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Our planet is a self-sustaining ecosystem powered by light energy from the sun, but
roughly closed to matter. Many ecosystems on Earth are also approximately closed to
matter and recycle nutrients by self-organizing stable nutrient cycles, e.g., microbial
mats, lakes, open ocean gyres. However, existing ecological models do not exhibit
the self-organization and dynamical stability widely observed in such planetary-scale
ecosystems. Here, we advance a conceptual model that explains the self-organization,
stability, and emergent features of closed microbial ecosystems. Our model incorporates
the bioenergetics of metabolism into an ecological framework. By studying this model,
we uncover a crucial thermodynamic feedback loop that enables metabolically diverse
communities to almost always stabilize nutrient cycles. Surprisingly, highly diverse
communities self-organize to extract ≈10% of the maximum extractable energy, or
≈100 fold more than randomized communities. Further, with increasing diversity,
distinct ecosystems show strongly correlated fluxes through nutrient cycles. However,
as the driving force from light increases, the fluxes of nutrient cycles become more
variable and species-dependent. Our results highlight that self-organization promotes
the efficiency and stability of complex ecosystems at extracting energy from the
environment, even in the absence of any centralized coordination.

ecosystems | redox metabolism | biogeochemical cycles | self-organization | adaptation

The Earth surface is replete with ecosystems that are quasi-closed to material exchange
but open to light energy, e.g., lakes, microbial mats, and open ocean gyres (1–3).
Indeed, nearly the entirety of Earth’s fossil record before plants and animals is
composed of stromatolites—the mineral residues left over millennia from the activities of
stratified microbial communities (4). Winogradsky columns, a classic and key microbial
experiment, are also examples of materially closed ecosystems (5–7); these light-fueled
closed columns seeded with mud show self-organization of nutrient cycles—of C, N, S,
O, and P—and are robust enough to use in undergraduate curricula. The Earth’s surface
is itself a roughly materially closed ecosystem, with very little leakage to and from the
mantle and space (8, 9). All these closed ecosystems are self-organized and remarkably
stable to perturbations; in fact, it is thought that being quasi-closed enables them to be
extremely productive high rates of nutrient (re)cycling, while maintaining a quasi-static
non-growing state (10, 11). However, we do not understand the principles that dictate
when and why robust self-organized nutrient cycles emerge in either natural or synthetic
ecosystems.

The central challenge of sustaining a closed ecosystem is the need to simultaneously
solve several bioenergetic constraints without any central coordinator. Instead, closed
ecosystems must self-organize via feedback mechanisms. In a materially closed system,
light energy is the only external input and can only be captured by recycling matter
(12–16). While directly accessible only to photosynthetic organisms, the energy in light
must percolate through the ecosystem to sustain all organisms that perform different
steps in recycling matter, i.e., different arms of nutrient cycles (17–21). At the same
time, the energy content of different nutrients depends on the recycling of metabolic
products by other species. This suggests that the crucial feedback in closed ecosystems is
thermodynamic in nature.

Despite these constraints, ecosystems stably re-establish nutrient cycles after major
perturbations (22)—even after some of the largest perturbations observed in the history
of life on Earth, e.g., the oxygenation of the atmosphere (23), ice ages (24, 25), and bolide
impacts and mass extinctions of plants and animals (26). Is the emergence, stability, and
resilience of these self-organized non-equilibrium systems surprising? Further, the rules of
self-organization are locally greedy—each species grows if it can extract sufficient energy
for itself. How efficient should we expect ecosystems to be at extracting energy from
light, given that they self-organize through such locally greedy rules?

Significance

Life on earth relies on sunlight for
energy, but this energy can only
be exploited through the
collective recycling of matter by
communities of microbes, plants,
and animals. Yet we lack a
framework for understanding
how ecosystems can organize
themselves to collectively capture
the sun’s energy by running
cycles of matter subject to
thermodynamic constraints. We
advance a conceptual model to
study the collective properties of
nutrient-cycling ecosystems.
Surprisingly, even though species
“greedily” extract energy from the
environment, sufficiently diverse
communities of species almost
always manage to sustain
themselves by extracting enough
energy. Further, the amount of
energy extracted by these
communities is close to the
maximum possible and much
greater (100×) than extracted by
random collections of species.

Author contributions: A.G., A.I.F., A.P.P., and A.M.
designed research; A.G. and A.M. performed research;
A.G. contributed new reagents/analytic tools; A.G.
analyzed data; and A.G., A.I.F., and A.M. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Copyright © 2023 the Author(s). Published by PNAS.
This article is distributed under Creative Commons
Attribution-NonCommercial-NoDerivatives License 4.0
(CC BY-NC-ND).
1To whom correspondence may be addressed. Email:
akshitg@mit.edu or amurugan@uchicago.edu.

This article contains supporting information online
at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2309387120/-/DCSupplemental.

Published December 21, 2023.

PNAS 2023 Vol. 120 No. 52 e2309387120 https://doi.org/10.1073/pnas.2309387120 1 of 10

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 G
eo

rg
e 

Po
rt

er
 o

n 
D

ec
em

be
r 

22
, 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

13
1.

21
5.

22
5.

15
4.

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2309387120&domain=pdf&date_stamp=2023-12-19
https://orcid.org/0000-0002-9425-8269
https://orcid.org/0000-0002-9278-5479
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:akshitg@mit.edu
mailto:amurugan@uchicago.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2309387120/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2309387120/-/DCSupplemental


Prevailing ecological models like consumer–resource models
are successful at describing open ecosystems but cannot correctly
capture the thermodynamic constraints and feedback key to
closed ecosystems (27–30). Thus, in these models, closed ecosys-
tems exponentially dwindle and collapse. Having theoretical
models of stabilizing feedback in closed ecosystems is vital
to understanding their stability to perturbations, efficiency at
extracting energy, as well as conserved features across distinct
ecosystems that emerge from the underlying constraints.

Here, we propose and study a theoretical framework of
closed ecosystems using a redox framework, which incorporates
the bioenergetics, conservation laws, and thermodynamics of
metabolism. These key features are missing from consumer–
resource models (27, 30) but become important in closed
ecosystems, where the need to recycle products at balanced
rates imposes tight thermodynamic constraints. We studied the
emergence and stability of multiple nutrient cycles in a closed
setting, in contrast with previous work in open systems (31–
35). By simulating our model, we found that once enough
species are added, ecosystems almost always self-organize to a
state where they can spontaneously recycle multiple nutrients,
resulting in energy extraction. Even though distinct ecosystems
contain different organisms, the fluxes of their nutrient cycles are
in a very similar configuration (convergent). Further, the fluxes of
self-organized nutrient cycles are stable to perturbations in species
abundances and rapidly recover via thermodynamic feedback.
Remarkably, in all these cases, ecosystems are very efficient at
extracting energy. The energy extracted from spontaneous cycling
is≈10% of the maximum extractable energy, or≈100 fold more
than randomized communities. These results advance our under-
standing of how several coupled nutrient cycles spontaneously
emerge and stabilize as a result of many interacting compo-
nents. They also highlight the efficiency with which ecosystems
extract energy from an external source like light. Finally, our
work establishes closed ecosystems as paradigmatic examples of
systems that self-organize to determine their displacement from
equilibrium, in contrast to traditionally studied non-equilibrium
systems in physics where the displacement from equilibrium is
fixed (36, 37).

Results
An Ecological Model of Thermodynamically Constrained Nu-
trient Cycles. Our model describes a self-sustaining ecosystem
in which S microbial species collectively recycle a set of
environmental resources through sets of R thermodynamically
constrained redox transformations. Each species in the ecosystem
corresponds to a different metabolic type, depending on the
subset of theseR transformations it can perform to maintain itself.
Individuals of each species � extract an energy flux E�

tot depending
on the net energy released by coupling transformations, growing
if they extract more than a prescribed maintenance energy Emaint,
and dying if they extract less. Species dynamics modify the
resource concentrations, making each transformation more or
less thermodynamically favorable, and consequently changing
the energy extracted by individuals of each species. Eventually,
the ecosystem self-organizes to a steady state characterized by two
sets of emergent quantities: 1) the abundances of each surviving
species N� , where each individual extracts exactly Emaint, and
2) the fluxes of each of the R resource transformation cycles.

The key ingredient in our model—which distinguishes it from
conventional “consumer–resource” models of ecosystems (28–
31, 34, 35, 38–40)—is that resources are not single molecules
with fixed energy content (Fig. 1A), but instead redox trans-

formations (half-reactions) whose energy content is determined
by electron and thermodynamic constraints (Fig. 1B). In this
way, we build on previous work on thermodynamic product
inhibition by including electron constraints (41, 42). All R
resources correspond to transformations Oi ↔ Ri between
pairs of molecules Oi, Ri, representing the oxidized and reduced
forms. A redox tower orders all resource pairs (Oi, Ri) by
their chemical potential �i, from least energetically favorable
Oi → Ri conversion (Top) to most (Bottom) (Fig. 1A). These
chemical potentials �i are given by a standard state potential
�0
i (8, 43) and an adjustment due to concentrations, i.e.,

�i = �0
i − logOi/Ri. Each species � may exploit a specific

subset of these transformations specified by kinetic coefficients
ei� ≥ 0; e.g., if ei� 6= 0, species � can transform Ri → Oi with
kinetic coefficient ei� , releasing electrons at a potential �i which
are then absorbed by another transformation Oj → Rj that the
species participates in. The potential difference drop experienced
by the electron is the energy available to this species. In practice,
the electrons are transferred by an electron carrier (e.g., NADH)
in the cell that is at potential �carrier,� intermediate to �i and �j.
We will assume there is only one electron carrier pool common
to all redox transformations in species �.

Without any external energy source, the chemical potentials
�i in the redox tower will obey detailed balance (36, 37);
i.e., as an electron is transferred in a loop through a cycle of
redox transformations by different species, the net change in the
electron’s energy must be zero. Consequently, in such a closed
system, some species will have to provide energy to move the
electron “uphill” during metabolism, rendering such ecosystems
not viable.

We will assume that detailed balance is broken across the redox
tower because some transformations, say Rj → Oj, are coupled
to an external energy (but not matter) source (e.g., coupling the
transformation H2O→ O2 to sunlight during photosynthesis).
Consequently, the chemical potential of Rj → Oj is shifted
�j = �−j+�h� , where �j is the chemical potential for the reverse
transformation Oj → Rj (not coupled to light); the parameter
�h� breaks detailed balance and is a key feature of the physical
environment in our model. Distinct from previous work, our
model allows us to explicitly tune the extent of detailed balance
breaking through �h� ; using this, we will explore the impact of
the physical environment on closed ecosystems below.

The redox formalism allows us to correctly model the thermo-
dynamic constraints on collective energy extraction. To maintain
themselves at steady state, species in our model ecosystems must
satisfy three constraints: electron conservation, material conser-
vation, and sufficient energy extraction. To conserve electrons,
the total flux of electron donor and acceptor transformations
must balance within each species, thus far missing from previous
modeling work (Fig. 1C and Materials and Methods). The per
capita flux in transformation Oi → Ri due to species � is
determined by species abundance N� , molecular concentration
Oi, and by thermodynamic driving forces Δ�i� ,

fi� =
Oi

(KN +
∑S

�=1
N�
ki� )

, [1]

with ki� determined by thermodynamic forces and fluxes
(derivation in SI Appendix, Text),

ki� = ei� · (1− e−Δ�i� ), [2]

where Δ�i� is the change in potential of an electron released by
transformation Oi → Ri and transferred to the electron carrier.
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Fig. 1. An ecological model of thermodynamically constrained nutrient cycles. (A) In conventional models, species consume different molecules (triangles)
that serve as resources with energy content. (B) In our model, resources are transformations of molecules, e.g., from an oxidized form Oi to their reduced
form Ri . Species gain energy by coupling transformations (or redox half-reactions) that donate electrons with transformations that accept electrons. Each
(microbial) species is defined by the transformations it can carry out. Transformation fluxes must satisfy thermodynamic and conservation constraints in the
ecosystem’s non-equilibrium steady state: (C) Electron conservation: The fluxes f �i in different half-reactions carried out by a species � must sum to zero, i.e.,∑
i f �i = 0. We assume that each microbial species has one electron carrier that shuttles electrons between the half-reactions. (D) Thermodynamic feasibility: The

thermodynamic driving force (chemical potential) of each transformation, and, consequently, energy available is calculated using thermodynamic principles,
accounting for inhibition due to the concentrations of Oi and Ri . (E) Material conservation: Fluxes in different parts of each molecular cycle (shown in red
and blue), summed over contributions from all species, must be balanced. (F) Detailed balance breaking: Energy available by transforming matter in cycles is
constrained by breaking of detailed balance. Detailed balance is broken by coupling some transformations (here, O3 → R3) to an energy source (e.g., light)
which shifts their potential by �h� but does not affect the reverse transformation (R3 → O3).
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Hence, Δ�i� = �carrier,� − �0
i + log(Oi/Ri) where �0

i is the
standard state chemical potential of the transformation Oi → Ri
and �carrier,� is the chemical potential of the electron carrier for
in species �.

These fluxes fi� change the concentrations of Oi, Ri through
the following dynamics:

dOi

dt
= −

S∑
�=1

fi�N� +
S∑

�=1

fi�N� , [3]

where fi� is the flux of the transformation Oi → Ri performed by
an individual of species � as given in Eq. 1, and fi� is the flux of
the transformation Ri → Oi similar to Eq. 1, but proportional to
the reactant concentration Ri, not Oi by individuals of species �.
The first sum goes over all species transforming Oi → Ri and the
second sum over species capable of the reverse. Similar equations
hold for Ri.

Each species � extracts a per capita energy flux E�
tot by coupling

electrons between transformations at different potentials:

E�
tot =

2R∑
i=1

Ei� =
2R∑
i=1

fi� · Δ�i�. [4]

A species grows in abundance if this extracted energy exceeds a
prescribed per capita maintenance energy Emaint:

1
N�

dN�

dt
= E�

tot − Emaint. [5]

Finally, to conserve materials, as species in the ecosystem
couple different half-reactions and transform resources from one
form to another, all resource cycles must be balanced (Fig. 1E).
Together, these constraints can be summarized as:

electron conservation:
2R∑
i=1

fi� = 0, [6]

energy balance:
2R∑
i=1

fi� · Δ�i� = Emaint, [7]

material conservation:
S∑

�=1
N� fi� = 0. [8]

The last equation amounts to assuming that the ecosystem
is fully closed to matter, and open only to an external source
of energy (here, light energy �h�) that breaks detailed balance
for the chemical potentials �i. While we use a fully materially
closed ecosystem as an extreme case to illustrate our model (SI
Appendix, Figs. S1 and S2), many of our results hold for partially
closed ecosystems as well, where some of the resources can be
exchanged with the environment and Eq. 6 is modified (SI
Appendix, Fig. S3).

In addition to providing energy through transformations,
matter also directly contributes to biomass (44). We assume
that the amount of matter sequestered as biomass is insignificant
compared to the total availability (Oi + Ri) and only focus on
energy in this work. We leave an analysis of the dual role of matter
in providing energy (through transformations) and biomass to
future work.

The constraints encoded in our model naturally give rise to
multiple solutions—there is a large space of ecosystems that

satisfy them. To sample this space, we seeded a chosen physical
environment with random mixtures of species with random
metabolic strategies and numerically evolved the dynamical
equations until a subset of species found a stable composition
or went extinct. Each ecosystem was provided with the same
“physical environment,” i.e., concentrations of Ri, Oi and energy
input �h� , but with a different initial set of S species chosen
randomly and allowed to reach steady state (Materials and
Methods). By simulating 1,000 such ecosystems, we sampled a
large space of self-organized ecosystems.

Emergent Similarity of Nutrient Cycles. To quantify the size of
this space of ecosystems, we measured their structure (set of
species abundances) and function (set of resource fluxes �i) and
total energy extracted Eeco

tot ) (Fig. 2C). Each point in structure
space represents the abundances of each of the Spool = 100
species in the pool in one of our simulated ecosystems (one
species per dimension). Similarly, each point in flux space
represents the fluxes in each of the R = 3 resource cycles in
that ecosystem, and each point in the distribution of energy
extracted represents the total energy Eeco

tot captured from the
external energy source by the ecosystem. To compare the size
of the species and flux spaces, we projected them both onto
a common two-dimensional space while preserving pairwise
distances between ecosystems and computed the resulting area
(Materials and Methods); such a projection allows for a fair
comparison of the convergence in species abundances and fluxes
which are of different dimensionalities. We find that ecosystem-
wide fluxes show less variability than the structure of species
enabling these fluxes (Fig. 2D); further, while the variability in
species abundances rapidly grows with the number of added
species, the flux variability does not (Fig. 2E and SI Appendix,
Fig. S8). While alternative methods of comparing flux and species
variability can change their absolute numbers, we expect this
trend of increasing functional convergence with species diversity
to be robust.

A nearly constant flux variability, despite increasing species
variability, suggests that fluxes are a convergent feature of ecosys-
tems that perform thermodynamically constrained transforma-
tions. Indeed, the convergence of fluxes despite species divergence
is evident from a few examples of our model ecosystems (Fig. 2
G and H, fluxes and species, respectively). We also found that
ecosystems had more convergent structure when coarse-grained
by metabolic type (the set of transformations each species could
perform) than at the species level (SI Appendix, Fig. S4), similar to
what has been observed in metagenomic data from field surveys
of microbial communities (38, 45, 46).

We now study convergence of explicitly thermodynamic
functions of ecosystems, building on prior work on functional
convergence of fluxes and metabolic types (45, 47–49). We
find that the distributions of total energy extracted by our
model ecosystems also converges, with the mean energy extracted
increasing and variance in energy extracted decreasing with
diversity, before ultimately saturating (Fig. 2F). Finally, we
determined the energy contribution Eij of each pair (i, j) of redox
transformations to the total energy harvested; we found that
such global “redox strategies” of ecosystems became progressively
similar with increasing diversity (SI Appendix, Fig. S5).

Thus, we find that thermodynamic constraints of coupled
transformations self-organize ecosystems such that collective
functions—here, the distribution of fluxes and energy extracted
across cycles—are similar across distinct ecosystems that differ
widely in their structure (species content).
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Fig. 2. Ecosystems spontaneously implement correlated nutrient cycles and convergent energy extraction while containing distinct species. (A) Schematic
showing how ecosystems in our model extract energy from externally supplied light (with driving potential �h� ), which affects the redox potentials of certain
half-reactions. At steady state, all resources (Oi , Ri) are cycled with fluxes �i . Each microbial species (colored ellipses with wiggles) with abundances N� carries
out a subset of half-reactions (undirected colored links). By performing metabolic transformations, each surviving individual must extract a maintenance
energy E�

maint; collectively, the entire ecosystem extracts an energy flux Eeco
tot . (B) Schematic showing a given physical environment consisting of R = 3 redox

transformations (resources), and a pool of Spool = 100 species (top rectangle) used to randomly assemble constraint-satisfying ecosystems in simulations. (C)
Cartoon showing possible ecosystem solutions in a space of species abundances (Left), resource cycle fluxes (Middle), and a distribution of collective energy
extracted (Eeco

tot ; Right). (D) Scatter plot showing the space of species (green) and fluxes (red) from 1,000 randomly assembled ecosystems from simulation,
projected to two dimensions using multidimensional scaling (MDS) (Materials and Methods). (E) Line plot showing how the volume of the species (green) and
flux (red) spaces scales with the number of species added, S, in assembled ecosystems. The flux space volume grows much slower than species space volume,
indicating convergence in the function (fluxes) of constraint-satisfying ecosystems. (F) Distributions of the total energy extracted by ecosystems, Eeco

tot , as a
function of S. As ecosystems become more species-rich, ecosystems extract greater average energy with greater convergence (lower variance). (G and H)
Heatmaps showing examples from 10 of the 1,000 randomly assembled ecosystems in (D–F), showing the (G) fluxes and (H) species abundances in detail. Each
row shows an ecosystem, while each column shows a resource in (G) and a species in (H).

Collective Functions Become More Variable with Stronger En-
vironmental Driving. The influence of the physical environment
(e.g., nutrients supplied) is at the core of all ecology; but
the impact of thermodynamic properties of the environment
on ecosystem organization has been studied only in models
of specific systems, e.g., communities with hydrogenotrophic
methanogens where end product inhibition is crucial (50–52),
other syntrophic systems (43, 53, 54), and in the context of
temperature effects (55).

In our model, the physical environment consists of a redox
tower with standard-state chemical potentials �0

i of the redox
transformations Ri ↔ Oi and the total amounts of matter
Ri + Oi available for each transformation. Most critically, the
environment also includes an external energy drive such as light
that shifts the potential of one redox transformation by �h�
(but does not affect the reverse transformation). Without such
an external drive �h� , transformations within an ecosystem are
constrained to satisfy detailed balance, a defining property of
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equilibrium systems, and thus no net energy can be extracted
(36, 37). At the same time, non-equilibrium driving by �h�
does not by itself set the energy extracted by the ecosystem;
species abundances must self-organize and ultimately determine
the energy extracted. Fixing the environmental driving potential
�h� is distinct from fixing the flux of an external resource
which has been the focus of previous thermodynamic modeling
approaches (29, 42, 48). In an electrical circuit analogy, �h�
sets the external voltage while prior approaches typically set an
external current. These two approaches are especially distinct
in self-organized ecosystems where the analog of “resistance” is
not fixed since species abundances evolve through population
dynamics.

We sought to understand how external drive �h� in the
physical environment affects the number of viable ecosystems
and their functional convergence. We simulated an ensemble of
ecosystems for each of several environmental driving potentials
�h� . We found that ecosystems can sustain themselves only if
�h� exceeds the smallest potential difference Δ�min (Fig. 3B)
between all potentials �i on the redox tower (Fig. 3A). Below
this level, ecosystems were energy deprived due to insufficient
environmental driving (Fig. 3B, gray region) and not viable.

Note that the minimal environmental drive Δ�min for
ecosystem viability depends on redox potentials �i that account
for product inhibition in the ecosystem self-organized by the
species present and not on standard state potentials �0

i . Thus, in
distinction to prior work, our model can determine the minimal
environmental drive for ecosystem viability as a function of which
species are present (SI Appendix, Fig. S6).

For strong enough driving �h� > Δ�min, ecosystems self-
organized to extract greater collective energy Eeco

tot with increasing
external chemical potential �h� (Fig. 2B, mustard region). The
mean Ēeco

tot eventually saturated at large h�, due to limitation from
total resource concentrations

∑
i(Oi+Ri) (SI Appendix, Fig. S7).

Notably, the variance in Eeco
tot also increased with �h� (Fig. 3B,

yellow circles), suggesting that stronger environmental driving
decreased convergence in the collective energy extracted Eeco

tot . In
addition, both the species and flux spaces of constraint-satisfying
ecosystems decreased in size with decreased environmental
driving (Fig. 3C, species volume in green, flux volume in red).
The species and flux spaces, as well as collective energy extracted,
are emergent features, representing how ecosystems self-organize
once the physical environment drives them sufficiently far
from equilibrium. Together, these results suggest a relationship

A

C D

B

Fig. 3. Nutrient cycles and energy extraction become more variable with stronger environmental driving. (A) Schematic showing non-equilibrium driving by
the environment, modeled as the coupling of one of the half-transformations (at the bottom of the redox tower) to light energy. Environmental driving shifts
the chemical potential of the transformation R3 → O3 by �h� , but not the reverse, thus breaking detailed balance. For ecosystems to be viable and satisfy all
the modeled thermodynamic constraints, the environmental drive �h� must exceed the smallest adjusted potential difference Δ�min between O3/R3 and the
closest redox pair. This minimal drive requirement is a statement about adjusted potentials on the redox tower, not the standard state potentials. The former
depend on the species present and their abundances and are thus self-organized. We quantify �h� − Δ�min as the extent of environmental drive beyond the
minimal (Δ�min) needed for a viable ecosystem. (B) Scatter plot showing the energy extracted by ecosystems from our model as a function of excess drive. Each
point represents a random self-organized ecosystem simulated using our model, under the same conditions as in Fig. 2, at varying �h� . The solid line shows
a moving average. No ecosystems are viable without sufficient environmental driving (gray region). Increasing �h� increases energy extraction on average
(mustard region). (C) Line plot showing the volume of ecosystem state space in species abundances (green) and resource fluxes (red), as in Fig. 2E, but with
varying excess drive �h�−Δ�min. Ecosystems near equilibrium (small excess environmental driving �h�−Δ�min compared with Δ�min) are strongly constrained;
the volume of viable ecosystems grows rapidly with stronger environmental driving, eventually saturating at large �h� . Results are shown from simulations with
1,000 randomly assembled ecosystems. (D) Cartoons showing how flux (red) and species (green) spaces expand (decreasing convergence) with stronger drive,
with spaces represented as in Fig. 2C.
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between non-equilibrium environmental driving and the degree
of convergence in ecosystems. When ecosystems operate in
environments that are closer to equilibrium (small �h� − Δ�min
compared withΔ�min), there is a smaller space of distinct ways to
cycle all resources successfully and provide maintenance energy
for all organisms. Consequently, convergence is strongest in
environments that are near equilibrium with small environmental
driving, (�h� − Δ�min)� Δ�min.

Near-Optimal Energy Extraction by Self-Organized Ecosystems.
The collective energy extracted Eeco

tot , an emergent community
function, is not explicitly optimized by any aspect of our model;
our population dynamics equations model “greedy” or “selfish”
biological species that grow in abundance to extract the most
energy that each species can extract in the context of a self-
sustaining ecosystem.

A natural question is how this energy extracted by an ecosystem
of locally selfish replicators compares to an alternative community

of “metabolic machines” agents whose abundances are deter-
mined by global energy optimization but that are still subject to
the same thermodynamic and flux constraints. We explored one
such alternative framework based on communities of non-living
“metabolic machines” identical to self-replicating living species
in terms of metabolism but not subject to birth–death population
dynamics. More explicitly, each machine species � was identical
to living species � in terms of its metabolic properties (e.g.,
e�i which dictate which redox transformations i species � can
perform). Further, energy extraction by the machines was subject
to all the thermodynamic, electron, and material conservation
constraints discussed earlier.

We initialized a community of machines with initial ran-
dom abundances and adjusted those abundances minimally to
obey electron and mass conservation constraints (Materials and
Methods). We computed the energy extracted by these commu-
nities of effectively random abundances (Fig. 4B, gray). We
then evolved these random initial set of abundances in two

A

C D E

B

Fig. 4. Ecosystems self-organize to extract a near-optimal amount of energy. (A) We compare energy extracted by ecosystems of living organisms (self-
replicators) to a ecosystem of machines with identical metabolic capabilities. Like living organisms, machines come in multiple species with distinct metabolic
types and are subject to the same thermodynamic and conservation constraints. However, machines have fixed abundances, not subject to birth–death
dynamics driven by maintenance energy requirements found in living systems. (B) Histograms of the total energy extracted Eeco

tot by ecosystems of machines
with random abundances (gray; representing initial conditions of ecosystem assembly), ecosystems of self-replicators with abundances self-organized by
birth–death dynamics based on maintenance energy (green), and machines with abundances chosen to maximize Eeco

tot (orange). Ecosystems of self-replicators
reach steady states that extract ∼ 100×more energy than initial random abundances. (C) Scatter plot showing the energy extracted Eeco

tot by ecosystems with
self-organized abundances (y-axis) and optimized abundances (x-axis); both systems are constituted from the same pool of metabolic strategies. (D) Trajectories
showing the dynamics of ecosystems of self-replicators reaching steady states over time (1,000 simulations). (E) Line plot showing how the average Eeco

tot (solid
green) changes as a function of the maintenance efficiency per cell E−1

maint. Each point represents the average collective energy extracted by ecosystems of
self-replicators at the specified Emaint simulated using our model (averaged over 1,000 simulations); the green envelope their s.e.m.; the red dashed line shows
the geometric mean of the energy extracted by ecosystems of machines with optimized abundances.
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distinct ways: 1) global community-wide energy optimization
for machines and 2) local maintenance energy–based population
dynamics for self-replicators.

(1) Global optimization for machines: We optimized the
abundances N� of each species �, subject to electron and flux
constraints to maximize community-wide energy extraction; the
machines were not subject to any population dynamics (Materials
and Methods and Fig. 4A). Consequently, a machine species of
type � could exist at any abundance, dictated only by what was
optimal for the community as a whole, even if its own energy
extracted would have led to higher or lower abundance (or even
extinction) according to “selfish” population dynamics Eq. 6.
The energy, as expected, is dramatically higher after such global
optimization (Fig. 4B, orange).

(2) Local population dynamics for self-replicators: Starting
from random initial abundances, we also ran population dy-
namics based on maintenance energy Eq. 7. Unlike global
optimization, now each species grows in abundance “greedily”
until it cannot extract an energy that exceeds maintenance energy.
Despite such local greedy evolution, we found that on average,
the mean of the energy distribution for self-replicating agents was
100× higher than the mean for random abundances and only
10× lower than the mean for globally optimized community of
machines (Fig. 4B). This result suggests that “selfish” population
dynamics drives random initial abundances most of the way
to abundances predicted by a global optimization algorithm,
even though the “selfish” dynamics are only aware of the energy
extracted by each species and do not explicitly try to maximize
global energy extraction.

Atypically large energy extraction by ecosystems was true for
nearly every set of self-replicating (living) species tested (Fig. 4C),
suggesting that the difference between means was not driven
by only a few extremely efficient ecosystems. The population
dynamics of each species naturally drove ecosystems toward such
atypically large energy extraction, with Eeco

tot on average increasing
over the dynamical trajectories of ecosystems (Fig. 4D).

Finally, since the population dynamics of living cells (but
not machines) were affected by maintenance energy Emaint, we
studied how the collective energy extracted depends on it. Our
simulations revealed that the total energy extracted is relatively
independent of Emaint for low Emaint but falls at high Emaint. At
high Emaint, species abundances N � are the limiting factor for
fluxes in the redox transformations. But as Emaint is reduced,
species abundances increase and, eventually, fluxes are limited by
the amount of resources Ri +Oi and not by species abundances;
consequently, the collective energy extracted E tot

eco is relatively
constant.

For ecosystems of machines, collective energy extracted de-
pends on both the energy extracted by each individual machine,
as well as the number of individuals (E tot

eco =
∑S

�=1 E�
totN�),

unlike in ecosystems of self-replicators where it depends only on
total biomass (

∑S
�=1 N�), since each individual is constrained

to extract maintenance energy (E�
tot = Emaint) at steady state.

Hence, machine ecosystems may arrange species abundances to
extract more energy collectively, even though the distribution of
per capita energy extracted across species may be quite broad.

Taken together, ecosystems of self-replicators with low mainte-
nance energy Emaint capture energy comparable to ecosystems of
machines with globally optimized abundances. The difference in
energy extracted between self-organized and globally optimized
ecosystems quantifies a “greedy gap” of 10× on average, i.e.,
the extent to which greedy self-replication constrains collective
energy extracted in ecosystems of living cells.

Discussion
Here, we proposed a theoretical framework to study self-
organized energy extraction by ecosystems, which incorporates
an essential aspect of metabolism thus far missing from most
ecological models: Organisms acquire energy through redox
transformations of matter, not matter itself. Modeling resources
as transformations is not only biologically accurate but also
provides a modeling framework to address fundamental questions
about thermodynamic constraints on the self-organization of
ecosystems.

Using this model, we studied the impact of closure to matter
and redox metabolism on nutrient cycling in ecosystems. By
sampling large random ensembles that satisfy these constraints,
we found that ecosystems converge in similar thermodynamic
features, such as nutrient cycling fluxes and the total energy
extracted. We also found that ecosystems converge to a lesser
degree when the extent of detailed balance breaking increases,
i.e., when the available potential energy from light increases. We
also find that the collective energy extraction is remarkably high,
given that dynamics through which ecosystems assemble in our
model involve local “selfish” growth rules with no awareness of
the global collective energy extracted. Specifically, the energy
extracted by our model ecosystems was 100-fold closer to the
theoretical maximum when compared with ecosystems with
random abundances.

While the increase in communal energy extraction from
random initial conditions toward a steady state can be explained
in part by the model’s dynamics—species grow exponentially as
they acquire more energy—a complete theoretical understanding
of the origin of this surprising result remains difficult. This
is because the dynamics and feedback in the model are more
complicated—species that grow exponentially at first might start
to die if enough others do not recycle the nutrients they need
fast enough. Moreover, analytical progress is challenging because
of the complexity of the model, requiring an extremely large
number of simulations. We believe that simpler toy models—of
self-organized non-equilibrium systems with greedy replicators—
will better capture the essence of these systems. Such future work
might be able to delineate the necessary and sufficient conditions
for atypical energy extraction by closed ecosystems.

While there is a growing body of work documenting functional
convergence in ecosystems (38, 45–47), our work expands the
domain of functional convergence to explicitly thermodynamic
features and the impact of the environmental driving potential.
Our basic result is that functional convergence is strongest
for weakly driven near-equilibrium ecosystems; strong external
driving potentials decrease convergence. This result suggests a
deep theoretical connection between different manifestations of
functional convergence as representing the multiplicity of ways
in which communities break detailed balance.

To calculate the energy extracted, we made the simplifying
assumption that organisms extracted energy equal to the entire
energy gap between their respective donors and acceptors.
Realistically, a fraction of the energy gap is extracted and stored as
chemical energy (e.g., ATP) while the rest is dissipated (43, 56).
This can be incorporated in our framework, by including suitable
“ATP coupling” parameters for every donor-acceptor pair. We
expect that such an extension of our model doing will generally
increase niche competition between species coupling the same
donor-acceptor pairs, and thus might decrease total energy
extraction.

While aspects such as biodiversity, cross-feeding, and emergent
ecological interactions are relevant to our work, our study did
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not focus on them since they have been considered extensively
in previous work on open ecosystems (27, 29, 31, 34). Instead,
our manuscript focused on communal energy extraction—its
convergence and dependence on detailed balance breaking by
the physical environment—which are emergent thermodynamic
properties that could only be simultaneously studied in a model
like ours. Moreover, while the stability of complex ecosystems
has been studied for more than half a century (32, 33, 35), the
stability of emergent nutrient cycles in our work was due to
a thermodynamic feedback mechanism distinct from previous
work.

While this manuscript focused on materially closed, energy-
limited ecosystems, our theoretical framework can be extended
in a variety of ways. Examples include extending the framework
to account for the dual role of resources, as sources of both
energy and biomass, where organismal growth would depend on
which of the two—energy extraction or biomass generation—is
limiting. Another is to extend the model to be spatially explicit,
in order to study spatiotemporal pattern formation such as
self-organized stratification in microbial mats and Winogradsky
columns see related work (6, 57). Finally, our work can help
identify likely signatures of life on redox towers in astrobiological
contexts, e.g., by studying the self-organized adjusted potentials
like in Fig. 3A and SI Appendix, Fig. S9. In all these questions,
redox constraints are essential to the underlying phenomena.
Thus, our work opens up lines of inquiry in redox ecology.

In addition to ecology, our framework could be used to
understand the role of energy extracted in driving the evolution
of living systems. Ecologists have widely argued that energy
might serve as a natural fitness function during the evolution
of biological communities (58). However, natural selection acts
on individuals and not on directly on community function.
Extensions of our work can provide a framework to understand
the tension between “selfish” evolution of individuals and
collective energy extracted by an ecosystem. Such a framework
could be useful in guiding the engineering of evolutionarily stable
photosynthetic communities.

Another feature of our model is emergent detailed balance
breaking. Unlike in other models of non-equilibrium systems
(36)—where the extent of detailed balance breaking is a fixed
external quantity—in our work, we set a fixed external driving
potential (e.g., that of light) in the redox tower but the amount
of detailed balance breaking is determined by self-organization
of the ecosystem (e.g., through species abundances and material
abundances that change chemical potentials through product
inhibition). As a consequence, e.g., there is a minimal non-zero

external drive below which there is no detailed balance breaking
(Fig. 3B, gray region). In this way, our work suggests an ecology-
inspired framework for studying the emergence of spontaneously
self-organized non-equilibrium steady states (NESS), adding to
prior work on the origin of dissipative structures inspired by
Rayleigh–Benard convection cells and other physico-chemical
systems (16, 59–65).

Materials and Methods

Please see SI Appendix for detailed Materials and Methods. Briefly, we
constructed a theoretical framework for microbial ecosystems, whose constituent
species extract energy through thermodynamically constrained redox conver-
sions of matter. Our theory relied on fundamental physico-chemical constraints
which we outlined in Results and further elaborate on in SI Appendix. We
then derived a dynamical model of ecosystem self-organization based on the
constraints outlined in Eqs. 4–6, resulting in Eqs. 7 and 8 in the main text by
using thermodynamically accurate expressions for process rates (e.g., product
inhibition and energy-dependent forcing). Using numerical simulations of these
dynamical equations, we generated ensembles of ecosystems at steady state with
a fixed physical environment, but different initial sets of species (Fig. 2), and with
varying levels of detailed balance breaking�h� (Fig. 3). We then used numerical
optimization and root-finding techniques to generate analogous ecosystems of
non-living machines, by finding solutions of the constraint Eqs. 4 and 6 which
globally maximized the collective energy extracted given by Eq. 3 (Fig. 4).

Data, Materials, and Software Availability. There are no data underlying
this work.
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