 19-
solar-mass Binary Black Hole Coalescence.
Astrophys. J.
,
851(2):L35, 2017.
[5] B. P. Abbott et al. GW170814: A Three-Detector Obser-
vation of Gravitational Waves from a Binary Black Hole
Coalescence.
Phys. Rev. Lett.
, 119(14):141101, 2017.
[6] B. P. Abbott et al. GW170817: Observation of Gravita-
tional Waves from a Binary Neutron Star Inspiral.
Phys.
Rev. Lett.
, 119(16):161101, 2017.
[7] B. P. Abbott et al.
Binary Black Hole Mergers in
the first Advanced LIGO Observing Run.
Phys. Rev.
,
X6(4):041015, 2016.
[8] Benjamin P. Abbott et al. Search for intermediate mass
black hole binaries in the first observing run of Advanced
LIGO.
Phys. Rev.
, D96(2):022001, 2017.
[9] B. Abbott et al. Search for gravitational waves from
primordial black hole binary coalescences in the galactic
halo.
Phys. Rev.
, D72:082002, 2005.
[10] B. Abbott et al. Search for gravitational waves from
binary inspirals in S3 and S4 LIGO data.
Phys. Rev.
,
D77:062002, 2008.
[11] J. Aasi et al. Advanced LIGO.
Class. Quant. Grav.
,
32:074001, 2015.
[12] S. Chandrasekhar. The highly collapsed configurations of
a stellar mass (Second paper).
Mon. Not. Roy. Astron.
Soc.
, 95:207–225, 1935.
[13] Subrahmanyan Chandrasekhar. The maximum mass of
ideal white dwarfs.
Astrophys. J.
, 74:81–82, 1931.
[14] Norman K Glendenning.
Compact stars:
Nuclear
physics, particle physics and general relativity
. Springer
Science & Business Media, 2012.
[15] A. Y. Potekhin, A. F. Fantina, N. Chamel, J. M. Pear-
son, and S. Goriely. Analytical representations of unified
equations of state for neutron-star matter.
Astron. As-
trophys.
, 560:A48, 2013.
[16] J. G. Martinez, K. Stovall, P. C. C. Freire, J. S. Deneva,
T. M. Tauris, A. Ridolfi, N. Wex, F. A. Jenet, M. A.
McLaughlin, and M. Bagchi. Pulsar J1411+2551: A
Low-mass Double Neutron Star System.
Astrophys. J.
,
851(2):L29, 2017.
[17] F.
̈
Ozel, D. Psaltis, R. Narayan, and J. E. McClintock.
The Black Hole Mass Distribution in the Galaxy.
Astro-
phys. J.
, 725:1918–1927, 2010.
[18] W. M. Farr, N. Sravan, A. Cantrell, L. Kreidberg, C. D.
Bailyn, I. Mandel, and V. Kalogera. The Mass Distribu-
tion of Stellar-mass Black Holes.
Astrophys. J.
, 741:103,
2011.
[19] L. Kreidberg, C. D. Bailyn, W. M. Farr, and V. Kalogera.
Mass Measurements of Black Holes in X-Ray Transients:
Is There a Mass Gap?
Astrophys. J.
, 757:36, 2012.
[20] Y. B. Zeldovich and I. D. Novikov. The Hypothesis of
Cores Retarded during Expansion and the Hot Cosmo-
logical Model.
Soviet Astronomy
, 10(4):602–603, 1967.
[21] S. Hawking. Gravitationally Collapsed Objects of Very
Low Mass.
Monthly Notices of the Royal Astronomical
Society
, 152(1):75–78, 1971.
[22] B. J. Carr and S. W. Hawking. Black Holes in the Early
Universe.
Monthly Notices of the Royal Astronomical So-
ciety
, 168(2):399–415, 1974.
[23] P. M ́esz ́aros. The behaviour of point masses in an ex-
panding cosmological substratum.
Astronomy and As-
trophysics
, 37:225–228, 1974.
[24] George F. Chapline. Cosmological effects of primordial
black holes.
Nature
, 253(5489):251–252, 1975.
[25] Bernard Carr, Florian K ̈uhnel, and Marit Sandstad. Pri-
mordial black holes as dark matter.
Physical Review D
,
94(8):083504, 2016.
[26] Simeon Bird, Ilias Cholis, Julian B. Mu ̃noz, Yacine Ali-
Ha ̈ımoud, Marc Kamionkowski, Ely D. Kovetz, Alvise
Raccanelli, and Adam G. Riess. Did LIGO detect dark
matter?
Phys. Rev. Lett.
, 116(20):201301, 2016.
[27] Misao Sasaki, Teruaki Suyama, Takahiro Tanaka, and
Shuichiro Yokoyama. Primordial Black Hole Scenario for
the Gravitational-Wave Event GW150914.
Phys. Rev.
Lett.
, 117(6):061101, 2016.
[28] Ely D. Kovetz, Ilias Cholis, Patrick C. Breysse, and Marc
Kamionkowski. Black hole mass function from gravita-
tional wave measurements.
Phys. Rev.
, D95(10):103010,
6
2017.
[29] Sarah Shandera, Donghui Jeong, and Henry S. Grasshorn
Gebhardt. Gravitational Waves from Binary Mergers of
Sub-solar Mass Dark Black Holes. 2018.
[30] Chris Kouvaris, Peter Tinyakov, and Michel H. G. Tyt-
gat. Non-Primordial Solar Mass Black Holes. 2018.
[31] B P Abbott et al.
Effects of data quality vetoes
on a search for compact binary coalescences in Ad-
vanced LIGO’s first observing run.
Class. Quant. Grav.
,
35(6):065010, 2018.
[32] BP Abbott, R Abbott, TD Abbott, MR Abernathy,
F Acernese, K Ackley, C Adams, T Adams, P Addesso,
RX Adhikari, et al. Binary black hole mergers in the
first advanced ligo observing run.
Physical Review X
,
6(4):041015, 2016.
[33] Kipp Cannon et al. Toward Early-Warning Detection of
Gravitational Waves from Compact Binary Coalescence.
Astrophys. J.
, 748:136, 2012.
[34] Cody Messick et al. Analysis Framework for the Prompt
Discovery of Compact Binary Mergers in Gravitational-
wave Data.
Phys. Rev.
, D95(4):042001, 2017.
[35] GstLAL software: git.ligo.org/lscsoft/gstlal.
[36] Lal software: git.ligo.org/lscsoft/lalsuite.
[37] P. Ajith, N. Fotopoulos, S. Privitera, A. Neunzert, and
A. J. Weinstein. Effectual template bank for the detec-
tion of gravitational waves from inspiralling compact bi-
naries with generic spins.
Phys. Rev.
, D89(8):084041,
2014.
[38] Collin Capano, Ian Harry, Stephen Privitera, and
Alessandra Buonanno. Implementing a search for gravi-
tational waves from binary black holes with nonprecess-
ing spin.
Phys. Rev.
, D93(12):124007, 2016.
[39] Ryan Magee, Anne-Sylvie Deutsch, Phoebe McClincy,
Chad Hanna, Christian Horst, Duncan Meacher, Cody
Messick, Sarah Shandera, and Madeline Wade. Methods
for the detection of gravitational waves from sub-solar
mass ultracompact binaries, 2018. arXiv:1808.04772.
[40] Luc Blanchet, Thibault Damour, Bala R. Iyer, Clif-
ford M. Will, and Alan G. Wiseman. Gravitational-
radiation damping of compact binary systems to second
post-newtonian order.
Phys. Rev. Lett.
, 74:3515–3518,
1995.
[41] Alessandra Buonanno, Bala R Iyer, Evan Ochsner,
Yi Pan, and Bangalore Suryanarayana Sathyaprakash.
Comparison of post-newtonian templates for compact
binary inspiral signals in gravitational-wave detectors.
Physical Review D
, 80(8):084043, 2009.
[42] Rahul Biswas, Patrick R. Brady, Jolien D. E. Creighton,
and Stephen Fairhurst.
The Loudest event statistic:
General formulation, properties and applications.
Class.
Quant. Grav.
, 26:175009, 2009. [Erratum: Class. Quant.
Grav.30,079502(2013)].
[43] Takashi Nakamura, Misao Sasaki, Takahiro Tanaka, and
Kip S. Thorne. Gravitational waves from coalescing black
hole MACHO binaries.
Astrophys. J.
, 487:L139–L142,
1997.
[44] Kunihito Ioka, Takeshi Chiba, Takahiro Tanaka, and
Takashi Nakamura. Black Hole Binary Formation in the
Expanding Universe : Three Body Problem Approxima-
tion.
Physical Review D
, 58(6):063003, 1998.
[45] Benjamin P. Abbott et al. Upper Limits on the Stochastic
Gravitational-Wave Background from Advanced LIGO’s
First Observing Run.
Phys. Rev. Lett.
, 118(12):121101,
2017. [Erratum: Phys. Rev. Lett.119,no.2,029901(2017)].
[46] V. Mandic, S. Bird, and I. Cholis.
Stochastic
Gravitational-Wave Background due to Primordial Bi-
nary Black Hole Mergers.
Physical Review Letters
,
117(20):201102, 2016.
[47] Sai Wang, Yi-Fan Wang, Qing-Guo Huang, and Tjonnie
G. F. Li. Constraints on the Primordial Black Hole Abun-
dance from the First Advanced LIGO Observation Run
Using the Stochastic Gravitational-Wave Background.
Phys. Rev. Lett.
, 120(19):191102, 2018.
[48] I. Cholis. On the gravitational wave background from
black hole binaries after the first LIGO detections.
J.
Cosmology Astropart. Phys.
, 6:037, 2017.
[49] M. Raidal, V. Vaskonen, and H. Veerm ̈ae. Gravitational
waves from primordial black hole mergers.
J. Cosmology
Astropart. Phys.
, 9:037, 2017.
[50] R. A. Allsman et al. MACHO project limits on black hole
dark matter in the 1-30 solar mass range.
Astrophys. J.
,
550:L169, 2001.
[51] P. Tisserand et al. Limits on the Macho Content of the
Galactic Halo from the EROS-2 Survey of the Magellanic
Clouds.
Astron. Astrophys.
, 469:387–404, 2007.
[52] Savvas M. Koushiappas and Abraham Loeb. Dynamics
of Dwarf Galaxies Disfavor Stellar-Mass Black Holes as
Dark Matter.
Phys. Rev. Lett.
, 119(4):041102, 2017.
[53] Timothy D. Brandt. Constraints on MACHO Dark Mat-
ter from Compact Stellar Systems in Ultra-Faint Dwarf
Galaxies.
Astrophys. J.
, 824(2):L31, 2016.
[54] P. A. R. Ade et al. Planck 2015 results. XIII. Cosmolog-
ical parameters.
Astron. Astrophys.
, 594:A13, 2016.
[55] Benjamin P. Abbott et al. Prospects for Observing and
Localizing Gravitational-Wave Transients with Advanced
LIGO, Advanced Virgo and KAGRA.
Living Rev. Rel.
,
21:3, 2018. [Living Rev. Rel.19,1(2016)].
Authors
B. P. Abbott,
1
R. Abbott,
1
T. D. Abbott,
2
F. Acernese,
3, 4
K. Ackley,
5
C. Adams,
6
T. Adams,
7
P. Addesso,
8
R. X. Adhikari,
1
V. B. Adya,
9, 10
C. Affeldt,
9, 10
B. Agarwal,
11
M. Agathos,
12
K. Agatsuma,
13
N. Aggarwal,
14
O. D. Aguiar,
15
L. Aiello,
16, 17
A. Ain,
18
P. Ajith,
19
B. Allen,
9, 20, 10
G. Allen,
11
A. Allocca,
21, 22
M. A. Aloy,
23
P. A. Altin,
24
A. Amato,
25
A. Ananyeva,
1
S. B. Anderson,
1
W. G. Anderson,
20
S. V. Angelova,
26
S. Antier,
27
S. Appert,
1
K. Arai,
1
M. C. Araya,
1
J. S. Areeda,
28
M. Ar`ene,
29
N. Arnaud,
27, 30
K. G. Arun,
31
S. Ascenzi,
32, 33
G. Ashton,
5
M. Ast,
34
S. M. Aston,
6
P. Astone,
35
D. V. Atallah,
36
F. Aubin,
7
P. Aufmuth,
10
C. Aulbert,
9
K. AultONeal,
37
C. Austin,
2
A. Avila-Alvarez,
28
S. Babak,
38, 29
P. Bacon,
29
F. Badaracco,
16, 17
M. K. M. Bader,
13
S. Bae,
39
P. T. Baker,
40
F. Baldaccini,
41, 42
G. Ballardin,
30
S. W. Ballmer,
43
S. Banagiri,
44
J. C. Barayoga,
1
S. E. Barclay,
45
B. C. Barish,
1
D. Barker,
46
K. Barkett,
47
S. Barnum,
14
F. Barone,
3, 4
B. Barr,
45
L. Barsotti,
14
M. Barsuglia,
29
D. Barta,
48
J. Bartlett,
46
I. Bartos,
49
R. Bassiri,
50
A. Basti,
21, 22
J. C. Batch,
46
M. Bawaj,
51, 42
J. C. Bayley,
45
M. Bazzan,
52, 53
B. B ́ecsy,
54
C. Beer,
9
M. Bejger,
55
I. Belahcene,
27
A. S. Bell,
45
D. Beniwal,
56
M. Bensch,
9, 10
B. K. Berger,
1
G. Bergmann,
9, 10
S. Bernuzzi,
57, 58
J. J. Bero,
59
C. P. L. Berry,
60
D. Bersanetti,
61
A. Bertolini,
13
J. Betzwieser,
6
R. Bhandare,
62
I. A. Bilenko,
63
S. A. Bilgili,
40
G. Billingsley,
1
C. R. Billman,
49
J. Birch,
6
R. Birney,
26
O. Birnholtz,
59
S. Biscans,
1, 14
S. Biscoveanu,
5
A. Bisht,
9, 10
M. Bitossi,
30, 22
M. A. Bizouard,
27
J. K. Blackburn,
1
J. Blackman,
47
C. D. Blair,
6
D. G. Blair,
64
R. M. Blair,
46
S. Bloemen,
65
O. Bock,
9
N. Bode,
9, 10
M. Boer,
66
Y. Boetzel,
67
G. Bogaert,
66
A. Bohe,
38
F. Bondu,
68
E. Bonilla,
50
R. Bonnand,
7
P. Booker,
9, 10
B. A. Boom,
13
C. D. Booth,
36
R. Bork,
1
V. Boschi,
30
S. Bose,
69, 18
K. Bossie,
6
V. Bossilkov,
64
J. Bosveld,
64
Y. Bouffanais,
29
A. Bozzi,
30
C. Bradaschia,
22
P. R. Brady,
20
A. Bramley,
6
M. Branchesi,
16, 17
J. E. Brau,
70
T. Briant,
71
F. Brighenti,
72, 73
A. Brillet,
66
M. Brinkmann,
9, 10
V. Brisson,
27,
P. Brockill,
20
A. F. Brooks,
1
D. D. Brown,
56
S. Brunett,
1
C. C. Buchanan,
2
A. Buikema,
14
T. Bulik,
74
H. J. Bulten,
75, 13
A. Buonanno,
38, 76
D. Buskulic,
7
C. Buy,
29
R. L. Byer,
50
M. Cabero,
9
L. Cadonati,
77
G. Cagnoli,
25, 78
C. Cahillane,
1
J. Calder ́on Bustillo,
77
T. A. Callister,
1
E. Calloni,
79, 4
J. B. Camp,
80
M. Canepa,
81, 61
P. Canizares,
65
K. C. Cannon,
82
H. Cao,
56
J. Cao,
83
C. D. Capano,
9
E. Capocasa,
29
F. Carbognani,
30
S. Caride,
84
M. F. Carney,
85
J. Casanueva Diaz,
22
C. Casentini,
32, 33
S. Caudill,
13, 20
M. Cavagli`a,
86
F. Cavalier,
27
R. Cavalieri,
30
G. Cella,
22
C. B. Cepeda,
1
P. Cerd ́a-Dur ́an,
23
G. Cerretani,
21, 22
E. Cesarini,
87, 33
O. Chaibi,
66
S. J. Chamberlin,
88
M. Chan,
45
S. Chao,
89
P. Charlton,
90
E. Chase,
91
E. Chassande-Mottin,
29
D. Chatterjee,
20
B. D. Cheeseboro,
40
H. Y. Chen,
92
X. Chen,
64
Y. Chen,
47
H.-P. Cheng,
49
H. Y. Chia,
49
A. Chincarini,
61
A. Chiummo,
30
T. Chmiel,
85
H. S. Cho,
93
M. Cho,
76
J. H. Chow,
24
N. Christensen,
94, 66
Q. Chu,
64
A. J. K. Chua,
47
S. Chua,
71
K. W. Chung,
95
S. Chung,
64
G. Ciani,
52, 53, 49
A. A. Ciobanu,
56
R. Ciolfi,
96, 97
F. Cipriano,
66
C. E. Cirelli,
50
A. Cirone,
81, 61
F. Clara,
46
J. A. Clark,
77
P. Clearwater,
98
F. Cleva,
66
C. Cocchieri,
86
E. Coccia,
16, 17
P.-F. Cohadon,
71
D. Cohen,
27
A. Colla,
99, 35
C. G. Collette,
100
C. Collins,
60
L. R. Cominsky,
101
M. Constancio Jr.,
15
L. Conti,
53
S. J. Cooper,
60
P. Corban,
6
T. R. Corbitt,
2
I. Cordero-Carri ́on,
102
K. R. Corley,
103
N. Cornish,
104
A. Corsi,
84
S. Cortese,
30
C. A. Costa,
15
R. Cotesta,
38
M. W. Coughlin,
1
S. B. Coughlin,
36, 91
J.-P. Coulon,
66
S. T. Countryman,
103
P. Couvares,
1
P. B. Covas,
105
E. E. Cowan,
77
D. M. Coward,
64
M. J. Cowart,
6
D. C. Coyne,
1
R. Coyne,
106
J. D. E. Creighton,
20
T. D. Creighton,
107
J. Cripe,
2
S. G. Crowder,
108
T. J. Cullen,
2
A. Cumming,
45
L. Cunningham,
45
E. Cuoco,
30
T. Dal Canton,
80
G. D ́alya,
54
S. L. Danilishin,
10, 9
S. D’Antonio,
33
K. Danzmann,
9, 10
A. Dasgupta,
109
C. F. Da Silva Costa,
49
V. Dattilo,
30
I. Dave,
62
M. Davier,
27
D. Davis,
43
E. J. Daw,
110
B. Day,
77
D. DeBra,
50
M. Deenadayalan,
18
J. Degallaix,
25
M. De Laurentis,
79, 4
S. Del ́eglise,
71
W. Del Pozzo,
21, 22
N. Demos,
14
T. Denker,
9, 10
T. Dent,
9
R. De Pietri,
57, 58
J. Derby,
28
V. Dergachev,
9
R. De Rosa,
79, 4
C. De Rossi,
25, 30
R. DeSalvo,
111
A. S. Deutsch,
88
O. de Varona,
9, 10
S. Dhurandhar,
18
M. C. D ́ıaz,
107
L. Di Fiore,
4
M. Di Giovanni,
112, 97
T. Di Girolamo,
79, 4
A. Di Lieto,
21, 22
B. Ding,
100
S. Di Pace,
99, 35
I. Di Palma,
99, 35
F. Di Renzo,
21, 22
A. Dmitriev,
60
Z. Doctor,
92
V. Dolique,
25
F. Donovan,
14
K. L. Dooley,
36, 86
S. Doravari,
9, 10
I. Dorrington,
36
M. Dovale
́
Alvarez,
60
T. P. Downes,
20
M. Drago,
9, 16, 17
C. Dreissigacker,
9, 10
J. C. Driggers,
46
Z. Du,
83
P. Dupej,
45
S. E. Dwyer,
46
P. J. Easter,
5
T. B. Edo,
110
M. C. Edwards,
94
A. Effler,
6
H.-B. Eggenstein,
9, 10
P. Ehrens,
1
J. Eichholz,
1
S. S. Eikenberry,
49
M. Eisenmann,
7
R. A. Eisenstein,
14
R. C. Essick,
92
H. Estelles,
105
D. Estevez,
7
Z. B. Etienne,
40
T. Etzel,
1
M. Evans,
14
T. M. Evans,
6
V. Fafone,
32, 33, 16
H. Fair,
43
S. Fairhurst,
36
X. Fan,
83
S. Farinon,
61
B. Farr,
70
W. M. Farr,
60
E. J. Fauchon-Jones,
36
M. Favata,
113
M. Fays,
36
C. Fee,
85
H. Fehrmann,
9
J. Feicht,
1
M. M. Fejer,
50
F. Feng,
29
A. Fernandez-Galiana,
14
I. Ferrante,
21, 22
E. C. Ferreira,
15
F. Ferrini,
30
F. Fidecaro,
21, 22
I. Fiori,
30
D. Fiorucci,
29
M. Fishbach,
92
R. P. Fisher,
43
J. M. Fishner,
14
M. Fitz-Axen,
44
R. Flaminio,
7, 114
M. Fletcher,
45
8
H. Fong,
115
J. A. Font,
23, 116
P. W. F. Forsyth,
24
S. S. Forsyth,
77
J.-D. Fournier,
66
S. Frasca,
99, 35
F. Frasconi,
22
Z. Frei,
54
A. Freise,
60
R. Frey,
70
V. Frey,
27
P. Fritschel,
14
V. V. Frolov,
6
P. Fulda,
49
M. Fyffe,
6
H. A. Gabbard,
45
B. U. Gadre,
18
S. M. Gaebel,
60
J. R. Gair,
117
L. Gammaitoni,
41
M. R. Ganija,
56
S. G. Gaonkar,
18
A. Garcia,
28
C. Garc ́ıa-Quir ́os,
105
F. Garufi,
79, 4
B. Gateley,
46
S. Gaudio,
37
G. Gaur,
118
V. Gayathri,
119
G. Gemme,
61
E. Genin,
30
A. Gennai,
22
D. George,
11
J. George,
62
L. Gergely,
120
V. Germain,
7
S. Ghonge,
77
Abhirup Ghosh,
19
Archisman Ghosh,
13
S. Ghosh,
20
B. Giacomazzo,
112, 97
J. A. Giaime,
2, 6
K. D. Giardina,
6
A. Giazotto,
22,
K. Gill,
37
G. Giordano,
3, 4
L. Glover,
111
E. Goetz,
46
R. Goetz,
49
B. Goncharov,
5
G. Gonz ́alez,
2
J. M. Gonzalez Castro,
21, 22
A. Gopakumar,
121
M. L. Gorodetsky,
63
S. E. Gossan,
1
M. Gosselin,
30
R. Gouaty,
7
A. Grado,
122, 4
C. Graef,
45
M. Granata,
25
A. Grant,
45
S. Gras,
14
C. Gray,
46
G. Greco,
72, 73
A. C. Green,
60
R. Green,
36
E. M. Gretarsson,
37
P. Groot,
65
H. Grote,
36
S. Grunewald,
38
P. Gruning,
27
G. M. Guidi,
72, 73
H. K. Gulati,
109
X. Guo,
83
A. Gupta,
88
M. K. Gupta,
109
K. E. Gushwa,
1
E. K. Gustafson,
1
R. Gustafson,
123
O. Halim,
17, 16
B. R. Hall,
69
E. D. Hall,
14
E. Z. Hamilton,
36
H. F. Hamilton,
124
G. Hammond,
45
M. Haney,
67
M. M. Hanke,
9, 10
J. Hanks,
46
C. Hanna,
88
O. A. Hannuksela,
95
J. Hanson,
6
T. Hardwick,
2
J. Harms,
16, 17
G. M. Harry,
125
I. W. Harry,
38
M. J. Hart,
45
C.-J. Haster,
115
K. Haughian,
45
J. Healy,
59
A. Heidmann,
71
M. C. Heintze,
6
H. Heitmann,
66
P. Hello,
27
G. Hemming,
30
M. Hendry,
45
I. S. Heng,
45
J. Hennig,
45
A. W. Heptonstall,
1
F. J. Hernandez,
5
M. Heurs,
9, 10
S. Hild,
45
T. Hinderer,
65
D. Hoak,
30
S. Hochheim,
9, 10
D. Hofman,
25
N. A. Holland,
24
K. Holt,
6
D. E. Holz,
92
P. Hopkins,
36
C. Horst,
20
J. Hough,
45
E. A. Houston,
45
E. J. Howell,
64
A. Hreibi,
66
E. A. Huerta,
11
D. Huet,
27
B. Hughey,
37
M. Hulko,
1
S. Husa,
105
S. H. Huttner,
45
T. Huynh-Dinh,
6
A. Iess,
32, 33
N. Indik,
9
C. Ingram,
56
R. Inta,
84
G. Intini,
99, 35
H. N. Isa,
45
J.-M. Isac,
71
M. Isi,
1
B. R. Iyer,
19
K. Izumi,
46
T. Jacqmin,
71
K. Jani,
77
P. Jaranowski,
126
D. S. Johnson,
11
W. W. Johnson,
2
D. I. Jones,
127
R. Jones,
45
R. J. G. Jonker,
13
L. Ju,
64
J. Junker,
9, 10
C. V. Kalaghatgi,
36
V. Kalogera,
91
B. Kamai,
1
S. Kandhasamy,
6
G. Kang,
39
J. B. Kanner,
1
S. J. Kapadia,
20
S. Karki,
70
K. S. Karvinen,
9, 10
M. Kasprzack,
2
M. Katolik,
11
S. Katsanevas,
30
E. Katsavounidis,
14
W. Katzman,
6
S. Kaufer,
9, 10
K. Kawabe,
46
N. V. Keerthana,
18
F. K ́ef ́elian,
66
D. Keitel,
45
A. J. Kemball,
11
R. Kennedy,
110
J. S. Key,
128
F. Y. Khalili,
63
B. Khamesra,
77
H. Khan,
28
I. Khan,
16, 33
S. Khan,
9
Z. Khan,
109
E. A. Khazanov,
129
N. Kijbunchoo,
24
Chunglee Kim,
130
J. C. Kim,
131
K. Kim,
95
W. Kim,
56
W. S. Kim,
132
Y.-M. Kim,
133
E. J. King,
56
P. J. King,
46
M. Kinley-Hanlon,
125
R. Kirchhoff,
9, 10
J. S. Kissel,
46
L. Kleybolte,
34
S. Klimenko,
49
T. D. Knowles,
40
P. Koch,
9, 10
S. M. Koehlenbeck,
9, 10
S. Koley,
13
V. Kondrashov,
1
A. Kontos,
14
M. Korobko,
34
W. Z. Korth,
1
I. Kowalska,
74
D. B. Kozak,
1
C. Kr ̈amer,
9
V. Kringel,
9, 10
A. Kr ́olak,
134, 135
G. Kuehn,
9, 10
P. Kumar,
136
R. Kumar,
109
S. Kumar,
19
L. Kuo,
89
A. Kutynia,
134
S. Kwang,
20
B. D. Lackey,
38
K. H. Lai,
95
M. Landry,
46
R. N. Lang,
137
J. Lange,
59
B. Lantz,
50
R. K. Lanza,
14
A. Lartaux-Vollard,
27
P. D. Lasky,
5
M. Laxen,
6
A. Lazzarini,
1
C. Lazzaro,
53
P. Leaci,
99, 35
S. Leavey,
9, 10
C. H. Lee,
93
H. K. Lee,
138
H. M. Lee,
130
H. W. Lee,
131
K. Lee,
45
J. Lehmann,
9, 10
A. Lenon,
40
M. Leonardi,
9, 10, 114
N. Leroy,
27
N. Letendre,
7
Y. Levin,
5
J. Li,
83
T. G. F. Li,
95
X. Li,
47
S. D. Linker,
111
T. B. Littenberg,
139
J. Liu,
64
X. Liu,
20
R. K. L. Lo,
95
N. A. Lockerbie,
26
L. T. London,
36
A. Longo,
140, 141
M. Lorenzini,
16, 17
V. Loriette,
142
M. Lormand,
6
G. Losurdo,
22
J. D. Lough,
9, 10
G. Lovelace,
28
H. L ̈uck,
9, 10
D. Lumaca,
32, 33
A. P. Lundgren,
9
R. Lynch,
14
Y. Ma,
47
R. Macas,
36
S. Macfoy,
26
B. Machenschalk,
9
M. MacInnis,
14
D. M. Macleod,
36
I. Maga ̃na Hernandez,
20
F. Maga ̃na-Sandoval,
43
L. Maga ̃na Zertuche,
86
R. M. Magee,
88
E. Majorana,
35
I. Maksimovic,
142
N. Man,
66
V. Mandic,
44
V. Mangano,
45
G. L. Mansell,
24
M. Manske,
20, 24
M. Mantovani,
30
F. Marchesoni,
51, 42
F. Marion,
7
S. M ́arka,
103
Z. M ́arka,
103
C. Markakis,
11
A. S. Markosyan,
50
A. Markowitz,
1
E. Maros,
1
A. Marquina,
102
F. Martelli,
72, 73
L. Martellini,
66
I. W. Martin,
45
R. M. Martin,
113
D. V. Martynov,
14
K. Mason,
14
E. Massera,
110
A. Masserot,
7
T. J. Massinger,
1
M. Masso-Reid,
45
S. Mastrogiovanni,
99, 35
A. Matas,
44
F. Matichard,
1, 14
L. Matone,
103
N. Mavalvala,
14
N. Mazumder,
69
J. J. McCann,
64
R. McCarthy,
46
D. E. McClelland,
24
S. McCormick,
6
L. McCuller,
14
S. C. McGuire,
143
J. McIver,
1
D. J. McManus,
24
T. McRae,
24
S. T. McWilliams,
40
D. Meacher,
88
G. D. Meadors,
5
M. Mehmet,
9, 10
J. Meidam,
13
E. Mejuto-Villa,
8
A. Melatos,
98
G. Mendell,
46
D. Mendoza-Gandara,
9, 10
R. A. Mercer,
20
L. Mereni,
25
E. L. Merilh,
46
M. Merzougui,
66
S. Meshkov,
1
C. Messenger,
45
C. Messick,
88
R. Metzdorff,
71
P. M. Meyers,
44
H. Miao,
60
C. Michel,
25
H. Middleton,
98
E. E. Mikhailov,
144
L. Milano,
79, 4
A. L. Miller,
49
A. Miller,
99, 35
B. B. Miller,
91
J. Miller,
14
M. Millhouse,
104
J. Mills,
36
M. C. Milovich-Goff,
111
O. Minazzoli,
66, 145
Y. Minenkov,
33
J. Ming,
9, 10
C. Mishra,
146
S. Mitra,
18
V. P. Mitrofanov,
63
G. Mitselmakher,
49
R. Mittleman,
14
D. Moffa,
85
K. Mogushi,
86
M. Mohan,
30
S. R. P. Mohapatra,
14
M. Montani,
72, 73
C. J. Moore,
12
D. Moraru,
46
G. Moreno,
46
S. Morisaki,
82
B. Mours,
7
C. M. Mow-Lowry,
60
G. Mueller,
49
A. W. Muir,
36
Arunava Mukherjee,
9, 10
D. Mukherjee,
20
S. Mukherjee,
107
N. Mukund,
18
A. Mullavey,
6
J. Munch,
56
E. A. Mu ̃niz,
43
9
M. Muratore,
37
P. G. Murray,
45
A. Nagar,
87, 147, 148
K. Napier,
77
I. Nardecchia,
32, 33
L. Naticchioni,
99, 35
R. K. Nayak,
149
J. Neilson,
111
G. Nelemans,
65, 13
T. J. N. Nelson,
6
M. Nery,
9, 10
A. Neunzert,
123
L. Nevin,
1
J. M. Newport,
125
K. Y. Ng,
14
S. Ng,
56
P. Nguyen,
70
T. T. Nguyen,
24
D. Nichols,
65
A. B. Nielsen,
9
S. Nissanke,
65, 13
A. Nitz,
9
F. Nocera,
30
D. Nolting,
6
C. North,
36
L. K. Nuttall,
36
M. Obergaulinger,
23
J. Oberling,
46
B. D. O’Brien,
49
G. D. O’Dea,
111
G. H. Ogin,
150
J. J. Oh,
132
S. H. Oh,
132
F. Ohme,
9
H. Ohta,
82
M. A. Okada,
15
M. Oliver,
105
P. Oppermann,
9, 10
Richard J. Oram,
6
B. O’Reilly,
6
R. Ormiston,
44
L. F. Ortega,
49
R. O’Shaughnessy,
59
S. Ossokine,
38
D. J. Ottaway,
56
H. Overmier,
6
B. J. Owen,
84
A. E. Pace,
88
G. Pagano,
21, 22
J. Page,
139
M. A. Page,
64
A. Pai,
119
S. A. Pai,
62
J. R. Palamos,
70
O. Palashov,
129
C. Palomba,
35
A. Pal-Singh,
34
Howard Pan,
89
Huang-Wei Pan,
89
B. Pang,
47
P. T. H. Pang,
95
C. Pankow,
91
F. Pannarale,
36
B. C. Pant,
62
F. Paoletti,
22
A. Paoli,
30
M. A. Papa,
9, 20, 10
A. Parida,
18
W. Parker,
6
D. Pascucci,
45
A. Pasqualetti,
30
R. Passaquieti,
21, 22
D. Passuello,
22
M. Patil,
135
B. Patricelli,
151, 22
B. L. Pearlstone,
45
C. Pedersen,
36
M. Pedraza,
1
R. Pedurand,
25, 152
L. Pekowsky,
43
A. Pele,
6
S. Penn,
153
C. J. Perez,
46
A. Perreca,
112, 97
L. M. Perri,
91
H. P. Pfeiffer,
115, 38
M. Phelps,
45
K. S. Phukon,
18
O. J. Piccinni,
99, 35
M. Pichot,
66
F. Piergiovanni,
72, 73
V. Pierro,
8
G. Pillant,
30
L. Pinard,
25
I. M. Pinto,
8
M. Pirello,
46
M. Pitkin,
45
R. Poggiani,
21, 22
P. Popolizio,
30
E. K. Porter,
29
L. Possenti,
154, 73
A. Post,
9
J. Powell,
155
J. Prasad,
18
J. W. W. Pratt,
37
G. Pratten,
105
V. Predoi,
36
T. Prestegard,
20
M. Principe,
8
S. Privitera,
38
G. A. Prodi,
112, 97
L. G. Prokhorov,
63
O. Puncken,
9, 10
M. Punturo,
42
P. Puppo,
35
M. P ̈urrer,
38
H. Qi,
20
V. Quetschke,
107
E. A. Quintero,
1
R. Quitzow-James,
70
F. J. Raab,
46
D. S. Rabeling,
24
H. Radkins,
46
P. Raffai,
54
S. Raja,
62
C. Rajan,
62
B. Rajbhandari,
84
M. Rakhmanov,
107
K. E. Ramirez,
107
A. Ramos-Buades,
105
Javed Rana,
18
P. Rapagnani,
99, 35
V. Raymond,
36
M. Razzano,
21, 22
J. Read,
28
T. Regimbau,
66, 7
L. Rei,
61
S. Reid,
26
D. H. Reitze,
1, 49
W. Ren,
11
F. Ricci,
99, 35
P. M. Ricker,
11
K. Riles,
123
M. Rizzo,
59
N. A. Robertson,
1, 45
R. Robie,
45
F. Robinet,
27
T. Robson,
104
A. Rocchi,
33
L. Rolland,
7
J. G. Rollins,
1
V. J. Roma,
70
R. Romano,
3, 4
C. L. Romel,
46
J. H. Romie,
6
D. Rosi ́nska,
156, 55
M. P. Ross,
157
S. Rowan,
45
A. R ̈udiger,
9, 10
P. Ruggi,
30
G. Rutins,
158
K. Ryan,
46
S. Sachdev,
1
T. Sadecki,
46
M. Sakellariadou,
159
L. Salconi,
30
M. Saleem,
119
F. Salemi,
9
A. Samajdar,
149, 13
L. Sammut,
5
L. M. Sampson,
91
E. J. Sanchez,
1
L. E. Sanchez,
1
N. Sanchis-Gual,
23
V. Sandberg,
46
J. R. Sanders,
43
N. Sarin,
5
B. Sassolas,
25
B. S. Sathyaprakash,
88, 36
P. R. Saulson,
43
O. Sauter,
123
R. L. Savage,
46
A. Sawadsky,
34
P. Schale,
70
M. Scheel,
47
J. Scheuer,
91
P. Schmidt,
65
R. Schnabel,
34
R. M. S. Schofield,
70
A. Sch ̈onbeck,
34
E. Schreiber,
9, 10
D. Schuette,
9, 10
B. W. Schulte,
9, 10
B. F. Schutz,
36, 9
S. G. Schwalbe,
37
J. Scott,
45
S. M. Scott,
24
E. Seidel,
11
D. Sellers,
6
A. S. Sengupta,
160
D. Sentenac,
30
V. Sequino,
32, 33, 16
A. Sergeev,
129
Y. Setyawati,
9
D. A. Shaddock,
24
T. J. Shaffer,
46
A. A. Shah,
139
M. S. Shahriar,
91
M. B. Shaner,
111
L. Shao,
38
B. Shapiro,
50
P. Shawhan,
76
H. Shen,
11
D. H. Shoemaker,
14
D. M. Shoemaker,
77
K. Siellez,
77
X. Siemens,
20
M. Sieniawska,
55
D. Sigg,
46
A. D. Silva,
15
L. P. Singer,
80
A. Singh,
9, 10
A. Singhal,
16, 35
A. M. Sintes,
105
B. J. J. Slagmolen,
24
T. J. Slaven-Blair,
64
B. Smith,
6
J. R. Smith,
28
R. J. E. Smith,
5
S. Somala,
161
E. J. Son,
132
B. Sorazu,
45
F. Sorrentino,
61
T. Souradeep,
18
A. P. Spencer,
45
A. K. Srivastava,
109
K. Staats,
37
M. Steinke,
9, 10
J. Steinlechner,
34, 45
S. Steinlechner,
34
D. Steinmeyer,
9, 10
B. Steltner,
9, 10
S. P. Stevenson,
155
D. Stocks,
50
R. Stone,
107
D. J. Stops,
60
K. A. Strain,
45
G. Stratta,
72, 73
S. E. Strigin,
63
A. Strunk,
46
R. Sturani,
162
A. L. Stuver,
163
T. Z. Summerscales,
164
L. Sun,
98
S. Sunil,
109
J. Suresh,
18
P. J. Sutton,
36
B. L. Swinkels,
13
M. J. Szczepa ́nczyk,
37
M. Tacca,
13
S. C. Tait,
45
C. Talbot,
5
D. Talukder,
70
D. B. Tanner,
49
M. T ́apai,
120
A. Taracchini,
38
J. D. Tasson,
94
J. A. Taylor,
139
R. Taylor,
1
S. V. Tewari,
153
T. Theeg,
9, 10
F. Thies,
9, 10
E. G. Thomas,
60
M. Thomas,
6
P. Thomas,
46
K. A. Thorne,
6
E. Thrane,
5
S. Tiwari,
16, 97
V. Tiwari,
36
K. V. Tokmakov,
26
K. Toland,
45
M. Tonelli,
21, 22
Z. Tornasi,
45
A. Torres-Forn ́e,
23
C. I. Torrie,
1
D. T ̈oyr ̈a,
60
F. Travasso,
30, 42
G. Traylor,
6
J. Trinastic,
49
M. C. Tringali,
112, 97
L. Trozzo,
165, 22
K. W. Tsang,
13
M. Tse,
14
R. Tso,
47
D. Tsuna,
82
L. Tsukada,
82
D. Tuyenbayev,
107
K. Ueno,
20
D. Ugolini,
166
A. L. Urban,
1
S. A. Usman,
36
H. Vahlbruch,
9, 10
G. Vajente,
1
G. Valdes,
2
N. van Bakel,
13
M. van Beuzekom,
13
J. F. J. van den Brand,
75, 13
C. Van Den Broeck,
13, 167
D. C. Vander-Hyde,
43
L. van der Schaaf,
13
J. V. van Heijningen,
13
A. A. van Veggel,
45
M. Vardaro,
52, 53
V. Varma,
47
S. Vass,
1
M. Vas ́uth,
48
A. Vecchio,
60
G. Vedovato,
53
J. Veitch,
45
P. J. Veitch,
56
K. Venkateswara,
157
G. Venugopalan,
1
D. Verkindt,
7
F. Vetrano,
72, 73
A. Vicer ́e,
72, 73
A. D. Viets,
20
S. Vinciguerra,
60
D. J. Vine,
158
J.-Y. Vinet,
66
S. Vitale,
14
T. Vo,
43
H. Vocca,
41, 42
C. Vorvick,
46
S. P. Vyatchanin,
63
A. R. Wade,
1
L. E. Wade,
85
M. Wade,
85
R. Walet,
13
M. Walker,
28
L. Wallace,
1
S. Walsh,
20, 9
G. Wang,
16, 22
H. Wang,
60
J. Z. Wang,
123
W. H. Wang,
107
Y. F. Wang,
95
R. L. Ward,
24
J. Warner,
46
M. Was,
7
J. Watchi,
100
B. Weaver,
46
L.-W. Wei,
9, 10
M. Weinert,
9, 10
A. J. Weinstein,
1
R. Weiss,
14
F. Wellmann,
9, 10
L. Wen,
64
E. K. Wessel,
11
P. Weßels,
9, 10
J. Westerweck,
9
K. Wette,
24
J. T. Whelan,
59
B. F. Whiting,
49
C. Whittle,
14
D. Wilken,
9, 10
10
D. Williams,
45
R. D. Williams,
1
A. R. Williamson,
59, 65
J. L. Willis,
1, 124
B. Willke,
9, 10
M. H. Wimmer,
9, 10
W. Winkler,
9, 10
C. C. Wipf,
1
H. Wittel,
9, 10
G. Woan,
45
J. Woehler,
9, 10
J. K. Wofford,
59
W. K. Wong,
95
J. Worden,
46
J. L. Wright,
45
D. S. Wu,
9, 10
D. M. Wysocki,
59
S. Xiao,
1
W. Yam,
14
H. Yamamoto,
1
C. C. Yancey,
76
L. Yang,
168
M. J. Yap,
24
M. Yazback,
49
Hang Yu,
14
Haocun Yu,
14
M. Yvert,
7
A. Zadro ̇zny,
134
M. Zanolin,
37
T. Zelenova,
30
J.-P. Zendri,
53
M. Zevin,
91
J. Zhang,
64
L. Zhang,
1
M. Zhang,
144
T. Zhang,
45
Y.-H. Zhang,
9, 10
C. Zhao,
64
M. Zhou,
91
Z. Zhou,
91
S. J. Zhu,
9, 10
X. J. Zhu,
5
M. E. Zucker,
1, 14
and J. Zweizig
1
(The LIGO Scientific Collaboration and the Virgo Collaboration)
S. Shandera
88
1
LIGO, California Institute of Technology, Pasadena, CA 91125, USA
2
Louisiana State University, Baton Rouge, LA 70803, USA
3
Universit`a di Salerno, Fisciano, I-84084 Salerno, Italy
4
INFN, Sezione di Napoli, Complesso Universitario di Monte S.Angelo, I-80126 Napoli, Italy
5
OzGrav, School of Physics & Astronomy, Monash University, Clayton 3800, Victoria, Australia
6
LIGO Livingston Observatory, Livingston, LA 70754, USA
7
Laboratoire d’Annecy de Physique des Particules (LAPP), Univ. Grenoble Alpes,
Universit ́e Savoie Mont Blanc, CNRS/IN2P3, F-74941 Annecy, France
8
University of Sannio at Benevento, I-82100 Benevento,
Italy and INFN, Sezione di Napoli, I-80100 Napoli, Italy
9
Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany
10
Leibniz Universit ̈at Hannover, D-30167 Hannover, Germany
11
NCSA, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
12
University of Cambridge, Cambridge CB2 1TN, United Kingdom
13
Nikhef, Science Park 105, 1098 XG Amsterdam, The Netherlands
14
LIGO, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
15
Instituto Nacional de Pesquisas Espaciais, 12227-010 S ̃ao Jos ́e dos Campos, S ̃ao Paulo, Brazil
16
Gran Sasso Science Institute (GSSI), I-67100 L’Aquila, Italy
17
INFN, Laboratori Nazionali del Gran Sasso, I-67100 Assergi, Italy
18
Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India
19
International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India
20
University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
21
Universit`a di Pisa, I-56127 Pisa, Italy
22
INFN, Sezione di Pisa, I-56127 Pisa, Italy
23
Departamento de Astronom ́ıa y Astrof ́ısica, Universitat de Val`encia, E-46100 Burjassot, Val`encia, Spain
24
OzGrav, Australian National University, Canberra, Australian Capital Territory 0200, Australia
25
Laboratoire des Mat ́eriaux Avanc ́es (LMA), CNRS/IN2P3, F-69622 Villeurbanne, France
26
SUPA, University of Strathclyde, Glasgow G1 1XQ, United Kingdom
27
LAL, Univ. Paris-Sud, CNRS/IN2P3, Universit ́e Paris-Saclay, F-91898 Orsay, France
28
California State University Fullerton, Fullerton, CA 92831, USA
29
APC, AstroParticule et Cosmologie, Universit ́e Paris Diderot,
CNRS/IN2P3, CEA/Irfu, Observatoire de Paris,
Sorbonne Paris Cit ́e, F-75205 Paris Cedex 13, France
30
European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy
31
Chennai Mathematical Institute, Chennai 603103, India
32
Universit`a di Roma Tor Vergata, I-00133 Roma, Italy
33
INFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy
34
Universit ̈at Hamburg, D-22761 Hamburg, Germany
35
INFN, Sezione di Roma, I-00185 Roma, Italy
36
Cardiff University, Cardiff CF24 3AA, United Kingdom
37
Embry-Riddle Aeronautical University, Prescott, AZ 86301, USA
38
Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-14476 Potsdam-Golm, Germany
39
Korea Institute of Science and Technology Information, Daejeon 34141, Korea
40
West Virginia University, Morgantown, WV 26506, USA
41
Universit`a di Perugia, I-06123 Perugia, Italy
42
INFN, Sezione di Perugia, I-06123 Perugia, Italy
43
Syracuse University, Syracuse, NY 13244, USA
44
University of Minnesota, Minneapolis, MN 55455, USA
45
SUPA, University of Glasgow, Glasgow G12 8QQ, United Kingdom
46
LIGO Hanford Observatory, Richland, WA 99352, USA
47
Caltech CaRT, Pasadena, CA 91125, USA
48
Wigner RCP, RMKI, H-1121 Budapest, Konkoly Thege Mikl ́os ́ut 29-33, Hungary
11
49
University of Florida, Gainesville, FL 32611, USA
50
Stanford University, Stanford, CA 94305, USA
51
Universit`a di Camerino, Dipartimento di Fisica, I-62032 Camerino, Italy
52
Universit`a di Padova, Dipartimento di Fisica e Astronomia, I-35131 Padova, Italy
53
INFN, Sezione di Padova, I-35131 Padova, Italy
54
MTA-ELTE Astrophysics Research Group, Institute of Physics, E ̈otv ̈os University, Budapest 1117, Hungary
55
Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, 00-716, Warsaw, Poland
56
OzGrav, University of Adelaide, Adelaide, South Australia 5005, Australia
57
Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Universit`a di Parma, I-43124 Parma, Italy
58
INFN, Sezione di Milano Bicocca, Gruppo Collegato di Parma, I-43124 Parma, Italy
59
Rochester Institute of Technology, Rochester, NY 14623, USA
60
University of Birmingham, Birmingham B15 2TT, United Kingdom
61
INFN, Sezione di Genova, I-16146 Genova, Italy
62
RRCAT, Indore, Madhya Pradesh 452013, India
63
Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
64
OzGrav, University of Western Australia, Crawley, Western Australia 6009, Australia
65
Department of Astrophysics/IMAPP, Radboud University Nijmegen,
P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
66
Artemis, Universit ́e Cˆote d’Azur, Observatoire Cˆote d’Azur,
CNRS, CS 34229, F-06304 Nice Cedex 4, France
67
Physik-Institut, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
68
Univ Rennes, CNRS, Institut FOTON - UMR6082, F-3500 Rennes, France
69
Washington State University, Pullman, WA 99164, USA
70
University of Oregon, Eugene, OR 97403, USA
71
Laboratoire Kastler Brossel, Sorbonne Universit ́e, CNRS,
ENS-Universit ́e PSL, Coll`ege de France, F-75005 Paris, France
72
Universit`a degli Studi di Urbino ’Carlo Bo,’ I-61029 Urbino, Italy
73
INFN, Sezione di Firenze, I-50019 Sesto Fiorentino, Firenze, Italy
74
Astronomical Observatory Warsaw University, 00-478 Warsaw, Poland
75
VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
76
University of Maryland, College Park, MD 20742, USA
77
School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
78
Universit ́e Claude Bernard Lyon 1, F-69622 Villeurbanne, France
79
Universit`a di Napoli ’Federico II,’ Complesso Universitario di Monte S.Angelo, I-80126 Napoli, Italy
80
NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
81
Dipartimento di Fisica, Universit`a degli Studi di Genova, I-16146 Genova, Italy
82
RESCEU, University of Tokyo, Tokyo, 113-0033, Japan.
83
Tsinghua University, Beijing 100084, China
84
Texas Tech University, Lubbock, TX 79409, USA
85
Kenyon College, Gambier, OH 43022, USA
86
The University of Mississippi, University, MS 38677, USA
87
Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”,
I-00184 Roma, Italyrico Fermi, I-00184 Roma, Italy
88
The Pennsylvania State University, University Park, PA 16802, USA
89
National Tsing Hua University, Hsinchu City, 30013 Taiwan, Republic of China
90
Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia
91
Center for Interdisciplinary Exploration & Research in Astrophysics (CIERA),
Northwestern University, Evanston, IL 60208, USA
92
University of Chicago, Chicago, IL 60637, USA
93
Pusan National University, Busan 46241, Korea
94
Carleton College, Northfield, MN 55057, USA
95
The Chinese University of Hong Kong, Shatin, NT, Hong Kong
96
INAF, Osservatorio Astronomico di Padova, I-35122 Padova, Italy
97
INFN, Trento Institute for Fundamental Physics and Applications, I-38123 Povo, Trento, Italy
98
OzGrav, University of Melbourne, Parkville, Victoria 3010, Australia
99
Universit`a di Roma ’La Sapienza,’ I-00185 Roma, Italy
100
Universit ́e Libre de Bruxelles, Brussels 1050, Belgium
101
Sonoma State University, Rohnert Park, CA 94928, USA
102
Departamento de Matem ́aticas, Universitat de Val`encia, E-46100 Burjassot, Val`encia, Spain
103
Columbia University, New York, NY 10027, USA
104
Montana State University, Bozeman, MT 59717, USA
105
Universitat de les Illes Balears, IAC3—IEEC, E-07122 Palma de Mallorca, Spain
106
University of Rhode Island
107
The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
12
108
Bellevue College, Bellevue, WA 98007, USA
109
Institute for Plasma Research, Bhat, Gandhinagar 382428, India
110
The University of Sheffield, Sheffield S10 2TN, United Kingdom
111
California State University, Los Angeles, 5151 State University Dr, Los Angeles, CA 90032, USA
112
Universit`a di Trento, Dipartimento di Fisica, I-38123 Povo, Trento, Italy
113
Montclair State University, Montclair, NJ 07043, USA
114
National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
115
Canadian Institute for Theoretical Astrophysics,
University of Toronto, Toronto, Ontario M5S 3H8, Canada
116
Observatori Astron`omic, Universitat de Val`encia, E-46980 Paterna, Val`encia, Spain
117
School of Mathematics, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
118
University and Institute of Advanced Research,
Koba Institutional Area, Gandhinagar Gujarat 382007, India
119
Indian Institute of Technology Bombay
120
University of Szeged, D ́om t ́er 9, Szeged 6720, Hungary
121
Tata Institute of Fundamental Research, Mumbai 400005, India
122
INAF, Osservatorio Astronomico di Capodimonte, I-80131, Napoli, Italy
123
University of Michigan, Ann Arbor, MI 48109, USA
124
Abilene Christian University, Abilene, TX 79699, USA
125
American University, Washington, D.C. 20016, USA
126
University of Bia lystok, 15-424 Bia lystok, Poland
127
University of Southampton, Southampton SO17 1BJ, United Kingdom
128
University of Washington Bothell, 18115 Campus Way NE, Bothell, WA 98011, USA
129
Institute of Applied Physics, Nizhny Novgorod, 603950, Russia
130
Korea Astronomy and Space Science Institute, Daejeon 34055, Korea
131
Inje University Gimhae, South Gyeongsang 50834, Korea
132
National Institute for Mathematical Sciences, Daejeon 34047, Korea
133
Ulsan National Institute of Science and Technology
134
NCBJ, 05-400
́
Swierk-Otwock, Poland
135
Institute of Mathematics, Polish Academy of Sciences, 00656 Warsaw, Poland
136
Cornell Universtiy
137
Hillsdale College, Hillsdale, MI 49242, USA
138
Hanyang University, Seoul 04763, Korea
139
NASA Marshall Space Flight Center, Huntsville, AL 35811, USA
140
Dipartimento di Fisica, Universit`a degli Studi Roma Tre, I-00154 Roma, Italy
141
INFN, Sezione di Roma Tre, I-00154 Roma, Italy
142
ESPCI, CNRS, F-75005 Paris, France
143
Southern University and A&M College, Baton Rouge, LA 70813, USA
144
College of William and Mary, Williamsburg, VA 23187, USA
145
Centre Scientifique de Monaco, 8 quai Antoine Ier, MC-98000, Monaco
146
Indian Institute of Technology Madras, Chennai 600036, India
147
INFN Sezione di Torino, Via P. Giuria 1, I-10125 Torino, Italy
148
Institut des Hautes Etudes Scientifiques, F-91440 Bures-sur-Yvette, France
149
IISER-Kolkata, Mohanpur, West Bengal 741252, India
150
Whitman College, 345 Boyer Avenue, Walla Walla, WA 99362 USA
151
Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
152
Universit ́e de Lyon, F-69361 Lyon, France
153
Hobart and William Smith Colleges, Geneva, NY 14456, USA
154
Universit`a degli Studi di Firenze, I-50121 Firenze, Italy
155
OzGrav, Swinburne University of Technology, Hawthorn VIC 3122, Australia
156
Janusz Gil Institute of Astronomy, University of Zielona G ́ora, 65-265 Zielona G ́ora, Poland
157
University of Washington, Seattle, WA 98195, USA
158
SUPA, University of the West of Scotland, Paisley PA1 2BE, United Kingdom
159
King’s College London, University of London, London WC2R 2LS, United Kingdom
160
Indian Institute of Technology, Gandhinagar Ahmedabad Gujarat 382424, India
161
Indian Institute of Technology Hyderabad, Sangareddy, Khandi, Telangana 502285, India
162
International Institute of Physics, Universidade Federal do Rio Grande do Norte, Natal RN 59078-970, Brazil
163
Villanova University, 800 Lancaster Ave, Villanova, PA 19085, USA
164
Andrews University, Berrien Springs, MI 49104, USA
165
Universit`a di Siena, I-53100 Siena, Italy
166
Trinity University, San Antonio, TX 78212, USA
167
Van Swinderen Institute for Particle Physics and Gravity,
University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
168
Colorado State University, Fort Collins, CO 80523, USA