of 14
Draft version March 29, 2019
Typeset using L
A
T
E
X
twocolumn
style in AASTeX62
All-sky search for long-duration gravitational-wave transients in the second Advanced LIGO observing run
The LIGO Scientific Collaboration and The Virgo Collaboration
ABSTRACT
We present the results of a search for long-duration gravitational-wave transients in the data from
the Advanced LIGO second observation run; we search for gravitational-wave transients of 2 – 500 s
duration in the 24
2048 Hz frequency band with minimal assumptions about signal properties such
as waveform morphologies, polarization, sky location or time of occurrence. Targeted signal models
include fallback accretion onto neutron stars, broadband chirps from innermost stable circular or-
bit waves around rotating black holes, eccentric inspiral-merger-ringdown compact binary coalescence
waveforms, and other models. The second observation run totals about 118.3 days of coincident data
between November 2016 and August 2017. We find no significant events within the parameter space
that we searched, apart from the already-reported binary neutron star merger GW170817. We thus re-
port sensitivity limits on the root-sum-square strain amplitude
h
rss
at 50% efficiency. These sensitivity
estimates are an improvement relative to the first observing run and also done with an enlarged set of
gravitational-wave transient waveforms. Overall, the best search sensitivity is
h
50%
rss
=2
.
7
×
10
22
Hz
1
/
2
for a millisecond magnetar model. For eccentric compact binary coalescence signals, the search sensi-
tivity reaches
h
50%
rss
=9
.
6
×
10
22
Hz
1
/
2
.
1.
INTRODUCTION
The second observation run of the Advanced LIGO (Aasi
et al. 2015) and Advanced Virgo (Acernese et al. 2015)
detectors ushered in the era of multi-messenger astron-
omy. In addition to the detection of further binary
black hole systems (Abbott et al. 2017a,b,c), the first
binary neutron star system GW170817 (Abbott et al.
2017d), associated with GRB 170817A (Abbott et al.
2017e) and corresponding electromagnetic radiation AT
2017gfo (Abbott et al. 2017f), were jointly detected.
This led to searches for a post-merger signal from the
binary neutron star event, including on the timescales
presented in this paper (Abbott et al. 2017; Abbott
et al. 2018a). In this paper, we update the results of the
unmodeled long-duration transient search from the first
Advanced LIGO observing run (Abbott et al. 2018b)
with the data from the second observing run.
We use four pipelines, described below, with different
responses across the parameter space, providing com-
plementary coverage of the signal models we are inter-
ested in. The search was motivated by a wide range of
poorly understood astrophysical phenomena for which
predictive models are not readily available; these include
fallback accretion, accretion disk instabilities and non-
axisymmetric deformations in magnetars. Fallback ac-
cretion of ejected mass in newborn neutron stars can
lead to deformation, causing the emission of gravita-
tional waves until the star collapses into a black hole (Lai
& Shapiro 1995; Piro & Ott 2011; Piro & Thrane 2012).
Accretion disk instabilities and fragmentation can cause
stellar material to spiral in a black hole, emitting rela-
tively long-lived gravitational waves (Piro & Pfahl 2007;
van Putten 2001, 2008). Non-axisymmetric deforma-
tions in magnetars, proposed as progenitors of long and
short gamma-ray bursts (Metzger et al. 2011; Rowlinson
et al. 2013), can also emit gravitational waves (Corsi &
M ́esz ́aros 2009). Moreover, we introduce new waveforms
families based on astrophysical phenoma such as fallback
accretion down to the innermost stable circular orbit of
a rapidly rotating black hole (van Putten 2016), highly
eccentric binary black hole coalescences (Huerta et al.
2018), and gamma-ray burst & X-ray events (Corsi &
M ́esz ́aros 2009).
Although this analysis targets sources for which the
gravitational waveform is not well-described, it is pos-
sible for the long-duration searches to detect low-mass
compact binary coalescences, typically searched for with
matched filtering techniques. As discussed in other pub-
lications (Abbott et al. 2017d), the data containing the
gravitational-wave signal resulting from GW170817 is
corrupted by the presence of a short-duration (less than
5 ms), powerful transient noise event in one of the de-
tectors (Abbott et al. 2017d). Using a data set where
this short transient has been subtracted from the LIGO-
Livingston data stream, the GW170817 signal is the
most significant event of the search. As the searches
reported in this paper does not add significantly to the
many other studies carried out for this event (Abbott
et al. 2017d; Abbott et al. 2018a,b, 2017), it has been
arXiv:1903.12015v1 [gr-qc] 28 Mar 2019
2
decided to keep the original data set, veto the large
transient noise and focus on any other long duration
gravitational-wave signals.
The paper is organized as follows. We describe the
data used in the analysis in Section 2. The algorithms
used to analyze the data are outlined in Section 3. The
results of the analysis and their implications are dis-
cussed in Section 4. Section 5 provides our conclusions
and avenues for future research.
2.
DATA
The second observation run lasted from November 25,
2016 to August 25, 2017. Between the first and second
observing runs, a series of fixes and upgrades of the two
LIGO detectors in Hanford, WA and Livingston, LA,
allowed the run to begin with LIGO detectors’ sensitiv-
ity reaching a binary neutron star range of
80 Mpc
– please see Abbott et al. (2018c) for a discussion of
the range metric. Thanks to commissioning break pe-
riods, Livingston’s sensitivity increased steadily during
the second observation run, finally reaching 100 Mpc.
LIGO Hanford suffered from a 5.8 magnitude earth-
quake in Montana on July 6
th
2017, which induced a
10 Mpc drop in sensitivity, and this was not recovered
during the science run. On August 1
st
, the Virgo detec-
tor joined the run with a binary neutron star range of
26 Mpc. It has been shown that adding the one-month
Virgo data set does not improve the search sensitivity
mainly because of the sensitivity difference between the
detectors. We thus report the results of a two LIGO de-
tector coincident search. The overlap in time when both
detectors are taking data in suitable for analysis was ap-
proximately 118.3 days. The effective coincident time
analyzed by each pipeline depends on the data segmen-
tation choice and lies in the range 114.7 to 118.3 days.
Coincident data contains a large number of non-
Gaussian transient noise events (glitches) of instrumen-
tal or environmental origin that mimic the characteristic
of the targeted signals. For the first time, well identified
sources of noise have been subtracted from the LIGO
data (Davis et al. 2018). Yet, some glitches, typically
lasting from a few milliseconds up to few seconds and
varying widely in frequency, remain. Their presence,
even the very short ones, may negatively impact the
sensitivity of the searches (Abbott et al. 2018c). Time
varying spectral lines are also a source of noise events
for the long-duration transient searches. To veto these
transient noise events, each pipeline implements spe-
cific glitch rejection criteria; because the search targets
long-duration signals, short-duration glitches, which are
usually the most problematic sources of noise, are eas-
ily suppressed. The next section provides more details
about the noise rejection procedures that also may in-
clude data quality vetoes based on correlations with aux-
iliary channels (Aasi et al. 2012; Abbott et al. 2016).
3.
SEARCHES
As in the previous analysis, we use four pipelines to
search for transients that last between 2 – 500 s and
span a frequency band of 24 – 2048 Hz. The use of
multiple pipelines provides redundancy, and due to the
differences in the clustering algorithms, lead to differ-
ent sensitivities to different waveform morphologies or
parts of the parameter space. Unmodeled searches for
gravitational waves typically cast the analysis as pattern
recognition problems.
Gravitational-wave time-series
are Fourier transformed in chunks of time, and spec-
trograms are created based on statistics derived from
these Fourier transforms. Then pattern recognition al-
gorithms are used to search for patterns, corresponding
to gravitational waves, within spectrograms. In gen-
eral, these consist of two classes. The first is seed-
based (Khan & Chatterji 2009; Prestegard 2016), where
thresholds are placed on pixel values in the spectrograms
and pixels above this threshold are clustered together.
The second is seedless (Thrane & Coughlin 2013, 2014),
where tracks are constructed from a generic model and
integrated across the spectrograms; in this analysis, we
use B ́ezier curves (Farin 1996; Thrane & Coughlin 2013,
2014; Coughlin et al. 2015; Thrane & Coughlin 2015).
The pipelines used are the long-duration configura-
tion of Coherent WaveBurst (cWB) (Klimenko et al.
2016), two different versions of the Stochastic Transient
Analysis Multi-detector Pipeline - all sky (STAMP-
AS) pipeline (Prestegard 2016; Thrane & Coughlin
2015), and the X-pipeline Spherical Radiometer (X-
SphRad) (Fays 2017). These pipelines are the same, or
slightly updated versions, of those used in the search for
long-duration transients in the first observation run and
fully described in (Abbott et al. 2017g). cWB is based
on a maximum-likelihood-ratio statistic, built as a sum
of excess power coherent between multiple detectors in
the time-frequency representation of the interferometer
responses (Klimenko et al. 2016). The search is per-
formed in the frequency range 24 – 2048 Hz, on data
where all poor quality periods have been discarded. The
trigger events surviving the selection criteria to reject
glitches are ranked according to their detection statistic
η
c
, which is related to the coherent signal-to-noise ra-
tio (SNR). The selection criteria require the coherence
coefficient
c
c
to be larger than 0.6, and the weighted
duration of the candidate to be larger than 1.5 s. The
first measures the degree of correlation between the de-
tectors, while the latter measures the duration weighted
3
by the excess power amplitude of the pixel on the time-
frequency likelihood map. The trigger events are then
divided in two samples according to their estimated
mean frequency: 24-200 Hz and 200-2048 Hz. This al-
lows for the isolation of the unexpected higher rate of
glitches at low frequency during the first half of the O2
observation run. STAMP-AS uses the cross-correlation
of data from two detectors to create coherent time-
frequency maps of cross-power SNR with a pixel size
of 1 s
×
1 Hz covering 24 – 2000 Hz in combination
with a seed-based (Zebragard) and seedless (Lonetrack)
clustering algorithm. Significant spectral features, in-
cluding wandering lines, are masked in the creation of
the spectrograms. As in the search during the first ob-
serving run, Zebragard eliminates the short duration
glitches by requesting that the fraction of SNR in each
time bin be smaller than 0.5 and that the SNR ra-
tio between the two detectors be smaller than 3. The
X-pipeline Spherical Radiometer (X-SphRad) uses an
X-pipeline (Sutton et al. 2010) back end in combination
with a fast cross-correlator in the spherical harmonic
domain (Cannon 2007) to search for gravitational-wave
transients in the 24 – 1000 Hz frequency range. The
method allows for the data to be processed indepen-
dently of sky position and avoids redundant computa-
tions. A next-nearest-neighbor clustering algorithm is
applied on a time-frequency representation of the data
with a resolution of 1 s
×
1 Hz to form trigger events,
which are then ranked by the ratio of the sum of power
in all the l
>
0 spherical harmonic modes to that in the
l=0 mode. Significant spectral features such as stand-
ing power lines are removed using a zero-phase linear
predictor filter that estimates the power spectrum and
whitens the data (Chatterji 2005). Finally, X-SphRad
eliminates triggers that coincide with poor quality data
periods that have been identified using auxiliary chan-
nels. These periods are excluded from the analysis time
by cWB, and STAMP-AS Zebragard analysis selects
a subset of them according to a procedure described
in (Frey 2018).
The false alarm rate of each search is estimated as
a function of the pipeline’s ranking statistic.
Each
use the data to perform this estimate, as opposed to
a Gaussian approximation, because of the significant
non-Gaussianity of the data, transient noise, and the
non-stationarity of some of the spectral features. These
glitches have a variety of causes, both environmentally
driven such as from seismic events (Macleod et al. 2012;
Coughlin et al. 2017) or magnetic fields (Kowalska-
Leszczynska et al. 2017; Coughlin et al. 2016), and
instrumental effects, such as test mass suspension
glitches (Walker et al. 2017) and other sources of spec-
tral features (Coughlin 2010). For all of the pipelines
in this analysis, the correlation of data in different de-
tectors is used to exclude data transients which are
unlikely to be of astrophysical origin. To estimate the
background for all pipelines used in this analysis, the
time-slides methodology is applied (Was et al. 2010a,b),
each one implementing its own version. The fundamen-
tal idea is to shift the detector data with non-physical
relative time delays to eliminate any correlation from
gravitational waves and re-analyze the data. The pro-
cedure is repeated until a total of 50 years coincident
detector time has been analyzed, allowing us to estimate
false alarm rates at the level of 1 event in 50 years.
4.
RESULTS
Figure 1.
Time-frequency representations of a few model
signals used in the search, showing a mix of chirp-up (FA,
ECBC) & chirp-down (Magnetar, ADI) astrophysical wave-
forms as well as a linearly decreasing ad-hoc waveform
(LINE). The harmonics of ECBC are also visible. The full
set of waveforms (
70) chosen for this analysis fully covers
the search frequency band of 24-2000 Hz. The waveforms are
shifted in time to show how they cover the parameter space
in this axis as well.
Pipeline
FAR
p-value Frequency Duration
[Hz]
[Hz]
[s]
cWB
1
.
4
×
10
7
0.75
53–69
11
Zebragard
2
.
5
×
10
7
0.92
1649–1753
29
Lonetrack
7
.
9
×
10
8
0.80
608–1344
463
X-SphRad 9
.
7
×
10
8
0.60
435-443
3
Table 1.
Properties of the most significant coincident trig-
gers found by each of the long-duration transient search
pipelines during the second observation run. FAR stands
for false alarm rate, while the p-value is the probability of
observing at least 1 noise trigger at higher significance than
the most significant coincident trigger.
None of the pipelines find a significant excess of co-
incident events. The most significant events found by
4
each pipeline are reported in Table 1. Their false alarm
rate is in agreement with the expected background esti-
mation. Given the absence of a detection, we can derive
upper limits on long-duration gravitational-wave tran-
sients’ strain amplitude. We use 13 families of sim-
ulated gravitational-wave signals to estimate the sensi-
tivity of each pipeline. The waveform families include
a variety of astrophysically motivated waveforms and
ad-hoc waveform models. For the astrophysical mod-
els, we include fallback accretion onto neutron stars
(FA) (Piro & Thrane 2012), broadband chirps from
innermost stable circular orbit waves around rotating
black holes (ISCOchirp) (van Putten 2016), inspiral-
only compact binary coalescence waveforms up to 2nd
post-Newtonian order (Blanchet et al. 1996) (CBC), ec-
centric inspiral-merger-ringdown compact binary coales-
cence waveforms (ECBC) (Huerta et al. 2018), secular
bar-mode instabilities in post-merger remnants (Lai &
Shapiro 1995; Corsi & M ́esz ́aros 2009), newly formed
magnetar powering a gamma-ray burst plateau (GRB-
plateau) (Corsi & M ́esz ́aros 2009), black hole accretion
disk instabilities (ADI) (van Putten 2001), post-merger
magnetars (magnetar) (Dall’Osso et al. 2015), and neu-
tron star spin down waveforms (MSmagnetar) (Lasky
et al. 2017; Sarin et al. 2018). For the ad-hoc wave-
forms, we include monochromatic waveforms (MONO),
waveforms with a linear (LINE), quadratic (QUAD) fre-
quency evolution, white noise band-limited (WNB) and
sine-Gaussian bursts (SG). The waveforms are designed
to span a range of astrophysical models, as well as a
wide duration and frequency parameter space to test the
response of the algorithms across the parameter space.
Figure 1 shows the coverage of a representative sam-
ple of the simulation set in the time-frequency space.
The frequency band 10-300 Hz are well covered with the
GRBplateau and ADI families. Astrophysical waveform
families such as ISCOchirp and magnetar are charac-
terised by a wide frequency coverage and populate the
higher frequency band 700-2000 Hz. Ad-hoc waveforms
families such as MONO, LINE, QUAD, WNB and SG
span a wide frequency range and covers the band 50-
800 Hz, filling in any potential gap in coverage from the
other models.
A usual measure of gravitational-wave amplitude is
the root-sum-square strain amplitude at the Earth,
h
rss
,
h
rss
=
−∞
(
h
2
+
(
t
) +
h
2
×
(
t
)
)
d
t,
(1)
where
h
+
and
h
×
are signal polarizations at Earth’s cen-
ter expressed in the source frame. We can relate this
quantity to the gravitational-wave energy radiated by a
source emitting isotropically at a given central frequency
f
0
(Sutton 2013)
E
iso
gw
=
πc
3
G
D
2
d
f f
2
(
|
̃
h
+
(
f
)
|
2
+
|
̃
h
×
(
f
)
|
2
)
π
2
c
3
G
D
2
f
2
0
h
2
rss
,
(2)
where
D
is the distance to the source and
̃
h
indicates a
Fourier transform.
To estimate the
h
rss
at 50% detection efficiency, we
add simulated waveforms coherently to detector data,
uniformly distributed in time and over sky locations.
The waveform polarization angle and the cosine of the
inclination are also varied uniformly. Waveforms are
generated at a variety of distances (or equivalently
h
rss
) such that the 50% detection efficiency is well-
measured. The events reconstructed are then “detected”
if their false alarm rate is lower than the chosen value
of 1
/
50 years. In Figure 2, we show the best results
among all pipelines for almost all waveforms. A few
differences in the pipeline recoveries stand out. Simi-
lar to the analysis from the first observing run (Abbott
et al. 2017g), the response of cWB, Zebragard and X-
SphRad are similar, while Lonetrack achieves about a
factor of 2 improvement for the LINE and QUAD wave-
forms. Neither cWB nor Lonetrack were sensitive to the
monochromatic signals.
We also compute the 90% confidence level limit on
the rate of long-duration gravitational-wave transients
assuming a Poissonian distribution of sources. To do
so, we use the loudest event statistic method (Brady
et al. 2004). We fold in the systematic uncertainty that
arises from the strain amplitude calibration, which is
7% in amplitude and 3 degrees in phase, a conservative
number used for both instruments in the frequency band
analyzed here (Cahillane et al. 2017).
Figure 3 shows the rate as a function of distance for
the eccentric compact binary coalescence signals consid-
ered in this analysis. For a 1
.
4
1
.
4 solar mass binary
with an eccentricity of 0.4, the 50% efficiency distance
is 30 Mpc. For comparison, this is more than a factor 2
lower than what matched filter searches could reach for
1
.
4
1
.
4 solar mass binaries with no eccentricity dur-
ing the second observation run (Abbott et al. 2017d).
Due to the improved sensitivity and greater duration of
the second observation run above and beyond the first
observation run, the rate limits for models used in pre-
vious analyses improved by a factor of
30%. The
detection distances vary significantly from one signal to
another. For example, the ADI waveforms have distance
limits of tens of megaparsecs, while the magnetar wave-
forms have limits of tens of kiloparsecs. The difference in
ranges is due mainly to the energy budget of the system,
5
Figure 2.
Upper limits on gravitational-wave strain versus frequency for sources detected with 50% efficiency and a false alarm
rate of 1 event in 50 years. The lowest value among all 4 pipelines is represented on the plots. The left figure shows the “ad-hoc”
waveforms’ results while the “physical” waveforms are represented on the right. The average amplitude spectral density curves
for both Hanford and Livingston are also shown.
Figure 3.
Upper limits (marginalizing over the second ob-
servation run amplitude calibration errors) on eccentric com-
pact binary coalescences as a function of the distance at a
90% confidence level considering the best results for each
waveform. The inset shows the distance at 50% detection
efficiency for the pipelines in this analysis for comparison.
ECBC
A, ECBC
B, and ECBC
C are 1
.
4
1
.
4 solar mass
binaries with eccentricities of 0.2, 0.4, and 0.6 respectively,
while ECBC
D, ECBC
E, and ECBC
F are 3
.
0
3
.
0 solar
mass binaries with eccentricities of 0.2, 0.4, and 0.6 respec-
tively, where the masses are quoted in the detector frame.
but also due to the overall signal morphologies, which
can be more or less difficult for the pipeline clustering
techniques to recover entirely.
5.
CONCLUSIONS
We have performed an all-sky search for unmodeled
long-duration gravitational-wave transients in the sec-
ond observing run. This search did not lead to the de-
tection of any new gravitational waves. In addition to
the intrinsic gain due to detectors’ sensitivity improve-
ment and the length of the observing run, we have in-
creased significantly the number of waveforms used to
estimate the pipelines’ sensitivity. The theoretical un-
certainties of the models used are rather large, including
the mechanisms, their amplitudes, and their potential
rates, although it is likely we are sensitive to relatively
small amplitude emissions within the Local Group.
With the recent arrival of Advanced Virgo to the ad-
vanced gravitational-wave detector network, its future
improvements will merit its inclusion in analyses in the
next observing runs. Overall, the expectation is that the
design sensitivities for the gravitational-wave networks
will yield gains of up to a factor of 10, depending on the
frequency range considered (Abbott et al. 2018c).
The authors gratefully acknowledge the support of the
United States National Science Foundation (NSF) for
the construction and operation of the LIGO Laboratory
and Advanced LIGO as well as the Science and Tech-
nology Facilities Council (STFC) of the United King-
dom, the Max-Planck-Society (MPS), and the State of
Niedersachsen/Germany for support of the construction
of Advanced LIGO and construction and operation of
the GEO600 detector. Additional support for Advanced
LIGO was provided by the Australian Research Coun-
cil. The authors gratefully acknowledge the Italian Is-
tituto Nazionale di Fisica Nucleare (INFN), the French
6
Centre National de la Recherche Scientifique (CNRS)
and the Foundation for Fundamental Research on Mat-
ter supported by the Netherlands Organisation for Sci-
entific Research, for the construction and operation of
the Virgo detector and the creation and support of the
EGO consortium. The authors also gratefully acknowl-
edge research support from these agencies as well as by
the Council of Scientific and Industrial Research of In-
dia, the Department of Science and Technology, India,
the Science & Engineering Research Board (SERB), In-
dia, the Ministry of Human Resource Development, In-
dia, the Spanish Agencia Estatal de Investigaci ́on, the
Vicepresid`encia i Conselleria d’Innovaci ́o, Recerca i Tur-
isme and the Conselleria d’Educaci ́o i Universitat del
Govern de les Illes Balears, the Conselleria d’Educaci ́o,
Investigaci ́o, Cultura i Esport de la Generalitat Valen-
ciana, the National Science Centre of Poland, the Swiss
National Science Foundation (SNSF), the Russian Foun-
dation for Basic Research, the Russian Science Foun-
dation, the European Commission, the European Re-
gional Development Funds (ERDF), the Royal Society,
the Scottish Funding Council, the Scottish Universi-
ties Physics Alliance, the Hungarian Scientific Research
Fund (OTKA), the Lyon Institute of Origins (LIO),
the National Research, Development and Innovation Of-
fice Hungary (NKFI), the National Research Foundation
of Korea, Industry Canada and the Province of On-
tario through the Ministry of Economic Development
and Innovation, the Natural Science and Engineering
Research Council Canada, the Canadian Institute for
Advanced Research, the Brazilian Ministry of Science,
Technology, Innovations, and Communications, the In-
ternational Center for Theoretical Physics South Ameri-
can Institute for Fundamental Research (ICTP-SAIFR),
the Research Grants Council of Hong Kong, the Na-
tional Natural Science Foundation of China (NSFC), the
Leverhulme Trust, the Research Corporation, the Min-
istry of Science and Technology (MOST), Taiwan and
the Kavli Foundation. The authors gratefully acknowl-
edge the support of the NSF, STFC, MPS, INFN, CNRS
and the State of Niedersachsen/Germany for provision
of computational resources.
REFERENCES
Aasi, J., et al. 2012, CQGra, 29, 155002
—. 2015, CQGra, 32, 074001
Abbott, B. P., et al. 2016, CQGra, 33, 134001
—. 2017a, PhRvL, 118, 221101
—. 2017b, PhRvL, 119, 141101
—. 2017c, ArXiv e-prints, arXiv:1711.05578
—. 2017d, PhRvL, 119, 161101
—. 2017e, ApJL, 848, L13
—. 2017f, ApJL, 848, L12
—. 2017g, PhRvD, 95, 042003
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2018a,
ArXiv e-prints, arXiv:1810.02581
Abbott, B. P., et al. 2018b, CQGra, 35, 065009
—. 2018c, CQGra, 35, 065010
Abbott et al. 2017, The Astrophysical Journal Letters, 851,
L16
—. 2018a, ArXiv e-prints, arXiv:1805.11579
—. 2018b, Phys. Rev. Lett., 121, 161101. https:
//link.aps.org/doi/10.1103/PhysRevLett.121.161101
—. 2018c, Living Reviews in Relativity, 21, 3
Acernese, F., et al. 2015, CQGra, 32, 024001
Blanchet, L., Iyer, B. R., Will, C. M., & Wiseman, A. G.
1996, CQGra, 13, 575
Brady, P. R., Creighton, J. D. E., & Wiseman, A. G. 2004,
CQGra, 21, S1775
Cahillane, C., Betzwieser, J., Brown, D. A., et al. 2017,
PhRvD, 96, 102001
Cannon, K. C. 2007, PhRvD, 75, 123003
Chatterji, S. K. 2005, Thesis, MIT Physics department.
http://dspace.mit.edu/handle/1721.1/34388
Corsi, A., & M ́esz ́aros, P. 2009, ApJ, 702, 1171
Coughlin, M. 2010, Journal of Physics: Conference Series,
243, 012010
Coughlin, M., Meyers, P., Kandhasamy, S., Thrane, E., &
Christensen, N. 2015, PhRvD, 92, 043007
Coughlin, M., Christensen, N., De Rosa, R., et al. 2016,
CQGra, 33, 224003
Coughlin, M., Earle, P., Harms, J., et al. 2017, CQGra, 34,
044004
Dall’Osso, S., Giacomazzo, B., Perna, R., & Stella, L. 2015,
ApJ, 798, 25
Davis, D., Massinger, T. J., Lundgren, A. P., et al. 2018,
arXiv:1809.05348
Farin, G. 1996, Curves and Surfaces for CAGD, Fourth
Edition: A Practical Guide (Academic Press)
Fays, M. 2017, Cardiff University Thesis
Frey, V. 2018, Paris Saclay University Thesis
Huerta, E., et al. 2018, PhRvD, 97, 024031
Khan, R., & Chatterji, S. 2009, CQGra, 26, 155009
Klimenko, S., Vedovato, G., Drago, M., et al. 2016, PhRvD,
93, 042004
Kowalska-Leszczynska, I., Bizouard, M.-A., Bulik, T., et al.
2017, CQGra, 34, 074002
Lai, D., & Shapiro, S. L. 1995, ApJ, 442, 259
7
Lasky, P., Leris, C., Rowlinson, A., & Glampedakis, K.
2017, ApJL, 843, L1
Macleod, D., Fairhurst, S., Hughey, B., et al. 2012, CQGra,
29, 055006
Metzger, B., Giannios, D., Thompson, T. A., Bucciantini,
N., & Quataert, E. 2011, MNRAS, 413, 2031
Piro, A., & Ott, C. D. 2011, 736, 108
Piro, A., & Pfahl, E. 2007, 658, 1173
Piro, A., & Thrane, E. 2012, 761, 63
Prestegard, T. 2016, University of Minnesota Thesis
Rowlinson, A., O’Brien, P., Metzger, B., Tanvir, N., &
Levan, A. 2013, MNRAS, 430, 1061
Sarin, N., Lasky, P. D., Sammut, L., & Ashton, G. 2018,
Phys. Rev. D, 98, 043011
Sutton, P. 2013, arXiv:1304.0210
Sutton, P., Jones, G., Chatterji, S., et al. 2010, NJPh, 12,
053034
Thrane, E., & Coughlin, M. 2013, PhRvD, 88, 083010
—. 2014, PhRvD, 89, 063012
Thrane, E., & Coughlin, M. 2015, PhRvL, 115, 181102
van Putten, M. H. P. M. 2001, 87, 091101
—. 2008, 684, L91
—. 2016, The Astrophysical Journal, 819, 169
Walker et al. 2017, Review of Scientific Instruments, 88,
124501
Was, M., Bizouard, M.-A., Brisson, V., et al. 2010a,
CQGra, 27, 015005
—. 2010b, CQGra, 27, 194014
The LIGO Scientific Collaboration, The Virgo Collaboration, B. P. Abbott,
1
R. Abbott,
1
T. D. Abbott,
2
S. Abraham,
3
F. Acernese,
4, 5
K. Ackley,
6
C. Adams,
7
R. X. Adhikari,
1
V. B. Adya,
8
C. Affeldt,
9, 10
M. Agathos,
11, 12
K. Agatsuma,
13
N. Aggarwal,
14
O. D. Aguiar,
15
L. Aiello,
16, 17
A. Ain,
3
P. Ajith,
18
G. Allen,
19
A. Allocca,
20, 21
M. A. Aloy,
22
P. A. Altin,
8
A. Amato,
23
S. Anand,
1
A. Ananyeva,
1
S. B. Anderson,
1
W. G. Anderson,
24
S. V. Angelova,
25
S. Antier,
26
S. Appert,
1
K. Arai,
1
M. C. Araya,
1
J. S. Areeda,
27
M. Ar
`
ene,
26
N. Arnaud,
28, 29
S. M. Aronson,
30
S. Ascenzi,
16, 31
G. Ashton,
6
S. M. Aston,
7
P. Astone,
32
F. Aubin,
33
P. Aufmuth,
10
K. AultONeal,
34
C. Austin,
2
V. Avendano,
35
A. Avila-Alvarez,
27
S. Babak,
26
P. Bacon,
26
F. Badaracco,
16, 17
M. K. M. Bader,
36
S. Bae,
37
J. Baird,
26
P. T. Baker,
38
F. Baldaccini,
39, 40
G. Ballardin,
29
S. W. Ballmer,
41
A. Bals,
34
S. Banagiri,
42
J. C. Barayoga,
1
C. Barbieri,
43, 44
S. E. Barclay,
45
B. C. Barish,
1
D. Barker,
46
K. Barkett,
47
S. Barnum,
14
F. Barone,
48, 5
B. Barr,
45
L. Barsotti,
14
M. Barsuglia,
26
D. Barta,
49
J. Bartlett,
46
I. Bartos,
30
R. Bassiri,
50
A. Basti,
20, 21
M. Bawaj,
51, 40
J. C. Bayley,
45
M. Bazzan,
52, 53
B. B
́
ecsy,
54
M. Bejger,
26, 55
I. Belahcene,
28
A. S. Bell,
45
D. Beniwal,
56
M. G. Benjamin,
34
B. K. Berger,
50
G. Bergmann,
9, 10
S. Bernuzzi,
11
C. P. L. Berry,
57
D. Bersanetti,
58
A. Bertolini,
36
J. Betzwieser,
7
R. Bhandare,
59
J. Bidler,
27
E. Biggs,
24
I. A. Bilenko,
60
S. A. Bilgili,
38
G. Billingsley,
1
R. Birney,
25
O. Birnholtz,
61
S. Biscans,
1, 14
M. Bischi,
62, 63
S. Biscoveanu,
14
A. Bisht,
10
M. Bitossi,
29, 21
M. A. Bizouard,
64
J. K. Blackburn,
1
J. Blackman,
47
C. D. Blair,
7
D. G. Blair,
65
R. M. Blair,
46
S. Bloemen,
66
F. Bobba,
67, 68
N. Bode,
9, 10
M. Boer,
64
Y. Boetzel,
69
G. Bogaert,
64
F. Bondu,
70
R. Bonnand,
33
P. Booker,
9, 10
B. A. Boom,
36
R. Bork,
1
V. Boschi,
29
S. Bose,
3
V. Bossilkov,
65
J. Bosveld,
65
Y. Bouffanais,
52, 53
A. Bozzi,
29
C. Bradaschia,
21
P. R. Brady,
24
A. Bramley,
7
M. Branchesi,
16, 17
J. E. Brau,
71
M. Breschi,
11
T. Briant,
72
J. H. Briggs,
45
F. Brighenti,
62, 63
A. Brillet,
64
M. Brinkmann,
9, 10
P. Brockill,
24
A. F. Brooks,
1
J. Brooks,
29
D. D. Brown,
56
S. Brunett,
1
A. Buikema,
14
T. Bulik,
73
H. J. Bulten,
74, 36
A. Buonanno,
75, 76
D. Buskulic,
33
C. Buy,
26
R. L. Byer,
50
M. Cabero,
9, 10
L. Cadonati,
77
G. Cagnoli,
78
C. Cahillane,
1
J. Calder
́
on Bustillo,
6
T. A. Callister,
1
E. Calloni,
79, 5
J. B. Camp,
80
W. A. Campbell,
6
K. C. Cannon,
81
H. Cao,
56
J. Cao,
82
G. Carapella,
67, 68
F. Carbognani,
29
S. Caride,
83
M. F. Carney,
57
G. Carullo,
20, 21
J. Casanueva Diaz,
21
C. Casentini,
84, 31
S. Caudill,
36
M. Cavagli
`
a,
85, 86
F. Cavalier,
28
R. Cavalieri,
29
G. Cella,
21
P. Cerd
́
a-Dur
́
an,
22
E. Cesarini,
87, 31
O. Chaibi,
64
K. Chakravarti,
3
S. J. Chamberlin,
88
M. Chan,
45
S. Chao,
89
P. Charlton,
90
E. A. Chase,
57
E. Chassande-Mottin,
26
D. Chatterjee,
24
M. Chaturvedi,
59
B. D. Cheeseboro,
38
H. Y. Chen,
91
X. Chen,
65
Y. Chen,
47
H.-P. Cheng,
30
C. K. Cheong,
92
H. Y. Chia,
30
F. Chiadini,
93, 68
A. Chincarini,
58
A. Chiummo,
29
G. Cho,
94
H. S. Cho,
95
M. Cho,
76
N. Christensen,
96, 64
Q. Chu,
65
S. Chua,
72
K. W. Chung,
92
S. Chung,
65
G. Ciani,
52, 53
M. Cie
́
slar,
55
A. A. Ciobanu,
56
R. Ciolfi,
97, 53
F. Cipriano,
64
A. Cirone,
98, 58
F. Clara,
46
J. A. Clark,
77
P. Clearwater,
99
F. Cleva,
64
E. Coccia,
16, 17
P.-F. Cohadon,
72
D. Cohen,
28
M. Colleoni,
100
C. G. Collette,
101
C. Collins,
13
M. Colpi,
43, 44
L. R. Cominsky,
102
M. Constancio Jr.,
15
L. Conti,
53
S. J. Cooper,
13
P. Corban,
7
T. R. Corbitt,
2
I. Cordero-Carri
́
on,
103
S. Corezzi,
39, 40
K. R. Corley,
104
N. Cornish,
54
D. Corre,
28
A. Corsi,
83
S. Cortese,
29
C. A. Costa,
15
R. Cotesta,
75
M. W. Coughlin,
1
S. B. Coughlin,
105, 57
J.-P. Coulon,
64
S. T. Countryman,
104
P. Couvares,
1
P. B. Covas,
100
E. E. Cowan,
77
D. M. Coward,
65
M. J. Cowart,
7
D. C. Coyne,
1
R. Coyne,
106
J. D. E. Creighton,
24
T. D. Creighton,
107
J. Cripe,
2
M. Croquette,
72
S. G. Crowder,
108
T. J. Cullen,
2
A. Cumming,
45
L. Cunningham,
45
E. Cuoco,
29
T. Dal Canton,
80
G. D
́
alya,
109
B. D’Angelo,
98, 58
S. L. Danilishin,
9, 10
S. D’Antonio,
31
K. Danzmann,
10, 9
A. Dasgupta,
110
C. F. Da Silva Costa,
30
L. E. H. Datrier,
45
V. Dattilo,
29
I. Dave,
59
M. Davier,
28
D. Davis,
41
E. J. Daw,
111
D. DeBra,
50
M. Deenadayalan,
3
J. Degallaix,
23
M. De Laurentis,
79, 5
S. Del
́
eglise,
72
W. Del Pozzo,
20, 21
L. M. DeMarchi,
57
N. Demos,
14
T. Dent,
112
R. De Pietri,
113, 114
R. De Rosa,
79, 5
C. De Rossi,
23, 29
R. DeSalvo,
115
O. de Varona,
9, 10
S. Dhurandhar,
3
M. C. D
́
ıaz,
107
T. Dietrich,
36
L. Di Fiore,
5
C. DiFronzo,
13
C. Di Giorgio,
67, 68
F. Di Giovanni,
22
M. Di Giovanni,
116, 117
T. Di Girolamo,
79, 5
A. Di Lieto,
20, 21
B. Ding,
101
S. Di Pace,
118, 32
I. Di Palma,
118, 32
F. Di Renzo,
20, 21
A. K. Divakarla,
30
A. Dmitriev,
13
Z. Doctor,
91
F. Donovan,
14
K. L. Dooley,
105, 85
S. Doravari,
3
I. Dorrington,
105
T. P. Downes,
24
M. Drago,
16, 17
J. C. Driggers,
46
Z. Du,
82
J.-G. Ducoin,
28
P. Dupej,
45
O. Durante,
67, 68
S. E. Dwyer,
46
P. J. Easter,
6
G. Eddolls,
45
T. B. Edo,
111
A. Effler,
7
P. Ehrens,
1
J. Eichholz,
8
S. S. Eikenberry,
30
M. Eisenmann,
33
R. A. Eisenstein,
14
L. Errico,
79, 5
R. C. Essick,
91
H. Estelles,
100
D. Estevez,
33
Z. B. Etienne,
38
T. Etzel,
1
M. Evans,
14
T. M. Evans,
7
V. Fafone,
84, 31, 16
S. Fairhurst,
105
X. Fan,
82
S. Farinon,
58
B. Farr,
71
W. M. Farr,
13
E. J. Fauchon-Jones,
105
M. Favata,
35
M. Fays,
111
M. Fazio,
119
C. Fee,
120
J. Feicht,
1
M. M. Fejer,
50
F. Feng,
26
A. Fernandez-Galiana,
14
I. Ferrante,
20, 21
E. C. Ferreira,
15
T. A. Ferreira,
15
F. Fidecaro,
20, 21
I. Fiori,
29
D. Fiorucci,
16, 17
M. Fishbach,
91
R. P. Fisher,
121
J. M. Fishner,
14
R. Fittipaldi,
122, 68
M. Fitz-Axen,
42
V. Fiumara,
123, 68
R. Flaminio,
33, 124
M. Fletcher,
45
E. Floden,
42
E. Flynn,
27
H. Fong,
81
J. A. Font,
22, 125
P. W. F. Forsyth,
8
J.-D. Fournier,
64
Francisco Hernandez Vivanco,
6
S. Frasca,
118, 32
F. Frasconi,
21
Z. Frei,
109
A. Freise,
13
R. Frey,
71
V. Frey,
28
P. Fritschel,
14
V. V. Frolov,
7
G. Fronz
`
e,
126
P. Fulda,
30
M. Fyffe,
7
H. A. Gabbard,
45
B. U. Gadre,
75
S. M. Gaebel,
13
J. R. Gair,
127
L. Gammaitoni,
39
S. G. Gaonkar,
3
C. Garc
́
ıa-Quir
́
os,
100
F. Garufi,
79, 5
B. Gateley,
46
S. Gaudio,
34
G. Gaur,
128
V. Gayathri,
129
G. Gemme,
58
E. Genin,
29
A. Gennai,
21
D. George,
19
J. George,
59
L. Gergely,
130
S. Ghonge,
77
Abhirup Ghosh,
75
Archisman Ghosh,
36
S. Ghosh,
24
B. Giacomazzo,
116, 117
J. A. Giaime,
2, 7
K. D. Giardina,
7
D. R. Gibson,
131
K. Gill,
104
L. Glover,
132
J. Gniesmer,
133
P. Godwin,
88
E. Goetz,
46
R. Goetz,
30
B. Goncharov,
6
G. Gonz
́
alez,
2
J. M. Gonzalez Castro,
20, 21
A. Gopakumar,
134
S. E. Gossan,
1
M. Gosselin,
29, 20, 21
R. Gouaty,
33
B. Grace,
8
A. Grado,
135, 5
M. Granata,
23
A. Grant,
45
S. Gras,
14
P. Grassia,
1
C. Gray,
46
R. Gray,
45
G. Greco,
62, 63
A. C. Green,
30
R. Green,
105
E. M. Gretarsson,
34
A. Grimaldi,
116, 117
S. J. Grimm,
16, 17
P. Groot,
66
H. Grote,
105
9
S. Grunewald,
75
P. Gruning,
28
G. M. Guidi,
62, 63
H. K. Gulati,
110
Y. Guo,
36
A. Gupta,
88
Anchal Gupta,
1
P. Gupta,
36
E. K. Gustafson,
1
R. Gustafson,
136
L. Haegel,
100
O. Halim,
17, 16
B. R. Hall,
137
E. D. Hall,
14
E. Z. Hamilton,
105
G. Hammond,
45
M. Haney,
69
M. M. Hanke,
9, 10
J. Hanks,
46
C. Hanna,
88
O. A. Hannuksela,
92
T. J. Hansen,
34
J. Hanson,
7
T. Harder,
64
T. Hardwick,
2
K. Haris,
18
J. Harms,
16, 17
G. M. Harry,
138
I. W. Harry,
139
R. K. Hasskew,
7
C. J. Haster,
14
K. Haughian,
45
F. J. Hayes,
45
J. Healy,
61
A. Heidmann,
72
M. C. Heintze,
7
H. Heitmann,
64
F. Hellman,
140
P. Hello,
28
G. Hemming,
29
M. Hendry,
45
I. S. Heng,
45
J. Hennig,
9, 10
M. Heurs,
9, 10
S. Hild,
45
T. Hinderer,
141, 36, 142
S. Hochheim,
9, 10
D. Hofman,
23
A. M. Holgado,
19
N. A. Holland,
8
K. Holt,
7
D. E. Holz,
91
P. Hopkins,
105
C. Horst,
24
J. Hough,
45
E. J. Howell,
65
C. G. Hoy,
105
Y. Huang,
14
M. T. H
̈
ubner,
6
E. A. Huerta,
19
D. Huet,
28
B. Hughey,
34
V. Hui,
33
S. Husa,
100
S. H. Huttner,
45
T. Huynh-Dinh,
7
B. Idzkowski,
73
A. Iess,
84, 31
H. Inchauspe,
30
C. Ingram,
56
R. Inta,
83
G. Intini,
118, 32
B. Irwin,
120
H. N. Isa,
45
J.-M. Isac,
72
M. Isi,
14
B. R. Iyer,
18
T. Jacqmin,
72
S. J. Jadhav,
143
K. Jani,
77
N. N. Janthalur,
143
P. Jaranowski,
144
D. Jariwala,
30
A. C. Jenkins,
145
J. Jiang,
30
D. S. Johnson,
19
A. W. Jones,
13
D. I. Jones,
146
J. D. Jones,
46
R. Jones,
45
R. J. G. Jonker,
36
L. Ju,
65
J. Junker,
9, 10
C. V. Kalaghatgi,
105
V. Kalogera,
57
B. Kamai,
1
S. Kandhasamy,
3
G. Kang,
37
J. B. Kanner,
1
S. J. Kapadia,
24
S. Karki,
71
R. Kashyap,
18
M. Kasprzack,
1
S. Katsanevas,
29
E. Katsavounidis,
14
W. Katzman,
7
S. Kaufer,
10
K. Kawabe,
46
N. V. Keerthana,
3
F. K
́
ef
́
elian,
64
D. Keitel,
139
R. Kennedy,
111
J. S. Key,
147
F. Y. Khalili,
60
I. Khan,
16, 31
S. Khan,
9, 10
E. A. Khazanov,
148
N. Khetan,
16, 17
M. Khursheed,
59
N. Kijbunchoo,
8
Chunglee Kim,
149
J. C. Kim,
150
K. Kim,
92
W. Kim,
56
W. S. Kim,
151
Y.-M. Kim,
152
C. Kimball,
57
P. J. King,
46
M. Kinley-Hanlon,
45
R. Kirchhoff,
9, 10
J. S. Kissel,
46
L. Kleybolte,
133
J. H. Klika,
24
S. Klimenko,
30
T. D. Knowles,
38
P. Koch,
9, 10
S. M. Koehlenbeck,
9, 10
G. Koekoek,
36, 153
S. Koley,
36
V. Kondrashov,
1
A. Kontos,
154
N. Koper,
9, 10
M. Korobko,
133
W. Z. Korth,
1
M. Kovalam,
65
D. B. Kozak,
1
C. Kr
̈
amer,
9, 10
V. Kringel,
9, 10
N. Krishnendu,
155
A. Kr
́
olak,
156, 157
N. Krupinski,
24
G. Kuehn,
9, 10
A. Kumar,
143
P. Kumar,
158
Rahul Kumar,
46
Rakesh Kumar,
110
L. Kuo,
89
A. Kutynia,
156
S. Kwang,
24
B. D. Lackey,
75
D. Laghi,
20, 21
K. H. Lai,
92
T. L. Lam,
92
M. Landry,
46
B. B. Lane,
14
R. N. Lang,
159
J. Lange,
61
B. Lantz,
50
R. K. Lanza,
14
A. Lartaux-Vollard,
28
P. D. Lasky,
6
M. Laxen,
7
A. Lazzarini,
1
C. Lazzaro,
53
P. Leaci,
118, 32
S. Leavey,
9, 10
Y. K. Lecoeuche,
46
C. H. Lee,
95
H. K. Lee,
160
H. M. Lee,
161
H. W. Lee,
150
J. Lee,
94
K. Lee,
45
J. Lehmann,
9, 10
A. K. Lenon,
38
N. Leroy,
28
N. Letendre,
33
Y. Levin,
6
A. Li,
92
J. Li,
82
K. J. L. Li,
92
T. G. F. Li,
92
X. Li,
47
F. Lin,
6
F. Linde,
162, 36
S. D. Linker,
132
T. B. Littenberg,
163
J. Liu,
65
X. Liu,
24
M. Llorens-Monteagudo,
22
R. K. L. Lo,
92, 1
L. T. London,
14
A. Longo,
164, 165
M. Lorenzini,
16, 17
V. Loriette,
166
M. Lormand,
7
G. Losurdo,
21
J. D. Lough,
9, 10
C. O. Lousto,
61
G. Lovelace,
27
M. E. Lower,
167
H. L
̈
uck,
10, 9
D. Lumaca,
84, 31
A. P. Lundgren,
139
R. Lynch,
14
Y. Ma,
47
R. Macas,
105
S. Macfoy,
25
M. MacInnis,
14
D. M. Macleod,
105
A. Macquet,
64
I. Maga
̃
na Hernandez,
24
F. Maga
̃
na-Sandoval,
30
R. M. Magee,
88
E. Majorana,
32
I. Maksimovic,
166
A. Malik,
59
N. Man,
64
V. Mandic,
42
V. Mangano,
45, 118, 32
G. L. Mansell,
46, 14
M. Manske,
24
M. Mantovani,
29
M. Mapelli,
52, 53
F. Marchesoni,
51, 40
F. Marion,
33
S. M
́
arka,
104
Z. M
́
arka,
104
C. Markakis,
19
A. S. Markosyan,
50
A. Markowitz,
1
E. Maros,
1
A. Marquina,
103
S. Marsat,
26
F. Martelli,
62, 63
I. W. Martin,
45
R. M. Martin,
35
V. Martinez,
78
D. V. Martynov,
13
H. Masalehdan,
133
K. Mason,
14
E. Massera,
111
A. Masserot,
33
T. J. Massinger,
1
M. Masso-Reid,
45
S. Mastrogiovanni,
26
A. Matas,
75
F. Matichard,
1, 14
L. Matone,
104
N. Mavalvala,
14
J. J. McCann,
65
R. McCarthy,
46
D. E. McClelland,
8
S. McCormick,
7
L. McCuller,
14
S. C. McGuire,
168
C. McIsaac,
139
J. McIver,
1
D. J. McManus,
8
T. McRae,
8
S. T. McWilliams,
38
D. Meacher,
24
G. D. Meadors,
6
M. Mehmet,
9, 10
A. K. Mehta,
18
J. Meidam,
36
E. Mejuto Villa,
115, 68
A. Melatos,
99
G. Mendell,
46
R. A. Mercer,
24
L. Mereni,
23
K. Merfeld,
71
E. L. Merilh,
46
M. Merzougui,
64
S. Meshkov,
1
C. Messenger,
45
C. Messick,
88
F. Messina,
43, 44
R. Metzdorff,
72
P. M. Meyers,
99
F. Meylahn,
9, 10
A. Miani,
116, 117
H. Miao,
13
C. Michel,
23
H. Middleton,
99
L. Milano,
79, 5
A. L. Miller,
30, 118, 32
M. Millhouse,
99
J. C. Mills,
105
M. C. Milovich-Goff,
132
O. Minazzoli,
64, 169
Y. Minenkov,
31
A. Mishkin,
30
C. Mishra,
170
T. Mistry,
111
S. Mitra,
3
V. P. Mitrofanov,
60
G. Mitselmakher,
30
R. Mittleman,
14
G. Mo,
96
D. Moffa,
120
K. Mogushi,
85
S. R. P. Mohapatra,
14
M. Molina-Ruiz,
140
M. Mondin,
132
M. Montani,
62, 63
C. J. Moore,
13
D. Moraru,
46
F. Morawski,
55
G. Moreno,
46
S. Morisaki,
81
B. Mours,
33
C. M. Mow-Lowry,
13
F. Muciaccia,
118, 32
Arunava Mukherjee,
9, 10
D. Mukherjee,
24
S. Mukherjee,
107
Subroto Mukherjee,
110
N. Mukund,
9, 10, 3
A. Mullavey,
7
J. Munch,
56
E. A. Mu
̃
niz,
41
M. Muratore,
34
P. G. Murray,
45
A. Nagar,
87, 126, 171
I. Nardecchia,
84, 31
L. Naticchioni,
118, 32
R. K. Nayak,
172
B. F. Neil,
65
J. Neilson,
115, 68
G. Nelemans,
66, 36
T. J. N. Nelson,
7
M. Nery,
9, 10
A. Neunzert,
136
L. Nevin,
1
K. Y. Ng,
14
S. Ng,
56
C. Nguyen,
26
P. Nguyen,
71
D. Nichols,
141, 36
S. A. Nichols,
2
S. Nissanke,
141, 36
F. Nocera,
29
C. North,
105
L. K. Nuttall,
139
M. Obergaulinger,
22, 173
J. Oberling,
46
B. D. O’Brien,
30
G. Oganesyan,
16, 17
G. H. Ogin,
174
J. J. Oh,
151
S. H. Oh,
151
F. Ohme,
9, 10
H. Ohta,
81
M. A. Okada,
15
M. Oliver,
100
P. Oppermann,
9, 10
Richard J. Oram,
7
B. O’Reilly,
7
R. G. Ormiston,
42
L. F. Ortega,
30
R. O’Shaughnessy,
61
S. Ossokine,
75
D. J. Ottaway,
56
H. Overmier,
7
B. J. Owen,
83
A. E. Pace,
88
G. Pagano,
20, 21
M. A. Page,
65
G. Pagliaroli,
16, 17
A. Pai,
129
S. A. Pai,
59
J. R. Palamos,
71
O. Palashov,
148
C. Palomba,
32
H. Pan,
89
P. K. Panda,
143
P. T. H. Pang,
92, 36
C. Pankow,
57
F. Pannarale,
118, 32
B. C. Pant,
59
F. Paoletti,
21
A. Paoli,
29
A. Parida,
3
W. Parker,
7, 168
D. Pascucci,
45, 36
A. Pasqualetti,
29
R. Passaquieti,
20, 21
D. Passuello,
21
M. Patil,
157
B. Patricelli,
20, 21
E. Payne,
6
B. L. Pearlstone,
45
T. C. Pechsiri,
30
A. J. Pedersen,
41
M. Pedraza,
1
R. Pedurand,
23, 175
A. Pele,
7
S. Penn,
176
A. Perego,
116, 117
C. J. Perez,
46
C. P
́
erigois,
33
A. Perreca,
116, 117
J. Petermann,
133
H. P. Pfeiffer,
75
M. Phelps,
9, 10
K. S. Phukon,
3
O. J. Piccinni,
118, 32
M. Pichot,
64
F. Piergiovanni,
62, 63
V. Pierro,
115, 68
G. Pillant,
29
L. Pinard,
23
I. M. Pinto,
115, 68, 87
M. Pirello,
46
M. Pitkin,
45
W. Plastino,
164, 165
R. Poggiani,
20, 21
D. Y. T. Pong,
92
S. Ponrathnam,
3
P. Popolizio,
29
E. K. Porter,
26
J. Powell,
167
A. K. Prajapati,
110
J. Prasad,
3
K. Prasai,
50
10
R. Prasanna,
143
G. Pratten,
100
T. Prestegard,
24
M. Principe,
115, 87, 68
G. A. Prodi,
116, 117
L. Prokhorov,
13
M. Punturo,
40
P. Puppo,
32
M. P
̈
urrer,
75
H. Qi,
105
V. Quetschke,
107
P. J. Quinonez,
34
F. J. Raab,
46
G. Raaijmakers,
141, 36
H. Radkins,
46
N. Radulesco,
64
P. Raffai,
109
S. Raja,
59
C. Rajan,
59
B. Rajbhandari,
83
M. Rakhmanov,
107
K. E. Ramirez,
107
A. Ramos-Buades,
100
Javed Rana,
3
K. Rao,
57
P. Rapagnani,
118, 32
V. Raymond,
105
M. Razzano,
20, 21
J. Read,
27
T. Regimbau,
33
L. Rei,
58
S. Reid,
25
D. H. Reitze,
1, 30
P. Rettegno,
126, 177
F. Ricci,
118, 32
C. J. Richardson,
34
J. W. Richardson,
1
P. M. Ricker,
19
G. Riemenschneider,
177, 126
K. Riles,
136
M. Rizzo,
57
N. A. Robertson,
1, 45
F. Robinet,
28
A. Rocchi,
31
L. Rolland,
33
J. G. Rollins,
1
V. J. Roma,
71
M. Romanelli,
70
R. Romano,
4, 5
C. L. Romel,
46
J. H. Romie,
7
C. A. Rose,
24
D. Rose,
27
K. Rose,
120
D. Rosi
́
nska,
73
S. G. Rosofsky,
19
M. P. Ross,
178
S. Rowan,
45
A. R
̈
udiger,
9, 10,
P. Ruggi,
29
G. Rutins,
131
K. Ryan,
46
S. Sachdev,
88
T. Sadecki,
46
M. Sakellariadou,
145
O. S. Salafia,
179, 43, 44
L. Salconi,
29
M. Saleem,
155
A. Samajdar,
36
L. Sammut,
6
E. J. Sanchez,
1
L. E. Sanchez,
1
N. Sanchis-Gual,
180
J. R. Sanders,
181
K. A. Santiago,
35
E. Santos,
64
N. Sarin,
6
B. Sassolas,
23
P. R. Saulson,
41
O. Sauter,
136, 33
R. L. Savage,
46
P. Schale,
71
M. Scheel,
47
J. Scheuer,
57
P. Schmidt,
13, 66
R. Schnabel,
133
R. M. S. Schofield,
71
A. Sch
̈
onbeck,
133
E. Schreiber,
9, 10
B. W. Schulte,
9, 10
B. F. Schutz,
105
J. Scott,
45
S. M. Scott,
8
E. Seidel,
19
D. Sellers,
7
A. S. Sengupta,
182
N. Sennett,
75
D. Sentenac,
29
V. Sequino,
58
A. Sergeev,
148
Y. Setyawati,
9, 10
D. A. Shaddock,
8
T. Shaffer,
46
M. S. Shahriar,
57
M. B. Shaner,
132
A. Sharma,
16, 17
P. Sharma,
59
P. Shawhan,
76
H. Shen,
19
R. Shink,
183
D. H. Shoemaker,
14
D. M. Shoemaker,
77
K. Shukla,
140
S. ShyamSundar,
59
K. Siellez,
77
M. Sieniawska,
55
D. Sigg,
46
L. P. Singer,
80
D. Singh,
88
N. Singh,
73
A. Singhal,
16, 32
A. M. Sintes,
100
S. Sitmukhambetov,
107
V. Skliris,
105
B. J. J. Slagmolen,
8
T. J. Slaven-Blair,
65
J. R. Smith,
27
R. J. E. Smith,
6
S. Somala,
184
E. J. Son,
151
S. Soni,
2
B. Sorazu,
45
F. Sorrentino,
58
T. Souradeep,
3
E. Sowell,
83
A. P. Spencer,
45
M. Spera,
52, 53
A. K. Srivastava,
110
V. Srivastava,
41
K. Staats,
57
C. Stachie,
64
M. Standke,
9, 10
D. A. Steer,
26
M. Steinke,
9, 10
J. Steinlechner,
133, 45
S. Steinlechner,
133
D. Steinmeyer,
9, 10
S. P. Stevenson,
167
D. Stocks,
50
R. Stone,
107
D. J. Stops,
13
K. A. Strain,
45
G. Stratta,
185, 63
S. E. Strigin,
60
A. Strunk,
46
R. Sturani,
186
A. L. Stuver,
187
V. Sudhir,
14
T. Z. Summerscales,
188
L. Sun,
1
S. Sunil,
110
A. Sur,
55
J. Suresh,
81
P. J. Sutton,
105
B. L. Swinkels,
36
M. J. Szczepa
́
nczyk,
34
M. Tacca,
36
S. C. Tait,
45
C. Talbot,
6
D. B. Tanner,
30
D. Tao,
1
M. T
́
apai,
130
A. Tapia,
27
J. D. Tasson,
96
R. Taylor,
1
R. Tenorio,
100
L. Terkowski,
133
M. Thomas,
7
P. Thomas,
46
S. R. Thondapu,
59
K. A. Thorne,
7
E. Thrane,
6
Shubhanshu Tiwari,
116, 117
Srishti Tiwari,
134
V. Tiwari,
105
K. Toland,
45
M. Tonelli,
20, 21
Z. Tornasi,
45
A. Torres-Forn
́
e,
189
C. I. Torrie,
1
D. T
̈
oyr
̈
a,
13
F. Travasso,
29, 40
G. Traylor,
7
M. C. Tringali,
73
A. Tripathee,
136
A. Trovato,
26
L. Trozzo,
190, 21
K. W. Tsang,
36
M. Tse,
14
R. Tso,
47
L. Tsukada,
81
D. Tsuna,
81
T. Tsutsui,
81
D. Tuyenbayev,
107
K. Ueno,
81
D. Ugolini,
191
C. S. Unnikrishnan,
134
A. L. Urban,
2
S. A. Usman,
91
H. Vahlbruch,
10
G. Vajente,
1
G. Valdes,
2
M. Valentini,
116, 117
N. van Bakel,
36
M. van Beuzekom,
36
J. F. J. van den Brand,
74, 36
C. Van Den Broeck,
36, 192
D. C. Vander-Hyde,
41
L. van der Schaaf,
36
J. V. VanHeijningen,
65
A. A. van Veggel,
45
M. Vardaro,
52, 53
V. Varma,
47
S. Vass,
1
M. Vas
́
uth,
49
A. Vecchio,
13
G. Vedovato,
53
J. Veitch,
45
P. J. Veitch,
56
K. Venkateswara,
178
G. Venugopalan,
1
D. Verkindt,
33
F. Vetrano,
62, 63
A. Vicer
́
e,
62, 63
A. D. Viets,
24
S. Vinciguerra,
13
D. J. Vine,
131
J.-Y. Vinet,
64
S. Vitale,
14
T. Vo,
41
H. Vocca,
39, 40
C. Vorvick,
46
S. P. Vyatchanin,
60
A. R. Wade,
1
L. E. Wade,
120
M. Wade,
120
R. Walet,
36
M. Walker,
27
L. Wallace,
1
S. Walsh,
24
H. Wang,
13
J. Z. Wang,
136
S. Wang,
19
W. H. Wang,
107
Y. F. Wang,
92
R. L. Ward,
8
Z. A. Warden,
34
J. Warner,
46
M. Was,
33
J. Watchi,
101
B. Weaver,
46
L.-W. Wei,
9, 10
M. Weinert,
9, 10
A. J. Weinstein,
1
R. Weiss,
14
F. Wellmann,
9, 10
L. Wen,
65
E. K. Wessel,
19
P. Weßels,
9, 10
J. W. Westhouse,
34
K. Wette,
8
J. T. Whelan,
61
B. F. Whiting,
30
C. Whittle,
14
D. M. Wilken,
9, 10
D. Williams,
45
A. R. Williamson,
141, 36
J. L. Willis,
1
B. Willke,
10, 9
W. Winkler,
9, 10
C. C. Wipf,
1
H. Wittel,
9, 10
G. Woan,
45
J. Woehler,
9, 10
J. K. Wofford,
61
J. L. Wright,
45
D. S. Wu,
9, 10
D. M. Wysocki,
61
S. Xiao,
1
R. Xu,
108
H. Yamamoto,
1
C. C. Yancey,
76
L. Yang,
119
Y. Yang,
30
Z. Yang,
42
M. J. Yap,
8
M. Yazback,
30
D. W. Yeeles,
105
Hang Yu,
14
Haocun Yu,
14
S. H. R. Yuen,
92
A. K. Zadro
̇
zny,
107
A. Zadro
̇
zny,
156
M. Zanolin,
34
T. Zelenova,
29
J.-P. Zendri,
53
M. Zevin,
57
J. Zhang,
65
L. Zhang,
1
T. Zhang,
45
C. Zhao,
65
G. Zhao,
101
M. Zhou,
57
Z. Zhou,
57
X. J. Zhu,
6
A. B. Zimmerman,
193
M. E. Zucker,
1, 14
and J. Zweizig
1
1
LIGO, California Institute of Technology, Pasadena, CA 91125, USA
2
Louisiana State University, Baton Rouge, LA 70803, USA
3
Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India
4
Dipartimento di Farmacia, Universit`a di Salerno, I-84084 Fisciano, Salerno, Italy
5
INFN, Sezione di Napoli, Complesso Universitario di Monte S.Angelo, I-80126 Napoli, Italy
6
OzGrav, School of Physics & Astronomy, Monash University, Clayton 3800, Victoria, Australia
7
LIGO Livingston Observatory, Livingston, LA 70754, USA
8
OzGrav, Australian National University, Canberra, Australian Capital Territory 0200, Australia
9
Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany
10
Leibniz Universit ̈at Hannover, D-30167 Hannover, Germany
11
Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universit ̈at Jena, D-07743 Jena, Germany
12
University of Cambridge, Cambridge CB2 1TN, United Kingdom
13
University of Birmingham, Birmingham B15 2TT, United Kingdom
14
LIGO, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
11
15
Instituto Nacional de Pesquisas Espaciais, 12227-010 S ̃ao Jos ́e dos Campos, S ̃ao Paulo, Brazil
16
Gran Sasso Science Institute (GSSI), I-67100 L’Aquila, Italy
17
INFN, Laboratori Nazionali del Gran Sasso, I-67100 Assergi, Italy
18
International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India
19
NCSA, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
20
Universit`a di Pisa, I-56127 Pisa, Italy
21
INFN, Sezione di Pisa, I-56127 Pisa, Italy
22
Departamento de Astronom ́ıa y Astrof ́ısica, Universitat de Val`encia, E-46100 Burjassot, Val`encia, Spain
23
Laboratoire des Mat ́eriaux Avanc ́es (LMA), CNRS/IN2P3, F-69622 Villeurbanne, France
24
University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
25
SUPA, University of Strathclyde, Glasgow G1 1XQ, United Kingdom
26
APC, AstroParticule et Cosmologie, Universit ́e Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cit ́e,
F-75205 Paris Cedex 13, France
27
California State University Fullerton, Fullerton, CA 92831, USA
28
LAL, Univ. Paris-Sud, CNRS/IN2P3, Universit ́e Paris-Saclay, F-91898 Orsay, France
29
European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy
30
University of Florida, Gainesville, FL 32611, USA
31
INFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy
32
INFN, Sezione di Roma, I-00185 Roma, Italy
33
Laboratoire d’Annecy de Physique des Particules (LAPP), Univ. Grenoble Alpes, Universit ́e Savoie Mont Blanc, CNRS/IN2P3,
F-74941 Annecy, France
34
Embry-Riddle Aeronautical University, Prescott, AZ 86301, USA
35
Montclair State University, Montclair, NJ 07043, USA
36
Nikhef, Science Park 105, 1098 XG Amsterdam, The Netherlands
37
Korea Institute of Science and Technology Information, Daejeon 34141, South Korea
38
West Virginia University, Morgantown, WV 26506, USA
39
Universit`a di Perugia, I-06123 Perugia, Italy
40
INFN, Sezione di Perugia, I-06123 Perugia, Italy
41
Syracuse University, Syracuse, NY 13244, USA
42
University of Minnesota, Minneapolis, MN 55455, USA
43
Universit`a degli Studi di Milano-Bicocca, I-20126 Milano, Italy
44
INFN, Sezione di Milano-Bicocca, I-20126 Milano, Italy
45
SUPA, University of Glasgow, Glasgow G12 8QQ, United Kingdom
46
LIGO Hanford Observatory, Richland, WA 99352, USA
47
Caltech CaRT, Pasadena, CA 91125, USA
48
Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana,” Universit`a di Salerno, I-84081 Baronissi, Salerno,
Italy
49
Wigner RCP, RMKI, H-1121 Budapest, Konkoly Thege Mikl ́os ́ut 29-33, Hungary
50
Stanford University, Stanford, CA 94305, USA
51
Universit`a di Camerino, Dipartimento di Fisica, I-62032 Camerino, Italy
52
Universit`a di Padova, Dipartimento di Fisica e Astronomia, I-35131 Padova, Italy
53
INFN, Sezione di Padova, I-35131 Padova, Italy
54
Montana State University, Bozeman, MT 59717, USA
55
Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, 00-716, Warsaw, Poland
56
OzGrav, University of Adelaide, Adelaide, South Australia 5005, Australia
57
Center for Interdisciplinary Exploration & Research in Astrophysics (CIERA), Northwestern University, Evanston, IL 60208, USA
58
INFN, Sezione di Genova, I-16146 Genova, Italy
59
RRCAT, Indore, Madhya Pradesh 452013, India
60
Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
61
Rochester Institute of Technology, Rochester, NY 14623, USA
62
Universit`a degli Studi di Urbino “Carlo Bo,” I-61029 Urbino, Italy
63
INFN, Sezione di Firenze, I-50019 Sesto Fiorentino, Firenze, Italy
64
Artemis, Universit ́e Cˆote d’Azur, Observatoire Cˆote d’Azur, CNRS, CS 34229, F-06304 Nice Cedex 4, France
65
OzGrav, University of Western Australia, Crawley, Western Australia 6009, Australia
66
Department of Astrophysics/IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
67
Dipartimento di Fisica “E.R. Caianiello,” Universit`a di Salerno, I-84084 Fisciano, Salerno, Italy
68
INFN, Sezione di Napoli, Gruppo Collegato di Salerno, Complesso Universitario di Monte S. Angelo, I-80126 Napoli, Italy
12
69
Physik-Institut, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
70
Univ Rennes, CNRS, Institut FOTON - UMR6082, F-3500 Rennes, France
71
University of Oregon, Eugene, OR 97403, USA
72
Laboratoire Kastler Brossel, Sorbonne Universit ́e, CNRS, ENS-Universit ́e PSL, Coll`ege de France, F-75005 Paris, France
73
Astronomical Observatory Warsaw University, 00-478 Warsaw, Poland
74
VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
75
Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-14476 Potsdam-Golm, Germany
76
University of Maryland, College Park, MD 20742, USA
77
School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
78
Universit ́e de Lyon, Universit ́e Claude Bernard Lyon 1, CNRS, Institut Lumi`ere Mati`ere, F-69622 Villeurbanne, France
79
Universit`a di Napoli “Federico II,” Complesso Universitario di Monte S.Angelo, I-80126 Napoli, Italy
80
NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
81
RESCEU, University of Tokyo, Tokyo, 113-0033, Japan.
82
Tsinghua University, Beijing 100084, China
83
Texas Tech University, Lubbock, TX 79409, USA
84
Universit`a di Roma Tor Vergata, I-00133 Roma, Italy
85
The University of Mississippi, University, MS 38677, USA
86
Missouri University of Science and Technology, Rolla, MO 65409, USA
87
Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi,” I-00184 Roma, Italy
88
The Pennsylvania State University, University Park, PA 16802, USA
89
National Tsing Hua University, Hsinchu City, 30013 Taiwan, Republic of China
90
Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia
91
University of Chicago, Chicago, IL 60637, USA
92
The Chinese University of Hong Kong, Shatin, NT, Hong Kong
93
Dipartimento di Ingegneria Industriale (DIIN), Universit`a di Salerno, I-84084 Fisciano, Salerno, Italy
94
Seoul National University, Seoul 08826, South Korea
95
Pusan National University, Busan 46241, South Korea
96
Carleton College, Northfield, MN 55057, USA
97
INAF, Osservatorio Astronomico di Padova, I-35122 Padova, Italy
98
Dipartimento di Fisica, Universit`a degli Studi di Genova, I-16146 Genova, Italy
99
OzGrav, University of Melbourne, Parkville, Victoria 3010, Australia
100
Universitat de les Illes Balears, IAC3—IEEC, E-07122 Palma de Mallorca, Spain
101
Universit ́e Libre de Bruxelles, Brussels 1050, Belgium
102
Sonoma State University, Rohnert Park, CA 94928, USA
103
Departamento de Matem ́aticas, Universitat de Val`encia, E-46100 Burjassot, Val`encia, Spain
104
Columbia University, New York, NY 10027, USA
105
Cardiff University, Cardiff CF24 3AA, United Kingdom
106
University of Rhode Island, Kingston, RI 02881, USA
107
The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
108
Bellevue College, Bellevue, WA 98007, USA
109
MTA-ELTE Astrophysics Research Group, Institute of Physics, E ̈otv ̈os University, Budapest 1117, Hungary
110
Institute for Plasma Research, Bhat, Gandhinagar 382428, India
111
The University of Sheffield, Sheffield S10 2TN, United Kingdom
112
IGFAE, Campus Sur, Universidade de Santiago de Compostela, 15782 Spain
113
Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Universit`a di Parma, I-43124 Parma, Italy
114
INFN, Sezione di Milano Bicocca, Gruppo Collegato di Parma, I-43124 Parma, Italy
115
Dipartimento di Ingegneria, Universit`a del Sannio, I-82100 Benevento, Italy
116
Universit`a di Trento, Dipartimento di Fisica, I-38123 Povo, Trento, Italy
117
INFN, Trento Institute for Fundamental Physics and Applications, I-38123 Povo, Trento, Italy
118
Universit`a di Roma “La Sapienza,” I-00185 Roma, Italy
119
Colorado State University, Fort Collins, CO 80523, USA
120
Kenyon College, Gambier, OH 43022, USA
121
Christopher Newport University, Newport News, VA 23606, USA
122
CNR-SPIN, c/o Universit`a di Salerno, I-84084 Fisciano, Salerno, Italy
123
Scuola di Ingegneria, Universit`a della Basilicata, I-85100 Potenza, Italy
124
National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
125
Observatori Astron`omic, Universitat de Val`encia, E-46980 Paterna, Val`encia, Spain
13
126
INFN Sezione di Torino, I-10125 Torino, Italy
127
School of Mathematics, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
128
Institute Of Advanced Research, Gandhinagar 382426, India
129
Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
130
University of Szeged, D ́om t ́er 9, Szeged 6720, Hungary
131
SUPA, University of the West of Scotland, Paisley PA1 2BE, United Kingdom
132
California State University, Los Angeles, 5151 State University Dr, Los Angeles, CA 90032, USA
133
Universit ̈at Hamburg, D-22761 Hamburg, Germany
134
Tata Institute of Fundamental Research, Mumbai 400005, India
135
INAF, Osservatorio Astronomico di Capodimonte, I-80131 Napoli, Italy
136
University of Michigan, Ann Arbor, MI 48109, USA
137
Washington State University, Pullman, WA 99164, USA
138
American University, Washington, D.C. 20016, USA
139
University of Portsmouth, Portsmouth, PO1 3FX, United Kingdom
140
University of California, Berkeley, CA 94720, USA
141
GRAPPA, Anton Pannekoek Institute for Astronomy and Institute for High-Energy Physics, University of Amsterdam, Science Park
904, 1098 XH Amsterdam, The Netherlands
142
Delta Institute for Theoretical Physics, Science Park 904, 1090 GL Amsterdam, The Netherlands
143
Directorate of Construction, Services & Estate Management, Mumbai 400094 India
144
University of Bia lystok, 15-424 Bia lystok, Poland
145
King’s College London, University of London, London WC2R 2LS, United Kingdom
146
University of Southampton, Southampton SO17 1BJ, United Kingdom
147
University of Washington Bothell, Bothell, WA 98011, USA
148
Institute of Applied Physics, Nizhny Novgorod, 603950, Russia
149
Ewha Womans University, Seoul 03760, South Korea
150
Inje University Gimhae, South Gyeongsang 50834, South Korea
151
National Institute for Mathematical Sciences, Daejeon 34047, South Korea
152
Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
153
Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
154
Bard College, 30 Campus Rd, Annandale-On-Hudson, NY 12504, USA
155
Chennai Mathematical Institute, Chennai 603103, India
156
NCBJ, 05-400
́
Swierk-Otwock, Poland
157
Institute of Mathematics, Polish Academy of Sciences, 00656 Warsaw, Poland
158
Cornell University, Ithaca, NY 14850, USA
159
Hillsdale College, Hillsdale, MI 49242, USA
160
Hanyang University, Seoul 04763, South Korea
161
Korea Astronomy and Space Science Institute, Daejeon 34055, South Korea
162
Institute for High-Energy Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
163
NASA Marshall Space Flight Center, Huntsville, AL 35811, USA
164
Dipartimento di Matematica e Fisica, Universit`a degli Studi Roma Tre, I-00146 Roma, Italy
165
INFN, Sezione di Roma Tre, I-00146 Roma, Italy
166
ESPCI, CNRS, F-75005 Paris, France
167
OzGrav, Swinburne University of Technology, Hawthorn VIC 3122, Australia
168
Southern University and A&M College, Baton Rouge, LA 70813, USA
169
Centre Scientifique de Monaco, 8 quai Antoine Ier, MC-98000, Monaco
170
Indian Institute of Technology Madras, Chennai 600036, India
171
Institut des Hautes Etudes Scientifiques, F-91440 Bures-sur-Yvette, France
172
IISER-Kolkata, Mohanpur, West Bengal 741252, India
173
Institut f ̈ur Kernphysik, Theoriezentrum, 64289 Darmstadt, Germany
174
Whitman College, 345 Boyer Avenue, Walla Walla, WA 99362 USA
175
Universit ́e de Lyon, F-69361 Lyon, France
176
Hobart and William Smith Colleges, Geneva, NY 14456, USA
177
Dipartimento di Fisica, Universit`a degli Studi di Torino, I-10125 Torino, Italy
178
University of Washington, Seattle, WA 98195, USA
179
INAF, Osservatorio Astronomico di Brera sede di Merate, I-23807 Merate, Lecco, Italy
180
Centro de Astrof ́ısica e Gravita ̧c ̃ao (CENTRA), Departamento de F ́ısica, Instituto Superior T ́ecnico, Universidade de Lisboa,
1049-001 Lisboa, Portugal