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Probing localization properties of many-body Hamiltonians via an imaginary vector potential
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Identifying and measuring the “localization length” in many-body systems in the vicinity of a many-body
localization transition is difficult. Following Hatano and Nelson, a recent paper [S. Heußen, C. D. White, and
G. Refael, Phys. Rev. B 103, 064201 (2021)] introduced an “imaginary vector potential” to a disordered ring of
interacting fermions, in order to define a many-body localization length (corresponding, in the noninteracting
case, to the end-to-end Green’s function of the Hermitian system). We extend these results, by connecting this
localization length to the length scale appearing in the avalanche model of delocalization. We use this connection
to derive the distribution of the localization length at the MBL transition, finding good agreement with our
numerical observations. Our results demonstrate how a localization length defined as such probes the localization
of the underlying ring, without the need to explicitly construct the l-bits.
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I. INTRODUCTION

Conventional statistical mechanics assumes that isolated
systems reach thermal equilibrium—effectively acting as their
own heat bath—when left to evolve under their own dynam-
ics. The process by which this happens for quantum systems
is highly nontrivial [1–4], and has been the subject of in-
tense research in recent decades, see [5–7] for recent reviews.
Through this body of work, certain classes of systems have
been discovered, which appear to violate this assumption, and
do not thermalize under their own dynamics. One such class
that has received much theoretical attention are lattice systems
with quenched disorder. For noninteracting systems, Ander-
son localization occurs, and the single-particle eigenstates are
exponentially localized around a specific lattice site, with a
decay length that is a function of the disorder and the en-
ergy [8]. Interacting systems display many-body localization
(MBL), which is characterized by zero DC transport, area-law
entanglement entropy, Poissonian level statistics, logarithmic
growth of entanglement entropy, long-time memory of initial
conditions, and more [7]. MBL has emerged as a platform
for novel quantum order [9–19] (see [20] for a review), with
implications for quantum information [21–26].

The existence of a many-body localized regime has been
demonstrated numerically in small systems [27–31] and
proven analytically [32] for one-dimensional spin chains un-
der certain assumptions, but many open questions still remain.
In particular, the nature (universality class) of the transition
between the thermal/ergodic phase and the MBL phase still
remains to be understood [7]. Some recent studies even call
into question whether the transition exists at all in the ther-
modynamic limit [33,34]; subsequent studies have argued the
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observed effects underlying those conclusions are the product
of finite-size effects [35] and many-body resonances [36–44].
Much remains to be done in probing the nature and stability
of the localization in systems that are believed to be MBL.

The most natural way to quantify localization is through
the localization length. In the noninteracting case, this is
straightforward: it is the decay length of the single-particle
eigenstates. In an interacting system, the desired “localization
length” is less obvious, since there is no notion of single-
particle orbitals. One of the most useful ways to quantify
the localization, then, is through the use of localized con-
served quantities. In addition to the properties mentioned
above, the MBL phase comes equipped with a complete set
of (quasi)local integrals of motions (LIOMs) [45,46]—the
so-called “l-bits”. Roughly speaking, the l-bits are conserved
quantities that are obtained by “dressing” the physical degrees
of freedom (“p-bits”) with unitaries that are exponentially
localized in real space. The decay of the l-bits thus offers a
way of calculating a localization length in interacting systems.

A number of methods have been put forth to address the
issue of constructing the l-bits [47–50], but the procedure
is computationally taxing and physically ambiguous (since
the mapping of the set of l-bit configurations onto the com-
putational basis states is not unique). This ambiguity means
that the localization lengths measured depend on how the
l-bits are constructed. In principle, it is possible to uniquely
specify an assignment of l-bits that is “most localized” in the
original basis [45], but there is no algorithm known rigorously
to construct such an assignment (although algorithms based
on Wegner-Wilson flow [51,52] work fairly well in practice
[50]). In spite of these difficulties, a number of numerical
studies [53–61] have extracted decay lengths from the l-bits
and analyzed properties of the finite-size MBL phase and
MBL-thermal crossover.

An alternate method for finding a localization length is to
introduce an imaginary vector potential, or tilt, that makes
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hopping preferential in one direction [62]. By varying the
strength of the vector potential/tilt, one finds that various
eigenvalues will develop nonzero imaginary parts (as the
system is no longer Hermitian). The point at which a given
eigenvalue develops a nonzero imaginary part in this modified
model defines a length scale ξ that, in noninteracting systems,
directly measures the localization length (defined in terms
of an end-to-end Green’s function) of the analogous (single-
particle) eigenstate of the underlying model without the vector
potential. This procedure does not require constructing the l-
bits, and Ref. [62] showed the corresponding ξ can be used to
identify the critical parameters of the MBL-thermal crossover
in interacting systems.

Here, we connect the length scale ξ to the avalanche model
of delocalization. Much of the current literature describes
the asymptotic MBL to thermal transition in terms of such
“avalanches”, whereby rare (locally) thermal regions are able
to induce a cascade of thermalization that overpowers the
localization in the rest of the system [63–67]. The instability
of localized systems to avalanches is characterized by a length
scale λ, which captures the decay of matrix elements coupling
the l-bits and rare thermal regions. It is natural, then, to expect
that ξ and λ are related to each other, as they both act as
a measure for the localization-delocalization transition; we
make this relation explicit.

Moreover, ξ has a distribution (with respect to quenched
disorder). We calculate this distribution numerically at the
finite-size MBL-thermal crossover, and examine whether the
relation between ξ and λ holds for the distributions as well.
Indeed, we find it does, so that the distributions of ξ at the
MBL crossover contain information about the decay of matrix
elements at the corresponding transition.

Our paper is organized as follows: In Sec. II, we present
and discuss the model we will study and some of its salient
features. In Sec. III we show ξ can be predicted by pro-
liferation of non-Hermitian avalanches, and we connect ξ

to the decay length λ appearing in the avalanche picture of
the delocalization transition. Finally, in Sec. IV, we use this
connection to derive an analytic form of the distribution for ξ ,
and compare with the numerically observed histograms.

II. NON-HERMITIAN MBL MODEL

A. Hamiltonian

We consider the following Hamiltonian for spinless
fermions on a one-dimensional lattice with sites i = 1, . . . , L,

H = t
L∑

i=1

[egc†
i ci+1 + e−gc†

i+1ci] +
L∑

i=1

hini + U
L∑

i=1

nini+1,

(1)

where c†
i /ci are fermionic creation/annhiliation operators,

ni = c†
i ci number operators, t ∈ R is the hopping amplitude,

g � 0 is the “imaginary vector potential” or “tilt”, U > 0
is a parameter denoting the strength of interactions, and the
hi’s are random variables drawn independently and identically
from a distribution characterized by a “disorder strength” W .
This Hamiltonian describes particles hopping on a disordered
lattice, subject to nearest-neighbor repulsion, with an imag-
inary vector potential (of magnitude g) making left hopping
preferential—see Fig. 1 for a schematic of this model.

FIG. 1. A schematic of the model Hamiltonian (1). Fermionic
particles (filled red circles) can hop (preferentially to the left) with
strength te±g, interact with their nearest neighbor with strength U ,
and are also subject to a random potential whose strength is deter-
mined by the disorder width W .

The Hamiltonian in (1) has been studied as an effective
model to describe driven open systems [68], and can also
be mapped onto the statistical mechanics of depinning flux
lines from columnar defects in two-dimensional type II super-
conductors via the path integral formalism [69–71]. In such
a mapping, g characterizes an external magnetic field that is
tilted with respect to the random columnar defects—hence the
choice of names for g.

Since g is a real number, we generically expect some eigen-
values to be complex for g �= 0. The values of g at which
certain eigenvalues develop a nonzero imaginary part are ex-
amples of so-called exceptional points [72], which have been
a topic of research since the 1990s [73–81]. Of particular in-
terest has been the connection between the exceptional points
and localization/delocalization of eigenstates in models sim-
ilar to (1) [69–71,82–85]. We seek to exploit this connection,
as we lay out in the next section.

B. Exceptional points of H and their connection
to localization/delocalization

To expand on the connection between exceptional points
and delocalization in the model (1), it is instructive to consider
the following “gauge transformation” [62]:

S = exp

⎛
⎝ L∑

j=1

jgn j

⎞
⎠. (2)

Applying this transformation to our Hamiltonian (1) with
open boundary conditions (cL+1 = 0) eliminates g entirely.
The Hamiltonian is similar to a Hermitian operator, and thus
has a real spectrum, for any g. Put another way, we can “gauge
away” the imaginary vector potential. Conversely, if we have
periodic boundary conditions (cL+1 = c1) the presence of g is
not removed, but rather is shifted entirely to the bond between
sites L and 1 [or any other two sites, by an appropriate shift
of indices in (2)]. In this case, the non-Hermiticity cannot
be removed; there is a fixed “flux” iLg through the ring. See
Fig. 2(a) for an illustration.

Now, let us consider the single-particle sector of the Hamil-
tonian (1) with open boundary conditions and g = 0; we know
that the states will be localized for any nonzero disorder
strength W . Let us consider an eigenstate |ψε〉 at energy den-
sity ε [86] in this open chain. This eigenstate will be localized
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FIG. 2. (a) Illustration of the imaginary flux � = iLg bound
through our system (with periodic boundary conditions), as well as
the action of the gauge transformation (2). (b) Illustration of the
competition between the decay of the wavefunction |ψε〉 and the
imaginary flux iLg. Heuristically, we expect the exceptional point
gc(ε) to occur where the product of the end-to-end tunneling ampli-
tude 〈1|ψε〉〈ψε |L〉 and hopping strength |t |eLg is comparable to the
level spacing.

at some lattice site—call it j. Based on the discussion of
gauge freedom above, let us introduce an imaginary flux by
adding a term of the form eLgc†

Lc1 + e−Lgc†
1cL to our system.

Borrowing intuition from perturbation theory, we expect the
non-Hermiticity to become important when

〈ψε ||t |eLgc†
Lc1|ψε〉 ∼ δ, (3)

where δ is the level spacing in the chain. See Fig. 2(b) for an
illustration.

Using the localized state ansatz |ψε〉 ∼∑k e−|k− j|/ξε |k〉
in (3) above, one finds the exceptional point gc(ε) for this
eigenstate to be gc(ε) ∼ 1/ξε to leading order in L. In other
words, the tilt competes directly with the localization of the
underlying Hermitian Hamiltonian. This fact has been studied
in detail by Hatano and Nelson for the noninteracting case
[69,70] and Hamazaki et al. [82] for the interacting case.
Hamzaki et al. focused on the localization properties of the
non-Hermitian Hamiltonian (1) at nonzero g, as opposed to
using the real-complex transition to probe the localization
properties of the underlying g = 0 Hamiltonian (which is what
the relation gc ∼ 1/ξ encodes).

The above argument, while suggestive, can be made pre-
cise. Specifically, let |ψn〉 denote the nth single-particle
eigenstate of the g = 0 Hamiltonian (1) with open boundary
conditions, and let gc, n be the exceptional point for the nth
eigenstate in the closed chain with tilt (ordered by real part of
the eigenvalue). Then one can show [62]

gc, n = 1

ξn
+ O

(
1

L

)
, (4)

where 1/ξn = − 1
L log(〈ψn|c†

1cL|ψn〉) is the “eigenstate local-
ization length” (equivalently, the logarithm of the end-to-end

Green’s function in the vicinity of En). While derived only
for the single-particle sector of (1), Ref. [62] showed that
defining a length scale via (4) in interacting systems has
the expected behavior of a localization length—namely, a
finite-size scaling collapse of ξ identifies critical parameters
that agree with other numerical studies of finite-size MBL
systems, and ξ appears to diverge at the asymptotic transition.
Thus, by searching for the exceptional points of the Hamilto-
nian (1) as we vary g, we can directly probe the localization
properties of the underlying g = 0 Hamiltonian.

III. CONNECTION TO AVALANCHE MODEL

In this section, we seek to connect the localization length
ξ to the length scale λ appearing in the avalanche model of
delocalization. We do so in several steps.

A. Hermitian avalanche model

We begin with a brief review of the avalanche model of the
localization-delocalization transition [63–67]. In this picture,
localized chains are coupled weakly to a thermal bath (or
thermal subregion of the chain), which can thermalize the
sites bordering it. The new, larger, “effective” thermal bath
comprised of the original bath and its thermalized neighbors
can now thermalize the subsequent sites bordering it, and
this can continue, triggering an “avalanche” that will either
halt at some point—leaving the chain (partially) localized—or
thermalize the whole chain.

To be more concrete, we consider the following toy model
that captures the essential physics of such avalanches [63,64].
The system is a 1d chain of length L + Lb, with sites −Lb +
1, . . . , 0 being a thermal “bath”, and sites 1, . . . , L being
many-body localized l-bits. The Hamiltonian is

H = Hbath + G0

L∑
j=1

e− j/λ[b†
0c̃ j + c̃†

j b0] +
L∑

j=1

u jñ j, (5)

where Hbath is the bath Hamiltonian (acting only on the bath
sites), bi/b†

i are bath creation/annihilation operators, c̃i/c̃†
i /ñi

are l-bit creation/annihilation/number operators, and {ui}L
i=1

are the single-particle energies associated with each l-bit. Ad-
ditionally, e−1/λ ∈ (0, 1] is the base of exponential decay of
the matrix elements coupling the bath to the localized part
of the chain, with λ being the decay length of said matrix
elements. This model neglects interactions between the l-bits,
which are argued to induce only higher-order corrections [64].

In the avalanche picture of delocalization, the eigenstate
thermalization hypothesis (ETH) holds for a given l-bit if and
only if it successfully hybridizes with the bath according to
Fermi’s golden rule [87]. Symbolically, this criteria amounts
to the condition T � δ, where δ is the level spacing in the
bath, and T is a matrix element of the hopping b†

0c̃i between
eigenstates of the unperturbed Hamiltonian Hbath +∑L

i=1 uiñi.
Assuming ETH for the bath, a typical matrix element between
two energy eigenstates has the form T ∼ κ

√
ρ(ε, ω)δ, where

the spectral function ρ is a smooth positive function, ε and
ω are the average and difference of the bath energies of the
eigenstates, and κ = G0e− j/λ is direct coupling between the
bath and l-bit j [63].
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The l-bit most strongly coupled to the bath will be
at site 1, and this l-bit hybridizes with the bath if
G0e−1/λ

√
ρ(ε, ω)/δ � 1. Should this l-bit hybridize, it will

effectively become part of the bath; this (approximately)
halves the level spacing δ 	→ δ/2 and (approximately) leaves
the spectral function unchanged: ρ ′(ε, ω) ≈ ρ(ε, ω). One can
now pose the hybridization criteria to the l-bit at site 2, with
the level spacing of the “effective” bath half that of the original
bath level spacing. Should the l-bit at site 2 hybridize with the
bath, the level spacing will be further reduced by a factor of 2.
This process continues at each site a distance r from the bath
so long as the hybridization condition

T (r)

δ(r)
� 1 ⇒ G0e−r/λ2r/2

√
ρ(ε, ω)

2δ0
� 1 (6)

holds. Here, we have taken δ(r) ≈ δ02−r+1, with δ0 the level
spacing of the original bath.

For the entire chain to thermalize, (6) should hold for all r.
Since the left-hand side of (6) is monotonic, full thermaliza-
tion can be determined by the behavior at the end of the chain
(r = L). Taking logarithms, full thermalization of the chain
thus amounts to

−1

λ
+ log 2

2
+ O

(
1

L

)
� 0. (7)

In the thermodynamic limit, we can see this condition will
always be satisfied for λ > 2/ log 2. We thus see the length
scale λ controls the delocalization transition, which occurs at
a critical decay length λc = 2/ log 2.

B. Non-Hermitian delocalization and avalanches

In numerical studies of non-Hermitian Hamiltonians with
tilt g whose g = 0 counterpart is many-body localized, it has
been observed that a non-Hermitian MBL regime exists for
small g, and is eventually destroyed for large enough g [68,82].
We conjecture that this non-Hermitian delocalization occurs
by the same avalanche mechanism as in the Hermitian case.
That is, we propose that the imaginary vector potential helps
couple ergodic grains to the rest of the chain in such a way as
to successively delocalize neighboring sites of the chain.

Note that Ref. [82] also argues that the real-complex
transition roughly coincides with the non-Hermitian delocal-
ization transition in their numerics, and that the coincidence
is exact in the thermodynamic limit. Under our conjecture,
the exceptional points gc thus measure the location of this
avalanche-based transition (i.e., gc ∼ λc − λ).

The conjecture that a non-Hermitian avalanche drives the
non-Hermitian delocalization transition is a highly nontrivial
statement, so we first verify it on a simple toy model. To that
end, we consider the following non-Hermitian version of the
avalanche Hamiltonian:

H = Hbath +
L∑

j=1

u jñ j + G0

L∑
j=1

e− j/λ[e jgb†
0c̃ j + e− jgc̃†

j b0] + G0

L∑
j=1

e− j/λ[e jgc̃†
L− j+1b−Lb+1 + e− jgb†

−Lb+1c̃L− j+1]. (8)

This is the Hamiltonian (5), with the inclusion of a non-
Hermitian tilt. Note also that we include hopping from both
ends of the bath, since the effect of g can be gauged away for
open boundary conditions.

Figure 3 shows numerical results from diagonalizing the
Hamiltonian (8) for several system sizes, in the half-filling
sector, for e−1/λ = 0.3. We can see a crossover in both the
half-chain entanglement entropy and the inverse participa-
tion ratio from constant to increasing/decaying with system
size (respectively), indicating a localization to delocalization
crossover. These crossovers also occur roughly at the value
of g we would expect from modifying the avalanche criteria
(6) with e−r/λ 	→ e−r/λ+rg, i.e., g = 1/λ − 1/λc (with λc =
2/ log 2 [88]). We also see similar crossovers for varying
values of e−1/λ—see Appendix C for additional examples.
These results support the idea that a non-Hermitian avalanche
mechanism is driving delocalization in this model.

Figure 3(c) also shows the fraction fcomp of disorder re-
alizations that have a nonreal eigenvalue at energy density
ε = 0.5. Although there is no sharp transition or crossover,
the window over which a nonzero fraction of disorder realiza-
tions have a complex eigenvalue overlaps with the crossover
window observed in Figs. 3(a) and 3(b). This suggests that
the real-complex transition may not only coincide with the
many-body localization-delocalization transition (as previ-
ously suggested in the literature), but that it is consistent with
a non-Hermitian avalanche mechanism.

C. Mapping chain Hamiltonians to avalanche Hamiltonians

Having evidence that a non-Hermitian avalanche drives
the delocalization and real-complex transition in a simple toy
model, we now would like to verify that the exceptional points
gc(ε) in more generic Hamiltonians such as (1) are described
by a similar mechanism. To do so, we need a way to explic-
itly connect such Hamiltonians to “avalanche” Hamiltonians
resembling (8).

Let us consider a generic system comprised of a thermal
bath/grain and a chain (which we take to be MBL). The
Hamiltonian is of the form

H = Hbath + Hchain + Hbc, (9)

where Hbath and Hchain act only on the bath and chain (re-
spectively), and Hbc couples the bath and chain subsystems.
To bring this into the desired “avalanche” form, we need to
reexpress Hchain and Hbc in terms of l-bits. In principle, this
can be done straightforwardly by diagonalizing Hchain and
performing a change of basis on Hbc. When using a generic
diagonalization routine, however, it is not obvious how to ex-
tract the l-bit occupation numbers for each eigenstate. As the
avalanche model relies on a cascade effect from thermalizing
successive l-bits, we need to employ a diagonalization routine
that allows us to access this crucial information.

To achieve this, we employ a mapping that com-
bines the “displacement transformations” of Rademaker and
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FIG. 3. Disorder-averaged localization metrics of the eigenstates
of (8) for e−1/λ = 0.3 and various L, as a function of g. Going
clockwise: (a) half-chain entanglement entropy 〈SE 〉, (b) Inverse par-
ticipation ratio 〈IPR〉, and (c) fraction fcomp of disorder realizations
whose central eigenvalue (ε = 0.5) is nonreal (note that 〈·〉 denotes a
disorder average). Error bars indicate the standard error of the mean.
From (a) and (b), we see a crossover from localized behavior to
delocalized behavior, and from (c), we see a similar real-complex
crossover. Insets show a “zoomed in” look at the crossover re-
gion. The crossovers occur roughly at g = 1/λ − 1/λc (black dashed
lines), the value one would expect from a non-Hermitian avalanche
criterion, supporting the idea that non-Hermitian avalanches are re-
sponsible for these crossovers. All quantities were computed for the
eigenstate at the center of the spectrum (ε = 0.5) in the half-filling
sector with G0 = 1, Lb = 3, and Hbath an 8 × 8 GOE matrix. The l-bit
energies were drawn from a uniform distribution ui ∼ Uni[−w, w]
with w = 10, and we averaged all quantities over 1000 (L = 5, 7)
and 500 (L = 9) disorder realizations. The entanglement entropies
were computed using right eigenvectors only.

Ortuño [49] with the principles of Wegner-Wilson flow
[50,61]. Specifically, we construct and apply displacement
transformations to eliminate individual off-diagonal terms
in the Hamiltonian H0 = Hbath + Hchain. We iterate this
procedure, repeatedly eliminating the largest remaining off-
diagonal term (as in the flow equation approach) until all
such terms in H0 are below some tolerance—see Appendix D
for details. At the end, this procedure yields similarity trans-
formations Ubath and Uchain that diagonalize Hbath and Hchain,
respectively. We then apply these transformations to Hbc,
which generates an avalanche-like series of terms involving
hopping between bath eigenstates and the l-bits. Figure 4
illustrates this procedure schematically.

There are several important points about this procedure that
we wish to emphasize. The first is that the transformation
Uchain obtained from the Wegner-Wilson-flow like approach

FIG. 4. A schematic illustration of how we map chains with a
bath to avalanche-like Hamiltonians. (a) We first diagonalize the
decoupled chain and bath system (above the arrow), by iteratively
applying displacement transformations to eliminate the largest off-
diagonal hopping terms (solid lines). This leaves the system in
diagonal form (below arrow), with |ψb

i 〉 the bath eigenstates and
squares representing the l-bits �i. (b) We then apply the same trans-
formations found in (a) to the full Hamiltonian H , including the
bonds between the bath and chain (red lines, above arrow). This
yields avalanche-like hopping between the bath eigenstates and l-bits
(red lines, below arrow).

will well approximate the “near-optimal” mapping of basis
states to l-bit configurations alluded to in Sec. I [50]. Thus,
we can read off the l-bit occupation numbers from the phys-
ical site occupation numbers in the original computational
basis. The second is that by completely diagonalizing the
decoupled bath/chain system H0—rather than diagonalizing
only Hchain—we have access to the spectrum of the decoupled
system. We can therefore label each l-bit/eigenstate hopping
by its energy density in the uncoupled system, allowing for
direct comparison with gc at the same energy density. The final
key point is that, due to the gauge freedom, we can take H0 to
be Hermitian without loss of generality. More specifically, we
can gauge all of the flux onto the coupling Hamiltonian Hbc

[i.e., the red bonds in Fig. 4(b)], and perform our mapping on
H0 with g = 0. The transformations Ubath and Uchain will be
unitary, and significantly easier to construct. The influence of
the imaginary flux is also now simply a multiplicative weight
for the various terms generated from Hbc by the change of
basis (rather than being part of the transformations Ubath and
Uchain, as it would be otherwise). We will leverage these last
two points in the next two sections.

D. Applying the mapping

Let us now apply the mapping described in the previous
section to a concrete model describing our system of interest.
To that end, we take Hbath to be a 2Lb × 2Lb GOE matrix
(where Lb is the bath size) and

Hchain =
L−1∑
i=1

[c†
i ci+1 + c†

i+1ci]

+
L∑

i=1

wini + U
L−1∑
i=1

nini+1, (10a)

Hbc = b†
0c1 + c†

1b0 + c†
Lb−Lb+1 + b†

−Lb+1cL, (10b)

where bi, ci are bath/chain fermion operators (respectively), ni

are chain number operators, U > 0 is the interaction strength,
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the wi are independently and identically drawn from a distri-
bution characterized by strength W , and L is the length of the
chain. Note that we have taken the bare hopping strength t
[c.f. the Hamiltonian (1)] to be unity, so that all quantities are
in units of t . Additionally, per the discussion of the previous
section, we apply the mapping to a Hermitian Hamiltonian
without the vector potential g; we can restore the influence of
g by placing a flux i(L + 1)g onto the bonds in and out of the
bath.

For each disorder realization, after applying the mapping,
we need to extract the decay of matrix elements coupling each
l-bit to the bath. To do so, we first separate the bath-chain
coupling Hbc into couplings from the left and right end of
the bath, HL

bc = c†
Lb−Lb+1 + b†

−Lb+1cL and HR
bc = b†

0c1 + c†
1b0,

respectively. In terms of the uncoupled eigenstates |ψb
i 〉|ψc

j 〉
(where |ψb

i 〉, |ψc
j 〉 are eigenstates of Hbath and Hchain, respec-

tively), we obtain matrix elements

As
kl→i j = 〈ψb

i

∣∣〈ψc
j

∣∣Hs
bc

∣∣ψb
k

〉∣∣ψc
l

〉
.

We wish to extract specific matrix elements for each l-bit � and
energy density ε. To that end, we choose k = kε and l = lε
above such that |ψb

kε
〉|ψc

lε
〉 is the eigenstate closest to energy

density ε in the uncoupled system. Then, for each l-bit �, we
define the amplitude A�(ε) via

A�(ε) =
{

maxi

∣∣〈ψb
i

∣∣(〈ψc
lε

∣∣c̃†
�

)
HR

bc

∣∣ψb
kε

〉∣∣ψc
lε

〉∣∣ � occupied

maxi

∣∣〈ψb
i

∣∣(〈ψc
lε

∣∣c̃�

)
HL

bc

∣∣ψb
kε

〉∣∣ψc
lε

〉∣∣ � unoccupied
.

(11)

In words, we choose the largest (by amplitude) matrix ele-
ment connecting |ψb

kε
〉|ψc

lε
〉 to a state with the occupation of

l-bit � flipped and all other l-bit occupations the same—see
Fig. 5(a) for a schematic example. Note that the choice of HR

bc
vs HL

bc reflects the fact that hopping left (right) is enhanced
(suppressed) when we eventually restore the imaginary vector
potential g; hence, we choose the matrix element that will be
enhanced by a factor of e(L+1)g in each case above.

In the event that it is impossible to find such a hopping (if,
for example, l-bit � is unoccupied but the bath is empty), then
we examine the eigenstate with energy density next closest
to ε.

In the context of an avalanche mechanism, we are inter-
ested in studying how the couplings A�(ε) decay for each
energy density. To that end, we assume without loss of gen-
erality that the A�(ε) are sorted in � in descending order. The
amplitudes A�(ε), as well as their decay in �, will generically
be random (as they depend on the random disorder)—this is
in stark contrast with the deterministic decay of the canonical
avalanche model discussed in Sec. III A. We do, however,
observe that upon averaging over disorder realizations, the
amplitudes decay exponentially in �—see Fig. 6 for examples
of how this is borne out in chains of size L = 11, Lb = 3, in
the N = 3 occupation sector [89]. Consequently, the canonical
avalanche model of Sec. III A emerges from our results upon
disorder averaging.

This mapping allows us to go beyond studying the
disorder-averaged amplitudes—in particular, we have access
to the distributions of A�(ε) and their decay in �. To that end,

FIG. 5. Schematic examples illustrating how we extract the A�

and χi’s in a small chain. (a) An example of how to choose the
amplitude A� for � = 3. Starting from an initial state |ψb

1 〉|ψ c
k 〉 with

|ψ c
k 〉 having l-bit 3 occupied, we identify the set of target states (Step

1). These are the states of the form |ψb
q 〉|ψ c

j 〉, where |ψb
q 〉 is any bath

eigenstate and |ψ c
j 〉 has the same l-bit configuration as |ψ c

k 〉 except
for l-bit 3, which is now unoccupied. We then examine the matrix
elements connecting the initial state to all possible target states (Step
2). We choose the amplitude with the largest magnitude, and assign
its magnitude to be A3 (Step 3). We can then repeat this process for
different initial states and l-bits �. In our computations, the initial
states are chosen by energy density ε, so we label the resulting
amplitudes by energy density as A�(ε). (b) An example of how we
define the χi’s. We first sort the A�’s (for a given initial state) in
descending order (Step 1). We then write each (sorted) amplitude
as a product A�̄ =∏�

i=1 χi such that A�+1 = χ�+1A�̄ (Step 2). Note
that we write the l-bit indices with bars to emphasize the fact that the
amplitudes have been sorted (we drop such notation in the main text
for brevity).

we define the quantities

χ�(ε) = A�(ε)

A�−1(ε)
, (12)

where we take A0(ε) = 1. By construction, we have A�(ε) =∏�
i=1 χi(ε), with 0 � χi(ε) � 1 for each � [as the A�(ε) are

sorted to be monotonically decreasing in �]. See Fig. 5(b)
for a schematic illustration of the χi’s. Such a decomposition
amounts to replacing the deterministic decay e−1/λ in (8) by
the random, energy dependent χ�(ε). The distributions of
these χ�(ε) show very interesting behavior as we bring the
system from MBL to ergodic. Figure 7 shows the observed
probability densities of χ�(ε) (with � = 4) as we tune the
disorder strength from deep in the MBL regime to ergodic.
In the MBL and thermal regimes, the distributions are peaked
near 0 and 1, respectively. This is consistent with the intuition
that the amplitudes should decay slowly in the thermal regime
and quickly in the MBL regime (which we observe to be the
case on average in Fig. 6). Significantly, there is a window
between the two extreme regimes where the distributions are
approximately uniform. To make this statement more precise,
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FIG. 6. Decay of 〈A�(ε)〉 (with 〈·〉 denoting disorder average) vs
� at the center of the spectrum (ε = 0.5), for interaction strengths
(a) U = 1, (b) U = 2, (c) U = 3, (d) U = 4, (e) U = 5. Within each
panel, each line traces out the decay of 〈A�(ε)〉 for a given disorder
strength W , with the color of the line indicating the value of W . We
see that the average amplitudes appear to decay exponentially for all
disorder strengths, with the rate of decay increasing with the disorder
strength. All quantities are computed with L = 11, Lb = 3, in the
N = 3 sector, and the averages are over 500 disorder realizations.

we “fit” the numerically observed probability distributions in
the vicinity of the MBL-thermal crossover, by minimizing the
Akaike information over a large class of known continuous
probability distributions. The Akaike information is defined
as

IA = 2k − log L̂, (13)

where k is the number of parameters in the model, and L̂ is
the likelihood function. We choose to minimize the Akaike
information, as it acts as an unbiased estimator for the ex-
pected Kullback-Leibler divergence (whereas the Bayesian
information is a biased estimator), a standard measure for
the information difference between two probability density
functions [90]. Figure 8 shows the numerically observed dis-
tributions of χ�(ε) for several � at the center of the spectrum
for U = 1 and W = 4.8 [the critical point for the chain Hamil-
tonian (10a)—see Appendix B], along with the results of
carrying out this fit. In all cases, the best-fit distribution is a
uniform distribution on [0,1]. Although we only show results
for the center of the spectrum for U = 1, we find similar
distributions at the transition throughout the spectrum, as well
for U = 2, 3, 4, 5. This observation that the amplitudes χ�(ε)
are uniformly distributed at the crossover will be key in the
subsequent sections when we derive expressions for the dis-
tribution of gc at the critical point.

FIG. 7. Distributions of χ4(ε) (with respect to disorder realiza-
tions) at ε = 0.5 for a variety of W , for (a) U = 1, (b) U = 2,
(c) U = 3, (d) U = 4, (e) U = 5. Each line is the observed proba-
bility distribution p(χ4) (smoothed using a Gaussian kernel density
estimator) for a given disorder strength, with the color of the line
indicating the disorder strength. The dashed line traces out a uniform
distribution for comparison. We see a qualitative difference between
the distributions as we tune from the ergodic phase (dark blue) to
deep in the MBL phase (dark red); the distributions cross over from
peaked at 1 to peaked near zero, with an intermediate critical regime
of being approximately uniform. All quantities are computed with
L = 11, Lb = 3, in the N = 3 sector, and the distributions are over
500 disorder realizations.

As a final note, the behavior of the distributions observed
in Figs. 7 and 8 is generic throughout the spectrum for 2 �
� � 10 (although the peak of the distributions at 0 in the
MBL phase is less pronounced for � � 6). For the largest and
smallest values of �, we do see (not shown) deviation from
the behavior in Fig. 7; we expect this to be caused chiefly
by finite-size and finite numerical precision effects. Going
forward, we assume that the qualitative behavior observed in
Figs. 7 and 8 describes the asymptotic (L → ∞) behavior
of the system, and we attempt to characterize our finite-size
numerics by this expected behavior.

E. Connecting gc to A�

In Sec. III B, we found evidence that the non-Hermitian
many-body delocalization transition is consistent with a non-
Hermitian avalanche mechanism, and that gc ≈ 1/λ − 1/λc

measured the location of this transition, for the toy Hamil-
tonian (8). With the mapping of the previous two sections, we
are now in position to test if an analogous relation holds for
more realistic Hamiltonians [like the Hamiltonian (1)].

To that end, we take the Hamiltonian specified by (10), add
an imaginary flux i(L + 1)g, and compute gc(ε) for a variety
of energy densities (see Appendix A for details on computing
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FIG. 8. Histogram of amplitude ratios χ�(ε) = A�(ε)/A�−1(ε)
for energy density ε = 0.5 and interaction/disorder strength U = 1,
W = 4.8. Shown are the histograms for (a) � = 4, (b) � = 5, (c) � =
6, (d) � = 7. Blue lines overlaid are the “best fit” distributions min-
imizing the Akaike information (see text). The best fit is a uniform
distribution in all cases, suggesting χi ∼ Uni[0, 1] at the finite-size
crossover. All quantities are computed with L = 11, Lb = 3, in the
N = 3 sector, and the distributions are over 500 disorder realizations.

gc). We do so for the same disorder realizations as shown in
the previous section, so that we have both gc(ε) and A�(ε) for
the same disorder realizations.

To connect gc(ε) to the A�(ε), let us consider an avalanche
proliferating in this chain. As remarked in the last section, the
deterministic decay of hopping amplitudes e−1/λ in the toy
model (8) must be replaced by the random variables A�(ε).
Because of this, the ratio of matrix element to bath level
spacing [in analogy with (6)] is not necessarily monotonic,
and we must examine this ratio for every l-bit to determine
delocalization. We also incorporate the imaginary vector po-
tential by enhancing each bond by a factor of e(L+1)g (since,
due to the gauge freedom, we can put all influence of g onto
the bonds connecting the bath and chain). Thus, the analogous
condition to (6) (at energy density ε) for all l-bits should read

g � − 1

L + 1
min

1���L

[
logA�(ε) + (� − 1)

log 2

2

]
. (14)

In words, the flux i(L + 1)g must make up for the maximal
“difference” between the (random) decay of the hoppings and
the level spacing.

Based on the results of Sec. III B, we expect that the
exceptional points gc(ε) saturate this bound—that is, gc is
exactly enough to cover all of these “differences”. We test this
criterion numerically by computing

A (ε) := − min
1���L

[
logA�(ε) + (� − 1)

log 2

2

]
(15)

and gc(ε) for each disorder realization, and comparing the
two. Visually, there is no clear-cut trend, although the Pearson
correlation coefficient suggests a weak linear relationship—
see Fig. 9 for some example scatter plots. We observe a
much clearer trend by averaging gc(ε) and A (ε) over disorder

FIG. 9. Example scatter plots of exceptional points gc(ε) and
“avalanche parameter” A (ε) [computed from the A�(ε) found in
Sec. III D], slightly above the critical point. Each point represents
a single disorder realization (for a fixed disorder strength), with
the ordinate and abscissa gc and A at the center of the spectrum
(ε = 0.5), respectively. The various panels show interaction/disorder
strengths (a) U = 1,W = 5.5, (b) U = 2,W = 6.0, (c) U = 3,W =
7.0, (d) U = 4,W = 7.0, (e) U = 5,W = 8.0. There is no obvious
visual relationship between gc(ε) and A (ε), although the Pearson
correlation ρ(X,Y ) = cov(X,Y )/σX σY (where cov is the covariance)
indicates weak positive correlation (ρ ∼ 0.3). We mark ρ in the
upper left of each plot, with error estimates from the 95% bootstrap
confidence interval. For reference, we also overlay the disorder aver-
aged fits of Fig. 10 (dashed lines). All data was taken from the N = 3
sector of a chain with L = 11, Lb = 3, and computed for 500 disorder
realizations.

realizations for multiple disorder strengths W —see Fig. 10
for examples at the center of the spectrum. We are able to
fit a line to the scatter plot of 〈gc(ε)〉(W ) vs 〈A (ε)〉(W )
(where 〈·〉 denotes a disorder average). These fits are shown
in Fig. 10 (and overlaid in Fig. 9), and Table I shows the
resulting fit parameters (with uncertainties [91]). We find that
the disorder-averaged data is well fit by a line, and the slope
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FIG. 10. Scatter plots of disorder-averaged exceptional points
gc(ε) and “avalanche parameter” A (ε)(computed from the A�(ε)
found in Sec. III D) for a variety of disorder strengths. Each point
in the scatter plot corresponds to a specific disorder strength W
(the coloration indicating the numerical value of W ), with the or-
dinate and abscissa the average (over disorder realizations) of gc

and A at the center of the spectrum (ε = 0.5), respectively. The
various panels show interaction strengths (a) U = 1, (b) U = 2,
(c) U = 3, (d) U = 4, (e) U = 5. Dashed lines indicate a linear fit
performed via orthogonal distance regression. We see good agree-
ment between the fits and the data points, providing evidence that
the real-complex/localization-delocalization transition is driven by
non-Hermitian avalanches. All data was taken from the N = 3 sector
of a chain with L = 11, Lb = 3. Averages were performed over 500
disorder realizations.

agrees within error bars (at least at the center of the spec-
trum) with the expected value of 1/12 = 0.0825 [predicted
by (14) with L = 11]. Curiously, the intercepts of these fits
are nonzero. At present, we do not have an explanation for
this, but we note in passing that the intercepts are roughly
consistent with log 2 ≈ 0.693, which would correspond to a
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shift of about log 2 per nonbath site to A (ε). In any case,
there is unmistakably a linear relationship between 〈gc〉 and
〈A (ε)〉, with (roughly) the correct slope of 1/(L + 1). This
results support our conjecture in Sec. III B, and the idea that
the location of gc is given by saturating the avalanche criterion
(14). This in turn means that the localization length ξ = 1/gc

captures the difference between the hopping decay and the
level spacing.

In taking (15) as the “avalanche condition” determining gc,
we are assuming that delocalization occurs when all l-bits are
delocalized by hybridizing with the bath. It is a worthwhile
question to ask whether this is strictly necessary, and if de-
localization of the system (indicated here by the eigenvalues
acquiring a nonzero imaginary part) only requires a fraction of
the l-bits to hybridize with the bath. Requiring, say, only L′ out
of L l-bits to hybridize would entail replacing the minimum
in (15) by the function that selects the (L′)th largest of the
collection of L values. In the extreme case of L′ = 1, the
minimum in (15) should be replaced by a maximum; we find
(not shown) that scatter plots analogous to Fig. 9 are very
noisy and uncorrelated, and disorder-averaged fits analogous
to those in Fig. 10 are very poor. Consequently, this extreme
case is unlikely to capture the physics (unlike the minimum,
corresponding to L′ = L).

It is not clear whether there even should be a universal
value of L′ for all disorder realizations. If L′ varies from
realization to realization, this could explain the nonzero inter-
cepts in the linear fits of Fig. 10; the intercept could capture
the (disorder-averaged) variation between the minimum and
(L′)th largest value of A�(ε) + (� − 1) log 2/2 across disorder
realizations. To attempt to address this question, we repeat the
analysis presented above with an average over l-bits, instead
of a minimum—see Appendix G. There, we find comparable
results to those we have presented in this section, and the
linear fits generically have smaller intercepts. As averaging
over l-bits does not fix a particular universal value of L′,
this suggests that L′ may indeed not have a universal value
across disorder realizations. In spite of this—as we shall see
in the next section—the avalanche condition (15) (i.e., taking
L′ = L) appears to be the most successful in capturing the
physics of gc in the original Hamiltonian (1) without a bath,
so we primarily focus on this case moving forward.

F. Single vs multi l-bit flips

Before moving on, we address a key aspect of the definition
(11) of the amplitudes A�: the fact they are derived only from
considering single l-bit flips.

At first glance, such a definition may seem too restrictive;
namely, that by considering only single l-bit flips, we are
missing the dominant processes by which the system relaxes
(as observed, e.g., in [44]). We find, however (not shown), that
extending the definition of A� to include all hoppings that flip
l-bit � yields quantitatively worse results—in the sense that
scatter plots akin to Fig. 9 show near-zero Pearson correlation
and linear fits akin to Fig. 10 yield the wrong slope. Our nu-
merics are thus more consistent with an avalanche mechanism
that propagates via single l-bit flips only.

This is not to say that our results suggest that multi l-bit
flips are not important to the finite-size MBL regime or the

avalanche mechanism—the growing consensus in the litera-
ture is that they very much are [36–44]. Rather, we suspect
the primary reason behind this apparent discrepancy is the
fact that our imaginary vector potential couples to charge.
The real-complex transition we detect thus corresponds to
delocalization of charge, rather than entropy or energy (which
other studies such as [44] are sensitive to). Correspondingly,
our imaginary vector potential may not be sensitive to charge-
neutral processes that thermalize the system, which based
on our numerics seem to coincide with processes that flip
multiple l-bits at a time.

IV. DISTRIBUTIONS AT THE MBL CROSSOVER

We have successfully connected the localization length
ξ = 1/gc to the length scale appearing in the avalanche model.
We now seek to leverage this relationship to predict the dis-
tribution of gc (with respect to disorder)—the distribution
of ξ then follows as the inverse distribution, per the rela-
tionship ξ = 1/gc. We focus here on the distribution at the
MBL-thermal crossover, as we have an analytic form for the
distribution of the amplitudes A�(ε) (based on the observa-
tions of Sec. III D).

Based on the results of Sec. III E, we consider the following
generalized relation between gc and the A�’s,

gc(ε) ≈ 1

F
max

1���N�

[− logA�(ε) − (� − 1)α] + g0, (16)

where iFg is the total flux through the system, N� the number
of l-bits in the system, and α = log d/2, where d is the on-
site Hilbert space dimension (in fermionic models, d = 2). We
also allow for an offset g0, based on the results of Sec. III E.
Note that we have written the relation in terms of a maximum
here, to ease analytic computation of the distribution.

Let us assume this relation for gc holds for each disorder
realization (i.e., we neglect the noise observed in Fig. 9), and
let PN�

F (gc � x | g0) denote the cumulative density function for
gc given by this relation. As observed in Sec. III D, we have
A�(ε) =∏�

i=1 χi(ε) with χi(ε) uniformly distributed on [0,1]
at the MBL crossover. Using this, we arrive at the following
form for the CDF:

PN�

F (gc � x | g0) = 1 − e−x̃

⎡
⎣1 + x̃

N�−1∑
j=1

e− jα

j!
(x̃ + jα) j

⎤
⎦,

(17)

where x̃ = F (x − g0)—see Appendix E for details on the
derivation of this result. Crucially, we note here that the
derivation in Appendix E assumes the χi are independently
and identically distributed. This is not strictly true, as the
distributions of χi do vary in i (as remarked in Sec. III D), and
all the χi(ε) arise from the same disorder realization, and are
thus almost certainly correlated. We neglect these two facts
here.

We now would like to see if the analytic distribution (17)
describes the distribution of gc’s (and thereby ξ ’s) at the
MBL crossover in the original model (1). To that end, we
compute the histogram of gc(ε) at the (energy-resolved) crit-
ical disorder strength identified from finite-size scaling (see
Appendix B). We cannot compare the numerically observed
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distributions directly to (17), however, as the Hamiltonian (1)
does not explicitly include a thermal bath/grain. The size of
the bath is thus itself also a random variable; we account for
this by modifying (17) to a mixture distribution of the form

Pβ,g0 (gc � x) =
L−1∑
i=1

βiP
L−i
F (gc � x | g0), (18)

with 0 � βi � 1,
∑

i βi = 1. In this distribution, βi is the
probability the bath/thermal grain is of size i, and PL−i

F is
the CDF of gc conditioned on the bath being size i. Such a
distribution follows from the law of total probability applied
to the CDF of gc.

We fit a mixture distribution of the form (18) to the nu-
merically observed CDF. We do so by computing a kernel
density estimator f̂ of the numerically observed CDF (using
a Gaussian kernel), sampling this estimator at various points
{xi}n

i=1, and numerically minimizing the squared error

δ(β, g0) =
n∑

i=1

(Pβ,g0 (gc � xi ) − f̂ (xi ))
2, (19)

subject to the constraints 0 � βi � 1,
∑

i βi = 1. The results
of this fit at the center of the spectrum are shown in Fig. 11.
We see good overall agreement between the observed CDF
and the fitted mixture distribution, although the fitted dis-
tributions have longer tails than the observed distributions
(as evidenced by the slower approach of the CDF to 1—see
also Appendix F). This suggests that the distributions of gc

at the critical point are well-described by an avalanche-like
picture of delocalization [which gives rise to the distribution
(18)]. The distribution of ξ , obtained by computing the in-
verse distribution of (18), thus contains information about the
distribution of the hopping amplitudes A�.

Curiously, we find all the fits have g0 ≈ 0; the offset does
not appear to play a role in the physics without the bath.
In light of the discussion at the end of the previous section,
the lack of offset would suggest that all l-bits (L′ = L) must
hybridize when there is no explicit bath in the system. In
Appendix G, we derive an analytic distribution of gc assuming
an average avalanche condition and perform similar fits; the
agreement between fitted and numerically observed distri-
butions is not as good for the average avalanche condition
(especially at larger interaction strengths). This further sug-
gests that the physics in the system without a bath is captured
by requiring all l-bits to hybridize (L′ = L).

The mixture distribution defined by (18) contains O(L)
free parameters (the βi’s, with one of them fixed by

∑
i βi = 1,

and g0). As a result, the agreement seen in Fig. 11 appears
not too surprising, despite the fact that this discrete set of
parameters is paramterizing a continuous distribution relying
on thousands of disorder realizations. However, one must keep
in mind that the βi’s represent how the system partitions itself
into localized and ergodic subregions. It is this information
that parameterizes the distributions Pβ,g0 , and this information
is, in principle, calculable by other means (which could elim-
inate the βi’s as fit parameters entirely). Indeed, in all the fits
we show, only a subset of the fitted parameters (two in the case
of Fig. 11, two to four in the fits shown in the Appendices) are
nonzero, and the indices of the nonzero βi’s seem to increase

FIG. 11. Numerically observed cumulative density functions of
gc for ε = 0.5 at the critical point, for interaction strengths (a) U = 1
(W = 4.8), (b) U = 2 (W = 5.4), (c) U = 3 (W = 5.9), (d) U = 4
(W = 6.1), (e) U = 5 (W = 6.7). The blue solid lines overlaid are
best-fit mixture distributions of the form (18) (see main text for
details). We see good agreement between fit and numerical observa-
tion, suggesting that our distribution derived from a non-Hermitian
avalanche criterion accurately describes the transition point. The
parameters extracted from the fit are (a) β5 = 0.366, β6 = 0.634,
(b) β5 = 0.769, β6 = 0.231, (c) β6 = 0.435, β7 = 0.565, (d) β4 =
0.827, β5 = 0.173, (e) β3 = 0.243, β4 = 0.757, and g0 = 0 in all
cases. All quantities are computed in chains of size L = 12 in the
half-filling sector, and from 10 000 disorder realizations. When com-
puting the squared error (19), we sample n = 100 points uniformly
spaced between the smallest and largest observed values of gc.

with increasing interaction strength U . This is consistent with
the idea above that the βi’s are not actually free, but rather
determined by another unknown function: the distribution of
sizes of thermal inclusions in the system. Determining this
distribution, especially for small system sizes where one must
account for resonances, is beyond the scope of our current
paper, so we instead treat the βi’s as fit parameters.

As a final remark, we note that the fit quality of the mixture
distribution (18) is even better towards the band edges—see
Appendix F for examples and discussion.

V. CONCLUSIONS AND DISCUSSION

We have shown how to connect a localization length ξ ,
defined by introducing an imaginary vector potential to a
disordered chain of interacting fermions to the length scale λ

characterizing the decay of matrix elements in the avalanche
model of delocalization. We have also derived an analytic
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form of how the gc’s are distributed at the MBL crossover
in finite systems, and shown that this form describes well the
observed histograms. The distributions of ξ at the crossover,
which can be derived from those of gc, thus contain in-
formation about the distribution of avalanche-like hoppings,
giving insight into the avalanche mechanism at the finite-size
crossover.

Determining ξ , while computationally difficult, has the ad-
vantage of not requiring one to explicitly construct the l-bits.
That is, a given H with a fixed disorder realization has a well-
defined gc, and thereby ξ , for each energy density ε. Although
our numerical verification of gc saturating the avalanche con-
dition (14) made use of a particular construction of the l-bits,
the agreement of the numerically observed histograms to
our fitted CDFs (18) suggests the form of avalanche criteria
for gc does not depend on how the l-bits are constructed.
This method thus allows one to obtain information about
the localization of the underlying g = 0 Hamiltonian whilst
sidestepping issues with defining the l-bits.

The connection of ξ to the localization properties of the un-
derlying g = 0 system relies on the proliferation of avalanches
enhanced by the imaginary flux through the system. It is
therefore an interesting question to ask how a ξ defined analo-
gously for “clean” systems differs, as there are no rare regions
driving thermalization in these systems. The recent wealth
of papers on the crucial role of many-body resonances in
finite-size MBL systems [36–44] also raises the question of
how gc is connected to these resonances; after all, avoided
crossings are generically expected to give rise to exceptional
points when the parameter space is expanded to the complex
plane [73,81]. In particular, it is worth asking how gc could
be used to probe the statistics of many-body resonances in the
finite-size MBL regime (and how such a connection affects
the distributions we derived in Sec. IV). Additionally, in light
of the discussion of Sec. III F, it would be interesting to
adapt this non-Hermitian technique such that the real-complex
transition corresponds to a nonzero information current. This
(presumably) would make this non-Hermitian method sensi-
tive to the destabilizing charge-neutral processes alluded to in
Sec. III F, and would be an interesting comparison with the
results derived here.

Finally, although we introduced the l-bits and the mapping
of Sec. III C primarily as an intermediate step to connect
gc to the avalanche model, the mapping and the numerical
results in Sec. III D open several potential avenues of future
work. Among other questions, the significance of the distri-
butions of the χi—especially being uniformly distributed at
the MBL-thermal crossover—is worthy of additional study.
The implications of these distributions for the properties of
the l-bits is particularly interesting.
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APPENDIX A: NUMERICAL PROCEDURE
FOR OBTAINING gc

Here, we briefly summarize our numerical procedure for
obtaining the exceptional points gc.

For a given instance of a Hamiltonian (i.e., a fixed-disorder
realization), the exceptional point gc(ε) at energy density ε is
defined as

gc(ε) = inf {g | g > 0, Im[E (ε)] �= 0}, (A1)

where E (ε) is the eigenvalue at energy density ε. The length
scale ξ (ε) is then defined by ξ (ε) = 1/gc(ε)—from here on
we refer to ξ (ε) as the localization length.

For finite-size systems, the energies are discrete, and we
must consider the eigenvalue closest to energy density ε, given
by

E (ε) = arg min
E∈S{H}

∣∣∣∣ Re[E ] − Re[Emin]

Re[Emax] − Re[Emin]
− ε

∣∣∣∣, (A2)

where S{H} is the spectrum of H , and Emax, Emin are the
eigenvalues with the maximal and minimal real parts, respec-
tively.

To find gc(ε) numerically for a fixed disorder realization,
we repeatedly increment g by a fixed step δg (which we take to
be 0.01), exactly diagonalizing the Hamiltonian at each value
of g, until |Im[E (ε)]| is larger than some tolerance (which
we take to be 10−8). Note this numerical approach differs
from previous studies that examine all eigenvalues within
some energy window to determine gc. We choose to sample
only one state per disorder realization to sidestep subtleties
involving correlations of eigenvectors from the same disorder
realization [92]. We have verified that this approach gives the
same disorder-averaged results as averaging over an energy
window.

APPENDIX B: IDENTIFYING THE MBL CROSSOVER VIA
FINITE-SIZE SCALING

In this Appendix, we show finite-size scaling collapse
on the disorder-averaged localization lengths to identify the
location of the (finite-size) MBL-thermal crossover for the
Hamiltonian (1). We find results in good agreement with those
of [62].

To that end, we compute gc(ε) (as described in
Appendix A) for the Hamiltonian (1), with bare hopping t = 1
(making it the energy scale of our system) and on-site disor-
ders sampled from a uniform distribution wi ∼ Uni[−W,W ].
Figure 12 shows finite-size scaling of ξ̄ /L = 〈gc〉−1/L (where
〈·〉 denotes a disorder average) at the center of the spectrum
(ε = 0.5) in the half-filling sector. We examine a variety of
interaction strengths U = 1, 2, 3, 4, 5, at system sizes L =
8, 10, 12, and average over 200 disorder realizations. We
obtain good collapse of the data to the form

ξ̄

L
= f ((W − Wc)L1/ν ), (B1)
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FIG. 12. Finite-size scaling collapse for ξ̄ /L = 〈gc〉−1/L at en-
ergy density ε = 0.5 for (a) U = 1, (b) U = 2, (c) U = 3, (d) U = 4,
(e) U = 5. The critical exponent extracted in all cases is ν ≈ 1; the
critical disorder strengths are Wc ≈ 4.8, 5.4, 5.9, 6.1, 6.7 for U =
1, 2, 3, 4, 5, respectively. All quantities are computed in the half-
filling sector, and averaged over 200 disorder realizations.

and in all cases find critical exponents ν ≈ 1. The resulting
phase portraits in the ε-W plane are shown in Fig. 13, with the
transition points identified from the finite-size scaling marked.
We see the transition points capture the change from large
(order of system size) to small localization length as we tune
the disorder strength. The shape of the mobility edge in the
phase diagram also mirrors that of other finite-size studies
[31], and the critical disorder strengths agree well with [62].

APPENDIX C: ADDITIONAL RESULTS REGARDING
NON-HERMITIAN AVALANCHES

Here, we show additional numerical results supporting the
existence of the non-Hermitian avalanche mechanism, as in
Fig. 3. Results for a matrix element decay of e−1/λ = 0.2 and

FIG. 13. Phase portraits for ξ̄ /L = 〈gc〉−1/L in the ε − W plane,
for (a) U = 1, (b) U = 2, (c) U = 3, (d) U = 4, (e) U = 5, for
a chain of size L = 12. White triangles mark the critical disorder
strengths obtained from our finite-size scaling collapse. All quanti-
ties are computed in the half-filling sector, and averaged over 200
disorder realizations.

e−1/λ = 0.1 are shown in Figs. 14 and 15, respectively. We see
crossovers analogous to those observed in the main text, again
occurring roughly at the expected value of g = 1/λ − 1/λc.

APPENDIX D: DIAGONALIZING MANY-BODY
HAMILTONIANS VIA GENERALIZED DISPLACEMENT

TRANSFORMATIONS

In this Appendix, we detail a diagonalization algorithm that
iteratively applies a series of transformations eliminating “off-
diagonal” terms from a given fermionic Hamiltonian.

Consider fermions hopping on a one-dimensional lattice
with sites S = {i}L

i=1. Let ci, c†
i , and ni be the fermionic annhil-

iation, creation, and number operators at a site i, respectively.
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FIG. 14. Disorder-averaged localization metrics of the eigen-
states of the non-Hermitian avalanche Hamiltonian (8) for e−1/λ =
0.2 and various L, as a function of g. (a) Half-chain entanglement
entropy 〈SE 〉. (b) Inverse participation ratio 〈IPR〉. (c) Fraction fcomp

of disorder realizations whose central eigenvalue (ε = 0.5) is non-
real. Error bars on 〈SE 〉 and 〈IPR〉 indicate the standard error of the
mean. As in Fig. 3, we see a crossover from localized to delocalized
behavior in panels (a) and (b), which occurs roughly at the expected
value of g (dashed lines), along with a corresponding real-complex
crossover in panel (c). All quantities were computed exactly as in
Fig. 3.

A general (Hermitian) Hamiltonian then has the form

H = V +
∑
A,B

tABIAB, (D1)

where V is a diagonal operator, A, B are disjoint subsets of S,
tAB is a diagonal operator acting only on sites in S \ A ∪ B, and
IAB is the operator for hopping between A and B,

IAB =
(∏

a∈A

c†
a

)(∏
b∈B

cb

)
+ H.c. (D2)

We neglect here the possibility of complex phases multiplying
the hopping terms—our algorithm presented below is straight-
forwardly modified in this case, and the essential results do not
change.

Suppose we now want to eliminate the hopping IAB via
a unitary change of basis. We can do this by the following
transformation:

H 	→ eOABJAB H e−OABJAB , (D3)

where

JAB =
(∏

a∈A

c†
a

)(∏
b∈B

cb

)
− H.c., (D4)

FIG. 15. Disorder-averaged localization metrics of the eigen-
states of the non-Hermitian avalanche Hamiltonian (8), for e−1/λ =
0.1 and various L, as a function of g. (a) Half-chain entanglement
entropy 〈SE 〉. (b) Inverse participation ratio 〈IPR〉. (c) Fraction fcomp

of disorder realizations whose central eigenvalue (ε = 0.5) is nonreal
for various L and g. Error bars on 〈SE 〉 and 〈IPR〉 indicate the
standard error of the mean. We observe similar crossovers as seen
in Figs. 3 and 14.

and OAB is a diagonal operator acting only on sites in S \ A ∪
B satisfying

tan (2OAB) = 2tAB

�ABV
, (D5)

where

�ABV := V
∣∣ A occupied,
B unoccupied

− V
∣∣ B occupied,
A unoccupied

. (D6)

Application of the transformation (D3) to the Hamiltonian
(D1) results in a Hamiltonian with no terms of the form D IAB

present (where D is a diagonal operator). Generically, such a
Hamiltonian will include new diagonal terms, as well as new
hopping terms [created by the action of the transformation on
the other hopping terms in (D1)].

Now, we can repeatedly apply transformations of the form
(D3) to eliminate all hopping terms in the original Hamil-
tonian (D1). As mentioned previously, each application of
such a transformation generates new hopping terms; in the
case of repeated transformations, we can actually reintroduce
hoppings that were eliminated by previous transformations.
This is not a problem, as the terms that reintroduced will
have smaller and smaller “magnitude” over time. To be more
precise, let us write out the unitary map in (D3) in closed form

e±OABJAB = I + [cos(OAB) − I]PAB ± sin(OAB)JAB, (D7)
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FIG. 16. Numerically observed probability density functions of
gc for ε = 0.5 at the critical point, for interaction strengths (a) U = 1
(W = 4.8), (b) U = 2 (W = 5.4), (c) U = 3 (W = 5.9), (d) U = 4
(W = 6.1), (e) U = 5 (W = 6.7). The blue solid lines overlaid are
the PDFs obtained from differentiating the best-fit mixture distribu-
tions in Fig. 11.

where PAB is the projector onto the subspace in which all sites
in either A or B (but not both) are filled

PAB =
(∏

a∈A

na

)(∏
b∈B

(I − nb)

)
+
(∏

b∈B

nb

)(∏
a∈A

(I − na)

)
.

(D8)

In the form (D7), we can see that every new hopping term
introduced by a transformation of the form (D3) will include
an operator multiplication by a trigonometric function of OAB,
which will have operator norm <1. If we iterate such trans-
formations, we can see that the reintroduced hopping terms
will converge (in operator norm) to zero. Thus, in the limit
of infinitely many transformations of the form (D3) applied,
all the hopping (nondiagonal) terms will approach zero, and
we will be left with a diagonal Hamiltonian. Numerically,
we must cut the procedure off when the largest (given by
magnitude of largest matrix element) off-diagonal term has
norm below some threshold—we choose this to be 10−8.

Note also that by applying the same sequence of transfor-
mations to the creation/annihilation operators, we can obtain
creation/annihilation operators for the local integrals of mo-
tion for the Hamiltonian (D1) (assuming it is in the MBL
phase). Additionally, if we track the evolution of the hopping
terms as we iterate these transformations—or leave certain
hopping terms untouched by our transformations—we will

FIG. 17. Numerically observed CDFs at the critical point, with
the best-fit mixture distribution overlaid, for (a) U = 1, ε = 0.3
(W = 3.4), (b) U = 2, ε = 0.25 (W = 3.9), (c) U = 3, ε = 0.8
(W = 3.0), (d) U = 4, ε = 0.3 (W = 4.9), (e) U = 5, ε = 0.3 (W =
5.7). The energy densities shown are the energy whose fitted distribu-
tion minimized the squared error (19), for each interaction strength.
We can see excellent agreement between observation and fit, sug-
gesting that the non-Hermitian avalanche mechanism developed in
the main text is an even better description of delocalization at the
band edges. The parameters extracted from the fit are (a) β8 =
0.756, β9 = 0.244, (b) β7 = 0.794, β8 = 0.206, (c) β4 = 0.481,
β5 = 0.518, (d) β5 = 0.313, β6 = 0.527, β8 = 0.125, β9 = 0.035,
(e) β1 = 0.036, β4 = 0.124, β5 = 0.840, and g0 = 0 in all cases. All
quantities are computed exactly as in Fig. 11.

see the amplitudes evolve as a function of iteration number.
This is reminiscent of a discretized version of the Wegner flow
employed by [61]. Indeed, this intuition is how we obtain the
“avalanche-like” hopping amplitudes described in the main
text.

As a final note, this algorithm can be generalized to non-
Hermitian Hamiltonians. In such a case, the transformation to
eliminate a term of the form

Iα
AB =

(∏
a∈A

c†
a

)(∏
b∈B

cb

)
+ α

(∏
b∈B

c†
b

)(∏
a∈A

ca

)
, (D9)

where α is diagonal on S \ A ∪ B, is constructed analogously,
but now with cos(OAB) 	→ cos(

√
αOAB) and sin(OAB) 	→

sin(
√

αOAB)/
√

α in (D5) and (D7). Note that, if any of the
eigenvalues of α are negative, cos(

√
αOAB) and sin(

√
αOAB)

are no longer necessarily bounded in operator norm, and
convergence of the algorithm is no longer assured. This is
why it is crucial to use the gauge freedom to eliminate the
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FIG. 18. Numerically observed PDFs at the MBL transition, with
the PDFs from the best-fit mixture distribution overlaid for, (a) U =
1, ε = 0.3 (W = 3.4), (b) U = 2, ε = 0.25 (W = 3.9), (c) U = 3,
ε = 0.8 (W = 3.0), (d) U = 4, ε = 0.3 (W = 4.9), (e) U = 5, ε =
0.3 (W = 5.7). We see excellent agreement again, confirming what
we observed in Fig. 17. In contrast with Fig. 16, we also see that the
tails of the observed distribution are well described by the PDFs from
the fits. All quantities are computed exactly as in Figs. 11 and 17.

non-Hermiticity from the part of the Hamiltonian we are di-
agonalizing, as described in the main text.

These transformations (D3), and the iterative procedure
described here, are examples of the “displacement trans-
formations” and diagonalization algorithm first proposed by
Rademaker and Ortuño [49].

APPENDIX E: DERIVATION OF CUMULATIVE DENSITY
FUNCTION AT THE MBL TRANSITION

In this Appendix, we seek to derive an analytic expression
for the distribution of gc at the MBL transition, based on
the (generalized) avalanche condition (16). As it turns out, it
is easier to derive the cumulative density function (CDF) of
gc. To that end, let us consider the following more general
problem.

Let {xi}N
i=1 be a collection of random variables, and α a real

number. Consider the following extremization problem:

ML = max
1� j�L

⎧⎨
⎩

j∑
i=1

xi − ( j − 1)α

⎫⎬
⎭ := max

1� j�L
mi. (E1)

We wish to find the CDF of ML, given the probability densities
ρi(xi ) of the xi’s.

FIG. 19. Example scatter plots of exceptional points gc(ε) and
“avalanche parameter” ¯A (ε) [given by (G1)], as in Fig. 9. Each
point represents a single disorder realization (for a fixed disorder
strength), with the ordinate and abscissa gc and ¯A at the center
of the spectrum (ε = 0.5), respectively. The various panels show
interaction/disorder strengths (a) U = 1,W = 5.5, (b) U = 2,W =
6.0, (c) U = 3,W = 7.0, (d) U = 4,W = 7.0, (e) U = 5,W = 8.0.
Similar to Fig. 9, we see no clear visual relationship between gc(ε)
and A (ε), but weak positive correlation ρ ∼ 0.3. For reference, we
also overlay the disorder-averaged fits of Fig. 20 (dashed lines). All
data and quantities were computed exactly as in Fig. 9.

To write down the generic form of this CDF, we first make
the following observation:

P(ML � x) = P(m1 � x, m2 � x, . . . , mL � x). (E2)

That is, ML � x iff mj � x for every value of j. Furthermore,
we can see that mj � x iff x j � x + ( j − 1)α −∑ j−1

i=1 xi.
Hence,

P(mj � x) = P

⎛
⎝x j � x + ( j − 1)α −

j−1∑
i=1

xi

⎞
⎠. (E3)

The right-hand side is the CDF of x j , evaluated at a point that
depends on the other xi. Using this in the right side of (E2),
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FIG. 20. Scatter plot of disorder-averaged gc(ε) and ¯A (ε) for a
variety of disorder strengths. The scatter plot is made exactly as in in
Fig. 10 with ¯A replacing A . Shown are results at the center of the
spectrum (ε = 0.5) for interaction strengths (a) U = 1, (b) U = 2,
(c) U = 3, (d) U = 4, (e) U = 5. Comparing with the fits in Fig. 10,
we see comparable fit quality but different fit parameters.

we obtain an expression for P(ML � x) in terms of the PDFs
of the x j’s (i.e., the ρ j’s),

P(ML � x) =
L∏

j=1

∫ x+( j−1)α−∑ j−1
i=1 xi

−∞
dx j ρ j (x j ). (E4)

At this point, we can compute the integral over xL to obtain an
integral expression involving the CDF of xL, but we cannot go
any farther without knowledge of the ρi’s.

To that end, let us now take each of the xi’s to be expo-
nentially distributed—that is, ρi(x) = e−x for x � 0, and 0 for
x < 0. We can now perform the integrals in (E4) for any finite
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FIG. 21. Numerically observed cumulative density functions of
gc for ε = 0.5 at the critical point, for interaction strengths (a) U = 1
(W = 4.8), (b) U = 2 (W = 5.4), (c) U = 3 (W = 5.9), (d) U = 4
(W = 6.1), (e) U = 5 (W = 6.7). The blue solid lines overlaid are
best-fit mixture distributions of the form (18) [now with PN�

F now
given by (G3)]. We see reasonably good agreement, roughly on par
or better than of Fig. 11, for U � 3, and significant deviation for
U > 3. This suggests the mixture distribution derived from (G3) is
a good descriptor at low interaction strengths, whereas that derived
from (17) in the main text is far better at larger interaction strengths.
The parameters extracted from the fit are (a) β1 = 1.0 (b) β1 = 1.0,
(c) β1 = 0.211, β2 = 0.765, β11 = 0.023, (d) β1 = 1.0, (e) β1 = 1.0;
and g0 = 0 in all cases. All quantities are computed in chains of size
L = 12 in the half-filling sector, and from 10 000 disorder realiza-
tions. When computing the squared error (19), we sample n = 100
points uniformly spaced between the smallest and largest observed
values of gc.

value of L, and obtain

P(ML � x) = 1 − e−x

⎡
⎣1 + x

L−1∑
j=1

e− jα

j!
(x + jα) j−1

⎤
⎦. (E5)

This is the desired CDF of ML, assuming xi ∼ exp[1] for each
i. The CDF for a more general exponential distribution xi ∼
exp[λ] can be obtained by making the replacements x, 	→ λx,
α 	→ λα.

Let us now connect back to the exceptional points. We have
the generalized “avalanche criterion” for gc,

gc ≈ 1

F
max

1���N�

[− logA�(ε) − (� − 1)α] + g0. (E6)

Comparing (E1) with this generalized criterion, and assum-
ing A�(ε) =∏�

i=1 χi(ε), we see that gc = 1
F MN�

, with xi =
− log χi(ε). Assuming χi ∼ Uni[0, 1] at the transition (as
observed in Sec. III D), it follows that − log χi(ε) ∼ exp[1].

FIG. 22. Numerically observed cumulative density functions of
gc for ε = 0.5 at the critical point, for interaction strengths (a) U = 1,
ε = 0.8 (W = 3.0), (b) U = 2, ε = 0.3 (W = 4.2), (c) U = 3, ε =
0.35 (W = 5.6), (d) U = 4, ε = 0.3 (W = 4.9), (e) U = 5, ε = 0.3
(W = 5.7). As in Fig. 21, the mixture distributions are constructed
with the PN�

F given by (G3). The energy densities shown are the
energy whose fitted distribution minimized the squared error (19),
for each interaction strength. We can see excellent agreement be-
tween observation and fit at weaker interactions strengths, suggesting
that averaging over the differences A�(ε) + (� − 1) log 2/2 is an
effective descriptor of the physics at the band edges in the weaker
interacting regime. The parameters extracted from the fit are (a) β5 =
0.603, β6 = 0.396, β11 = .001, (b) β1 = 0.308, β2 = 0.405, β7 =
0.189, β8 = 0.097, (c) β1 = 0.095, β2 = 0.056, β3 = 0.676, β7 =
0.173, (d) β1 = 0.957, β11 = 0.043, (e) β1 = 1.0; and g0 = 0 in all
cases. All quantities are computed exactly as in Fig. 21

Therefore, the result (E5) with the replacements x 	→ F (x −
g0), L 	→ N� and α = log 2/2 should describe the distribution
of gc(ε) at the MBL crossover.

Note that the general formula (E4), with appropriate
replacements, gives the distribution for gc whenever an
avalanche criterion of the form (E6) holds. In particular, if
the avalanche criteria holds deep in the MBL regime, this
formula should still give the distribution of gc. Of course, the
χi(ε) are not necessarily uniformly distributed away from the
crossover region; nonetheless, replacing ρi by the appropriate
distribution of − log χi(ε) should yield the correct distribution
for gc(ε).

APPENDIX F: ADDITIONAL RESULTS FROM
NUMERICAL FITS OF PROBABILITY DISTRIBUTIONS

In this Appendix, we show some additional results from
the numerical fits of the CDFs of gc(ε) described in Sec. IV.
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FIG. 23. Numerically observed probability density functions of
gc for ε = 0.5 at the critical disorder strength, for interaction
strengths (a) U = 1 (W = 4.8), (b) U = 2 (W = 5.4), (c) U = 3
(W = 5.9), (d) U = 4 (W = 6.1), (e) U = 5 (W = 6.7). The blue
solid lines overlaid are the PDFs obtained from differentiating the
best-fit mixture distributions shown in Fig. 21.

Figure 16 shows the numerically observed probability den-
sity function for gc(ε), along with the analytic PDF obtained
by differentiating the best-fit mixture distribution of Sec. IV,
for the data in Fig. 11. We can see that the PDFs generated
from our fit have thicker tails (i.e., approach zero more slowly)
than the numerically observed PDFs, and that the peak of
the numerically observed PDF is larger than the peak of the
fitted distribution. Despite these discrepancies, the PDFs from
the fits still capture the observed behavior qualitatively well,
especially at small gc and for U = 3.

As mentioned in the main text, we observed the numer-
ical fits to be better towards the edges of the spectrum. To
exemplify this, Fig. 17 shows the fits for the energy densities
whose fitted mixture distribution had the lowest squared error
[defined by (19)], and Fig. 18 shows the corresponding PDFs.
We see excellent agreement between the observed and fitted
distributions, especially for U � 2.

APPENDIX G: AVERAGE AVALANCHE CONDITION

In the process of relating gc(ε) to the amplitudes A�(ε),
we found empirically that 〈gc(ε)〉 was also well described by
a linear relationship with

¯A (ε) := − 1

L

L∑
�=1

[
logA�(ε) + (� − 1)

log 2

2

]
. (G1)

FIG. 24. Numerically observed probability density functions of
gc at the critical disorder strength for (a) U = 1, ε = 0.8 (W =
3.0), (b) U = 2, ε = 0.3 (W = 4.2), (c) U = 3, ε = 0.35 (W = 5.6),
(d) U = 4, ε = 0.3 (W = 4.9), (e) U = 5, ε = 0.3 (W = 5.7). The
blue solid lines overlaid are the PDFs obtained from differentiating
the best-fit mixture distributions shown in Fig. 22.

This quantity is an average over l-bits of the difference be-
tween hopping and level spacing, instead of the extremum
present in (15). As discussed in Sec. III E, such a relationship
may be better suited to describing a delocalization mechanism
in which the number of l-bits that need to hybridize with
the bath for the system to undergo a real-complex transition
varies between disorder realizations. Figure 19 shows a scatter
plot of gc(ε) vs ¯A (ε) for individual disorder realizations,
akin to Fig. 9. As in Fig. 9, we see a noisy, approximately
linear relationship. We perform linear fits of 〈gc(ε)〉(W ) vs
〈 ¯A (ε)〉(W ), in analogy with Fig. 10; the results of these fits
are shown in Fig. 20, and the extracted fit parameters are
shown in Table II. The quality of fit is comparable to those
shown in the main text for 〈gc(ε)〉 vs 〈A (ε)〉, although the
fit parameters are different. We can derive distributions for
gc(ε) at the transition, in analogy with Sec. IV. To that end,
assume that a generalized relation

gc(ε) ≈ 1

F

1

N�

N�∑
i=1

[− logA�(ε) − (� − 1)α] (G2)

holds. As before, let us write A�(ε) =∏�
i=1 χi(ε), so that

gc(ε) ≈ 1

F

[
−

N�∑
i=1

N� − i + 1

N�

log (χi(ε)) − N� − 1

2
α

]
.
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Assuming again χi(ε) ∼ Uni[0, 1] at the MBL crossover,
−k log (χi(ε)) is exponentially distributed with rate parameter
1/k, hence gc is (up to the shift (N� − 1)α/2F := �) a sum
of exponential random variables with rate parameters λi =
FN�/(N� − i + 1) (i = 1, . . . , N�). Such a sum is hypoexpo-
nentially distributed; the cumulative density for gc is then [93]

PN�

F (gc � x) = 1 −
N�∑

i=1

⎛
⎜⎜⎝

N�∏
j=1
j �=i

λ j

λ j − λi

⎞
⎟⎟⎠e−λi (x+�). (G3)

As before, we construct a mixture distribution of the form
(18), and fit the βi’s by minimizing the squared error (19).
Examples at the center of the spectrum are shown in Fig. 21
and at the band edges in Fig. 22. The resulting probability
densities are shown in Figs. 23 and 24. We note that, for
lower interaction strengths, we find these fits yield compa-
rable or slightly better (depending on the energy density)
squared errors than those of Sec. IV, whereas for stronger
interactions the fits described in the main text are clearly
superior.
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