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I. DESCRIPTION OF OUR MATHEMATICAL MODEL

As briefly described in the main text, our model describes a dynamical closed ecosystem in which S

microbial species collectively recycle a set of environmental resources through sets of R thermodynamically-

constrained redox transformations. Each species in the ecosystem corresponds to a different metabolic type,

depending on the subset of these R transformations it can perform to maintain itself. We track the dynamics

of species abundances, Nα and resource molecule concentrations Ri, and study the properties of steady

states of this system. For simplicity, we assume fast transport kinetics across microbial species, so that

the intracellular concentrations of molecules that each species can transform is the same as the extracellular

concentration. This allows us to only track the dynamics of only one set of concentrations for each molecule.

Further, we assume that species dynamics are driven only by energy requirements, without any biomass

turnover. This assumption allows us to study energy extraction at steady state, which for each surviving

species must equal a prescribed maintenance energy Emaint (a tunable parameter of our model, studied in

Fig. 4e). Thus, growing microbial species are limited only by energy, and we ignore the requirement of

biomass building blocks. Similarly, we ignore the accumulation of organic matter by dying species in this

work, and aim to study that model in greater detail in later work. We will now describe the model in greater
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detail, reproducing some sections from the main text description for the sake of completeness.

Each microbial species extracts energy through redox metabolic transformations (half-reactions) whose

energy content is determined by electron and thermodynamic constraints (Fig. 1b). All R resources corre-

spond to a pair of transformations Oi ↔ Ri between pairs of molecules Oi, Ri, representing the oxidized

and reduced forms, respectively. A redox tower orders all resource pairs (Oi, Ri) by their chemical potential

µi, from least energetically favorable Oi → Ri conversion (top) to most (bottom) (Fig. 1a).

These chemical potentials µi are given by a standard state potential µ0
i and due to thermodynamic product

inhibition, an adjustment due to concentrations of , i.e., µi = µ0
i − logOi/Ri.

Each species α may exploit a specific subset of these transformations specified by kinetic coefficients

eiα ≥ 0; e.g., if eiα ̸= 0, species α can transform Ri → Oi with kinetic coefficient eiα, releasing each

electron from transformation Ri → Oi at a potential µi, which are then absorbed by another transformation

Oj → Rj that the species participates in. The net potential difference drop experienced by the electron is the

energy available to this species. In practice, the electrons are transferred by an electron carrier (e.g., NADH)

in the cell that is at potential µcarrier,α intermediate to µi and µj . We assume there is only one electron carrier

pool common to all redox transformations in species α. Multiple electron carrier pools would in principle

correspond to different carrier potentials, one for each carrier molecule.

We assume that detailed balance is broken across the redox tower because some transformations, say

Rj → Oj are coupled to an external energy (but not matter) source (e.g., coupling the transformation H2O

→ O2 to sunlight during photosynthesis). Consequently, the chemical potential of Rj → Oj is shifted

µj = µ−j + µhν where µj is the chemical potential for the reverse transformation Oj → Rj (not coupled

to light). In the simulations in the main text, only one special transformation, corresponding to j = 3

(R3 → O3) couples to light. This is analogous to the H2O to O2 transformation. Importantly, the reverse

transformation, O3 → R3 (analogous to O2 to H2O) does not couple to light and has its adjusted potential

given by the standard formula in the previous paragraph.

To specify species and resource dynamics, we first need to compute the per capita fluxes fiα of all

transformations Oi → Ri due to each species α. Since multiple microbial species could catalyze the same

transformation, and because each transformation cannot proceed faster than a certain timescale, we model

fiα using the following expression, similar to Michaelis-Menten kinetics with multiple competing enzymes
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(here, species):

fiα =
·Oi

(KN +
∑S

β=1
Nβ

kiβ
)
, (S1)

where kiα is the per capita kinetic coefficient corresponding to species α and molecule i, Nα is the abundance

of species α, Oi is the concentration of the corresponding substrate of the transformation, and KN is a half-

saturation constant, chosen arbitrarily to be 1. From thermodynamics, kiα is given by the force-flux relation:

kiα = eiα · (1− e−∆µiα) (S2)

where ∆µiα is the change in potential of an electron released by transformation Oi → Ri and captured by

the electron carrier. Hence:

∆µiα = µcarrier,α −
(
µ0
i − log

(Oi

Ri

))
, (S3)

where µ0
i is the standard state chemical potential of the transformation Oi → Ri and µcarrier,α is the chemical

potential of the electron carrier for in species α. Here, kiα is the net forward rate of the transformation

(J+/J− in thermodynamics), and ∆µiα is the corresponding energy difference. eiα is a kinetic constant

that specifies the per capita per unit concentration rate at which species α can perform transformation i, as

described above (0 implying α cannot perform the transformation).

Together, all fluxes fiα change the concentrations of Oi, Ri through the following dynamics:

dOi

dt
= −

S∑
α=1

fiαNα +
S∑

β=1

fiβNβ (S4)

where fiα is the flux of the transformation Oi → Ri performed by an individual of species α (as given in

equation (1)), and fiβ is the flux of the transformation Ri → Oi (similar to equation (1), but proportional

to the reactant concentration Ri, not Oi by individuals of species β. The first sum goes over all species

transforming Oi → Ri and the second sum over species capable of the reverse. Similar equations hold for

Ri.

Each species α extracts energy with flux Eα
tot by coupling electrons between transformations at different

potentials:

Eα
tot =

2R∑
i=1

Eiα =
2R∑
i=1

fiα ·∆µiα. (S5)
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A species grows in abundance if this captured energy exceeds a prescribed per capita maintenance energy

Emaint:

1

Nα

dNα

dt
= Eα

tot − Emaint. (S6)

Finally, to balance all cycles at steady state, i.e., to conserve matter, as species in the ecosystem cou-

ple different half-reactions and transform resources from one form to another, all resource cycles must be

balanced (Fig. 1e). Together, these constraints can be summarized as:

electron conservation:
2R∑
i=1

fiα = 0, (S7)

energy requirement:
2R∑
i=1

fiα∆µiα = Emaint, (S8)

matter conservation:
S∑

α=1

Nαfiα = 0. (S9)

The last equation amounts to assuming that the ecosystem is fully closed to matter, and open only to an

external source of energy (here, light energy µhν) that breaks detailed balance for the chemical potentials µi.

While we use a fully materially closed ecosystem as an extreme case to illustrate our model, our key results

hold for partially closed ecosystems as well (Fig. S3), where some of the resources can be exchanged with

the environment and equation (S4) is modified as follows:

dOi

dt
= −

S∑
α=1

fiαNα +
S∑

β=1

fiβNβ + κi − δiOi, (S10)

where κi specifies the rate of influx of molecule Oi, and δi specifies its specific (per unit concentration)

dilution rate.

II. COMPLETE SET OF DYNAMICAL EQUATIONS

FOR A 2-SPECIES, 2 CYCLE SYSTEM

For concreteness, we now explicitly write down the set of dynamical equations for the simplest possible

ecosystem in our model: a 2-species system (e.g., heterotroph-phototroph) with 2 resource cycles (e.g.,
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H2O/O2 and CO2/org C). This would be an ecosystem where S = 2 and R = 2, as opposed to ecosystems

with R = 3 and S between 3 and 10 that we study in the main text. We will assume that the O1/R1 pair

corresponds to CO2/org C and O2/R2 pair corresponds to O2/H2O respectively.

We will represent the phototroph — which transforms R2 → O2 and O1 → R1 — with label P and

abundance NP , and heterotroph — which transforms O2 → R2 and R1 → O1 — with label H and abun-

dance NH , respectively. Analogous to photosynthesis, only the R2 → O2 transformation will coupled to

light. Following the previous section, the population dynamics for the two species are given by the following

equations:

1

NP

dNP

dt
=

R2

KN + NP
e2P (1−exp(−∆µ2P ))

(∆µ2P − µhν) +
O1

KN + NP
e1P (1−exp(−∆µ1P ))

∆µ1P − Emaint,

(S11)

1

NH

dNH

dt
=

O2

KN + NH
e2H(1−exp(−∆µ2H))

∆µ2H +
R1

KN + NH
e1H(1−exp(−∆µ1H))

∆µ1H − Emaint, (S12)

where:

∆µiα = µcarrier,α −
(
µ0
i − log

(Oi

Ri

))
(S13)

for all i ∈ 1, 2 and α ∈ P,H . The first term in equation (S11) has an additional term µhν that indicates that

the transformation R2 → O2 is coupled to light and breaks detailed balance. The dynamics for the µcarrier,α

are given by the following equations:

d

dt
µcarrier,P =

R2

KN + NP
e2P (1−exp(−∆µ2P ))

− O1

KN + NP
e1P (1−exp(−∆µ1P ))

, (S14)

d

dt
µcarrier,H =

O2

KN + NH
e2H(1−exp(−∆µ2H))

− R1

KN + NH
e1H(1−exp(−∆µ1H))

. (S15)

The nutrient dynamics are given by the following dynamical equations:
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dR1

dt
= − R1

KN + NH
e1H(1−exp(−∆µ1H))

NH +
O1

KN + NP
e1P (1−exp(−∆µ1P ))

NP , (S16)

dO1

dt
=

R1

KN + NH
e1H(1−exp(−∆µ1H))

NH − O1

KN + NP
e1P (1−exp(−∆µ1P ))

NP , (S17)

dR2

dt
= − R2

KN + NP
e2P (1−exp(−∆µ2P ))

NP +
O2

KN + NH
e2H(1−exp(−∆µ2H))

NH , (S18)

dR2

dt
= +

R2

KN + NP
e2P (1−exp(−∆µ2P ))

NP − O2

KN + NH
e2H(1−exp(−∆µ2H))

NH . (S19)

Examples of dynamics from this system are shown in Fig. S1. Similar examples from more complex

many species ecosystems with R = 3 are shown in Fig. S2.

III. PARAMETERS AND INITIAL CONDITIONS USED FOR SIMULATIONS

Symbol Interpretation Typical value (if applicable)

R Number of resource cycles 3

S Number of species added 3–10

Npool Number of species in the random ensemble 1,000

KN Half-saturation coefficient for flux 1

Oi +Ri Total amount for resources in each cycle 1

eiα Kinetic coefficient for transformation i by species α U(0, 1)

µ0
i Standard state potentials of redox pairs {+0.8,−0.4,−0.1}

µhν Potential of external driving force (light) 2

For each simulation, we assumed random initial conditions for all species abundances and electron car-

rier potentials, such that they were uniformly distributed between 0 and 1. For each resource cycle i, we

uniformly partitioned the total resource amount Oi +Ri at random. We ran all simulations using the Radau

solver for 1,000 time steps. We simulated equations for species abundances, resource concentrations and

electron carrier potentials to steady state (equations (S7)–(S9)).

As Oi, Ri concentrations and their corresponding chemical potentials changed, each species reorganized

its internal fluxes to balance the net flow of electrons and subsequently captured a different energy flux from



7

the environment. Some species continued to capture more than Emaint and grow, while others captured less

than Emaint and decreased in abundance, some even going extinct. This feedback between species and re-

sources continued until the ecosystem self-organized into a steady state where individuals of every surviving

species captured energy flux Emaint with a balanced internal redox electron flux, and all resource cycles were

balanced at certain fluxes ϕi. Together, all surviving individuals in the ecosystem captured a total energy

flux Eeco
tot =

∑S
α=1 Eα

totNα (Fig. 2a). By simulating 1,000 such ecosystems, we sampled a large space of

ecosystems that obeyed thermodynamic constraints arising from using redox transformations as resources.

IV. MEASURING THE VOLUMES OF ECOSYSTEM SOLUTION SPACES

To compare the volumes of the space of possible ecosystem solutions — both in terms of species abun-

dances and nutrient cycle fluxes — simulated using our model, we projected all solutions to a common,

two-dimensional space. This projection was necessary for any comparison because the species and flux

spaces have different inherent dimensionalities (S = Npool and R = 3 respectively). To preserve pairwise

Euclidean distances between ecosystems and allow for a fair comparison of projected volumes, we first nor-

malized all Euclidean distances in species and flux spaces by the maximum Euclidean distance, and then

used multi dimensional scaling (MDS), for which standard algorithms exist. We projected all species abun-

dance and cycle flux vectors to a common two-dimensional space (Fig. 2d). To estimate the volume of each

space, we measured the ‘volume’ (area) of the convex hull of the projected set of species and flux points

respectively. We then repeated this procedure for each value of S, each of which we had an ensemble of

1,000 ecosystems (points) for. We then normalized all measured volumes by the the largest volume (so that

the largest volume was 1), and plotted this for the species (green) and fluxes (red) solutions in Fig. 2e.

V. BUILDING ENSEMBLES OF MACHINE ECOSYSTEMS

To build ensembles of ecosystems of machines, we performed constrained optimization for equations

(S7) and (S9), instead of dynamically evolving the equations (S4), (S6) and equations of the form (S14-15).

Specifically, we used the same set of parameters as for biological ecosystems, but for each machine ecosys-

tem with randomized abundances, we numerically found a solution to the constraints (S7) and (S9) corre-

sponding to them for a randomized set of species abundances, chosen uniformly in log-space between 10−5
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and 1. To find each solution, we used standard non-linear least squares methods implemented in SciPy. For

ecosystems of machines with optimized abundances for the same parameters, we chose species abundances

so that they maximized the total energy extraction Eeco
tot =

∑S
α=1 Eα

totNα, while subject to the constraints

(S7) and (S9) corresponding to the parameters. For this, we used the SciPy constrained optimization routine

‘minimize’ with method SLSQP.
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VI. SUPPLEMENTARY FIGURES

FIG. S1. Example of dynamics in a 2-species, 2-resource cycle ecosystem. Example of dynamics of an ecosystem

with S = 2 and R = 2, corresponding to the phototroph-heterotroph system outlined in section II, with default

parameters and random initial conditions (section III). The top-left panel shows the species dynamics (H representing

the heterotroph in blue and P , the phototroph in orange). The top-right panel shows the resource dynamics (legend

shown), while the bottom panels show the dynamics of resource ratios (left) and electron carrier potentials in both

species (right).
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FIG. S2. Example of dynamics in a 6-species, 3-resource cycle ecosystem. Example of dynamics of an ecosystem

with S = 6 and R = 3, corresponding to a complex ecosystem outlined in the main text, Fig. 2, with default parameters

and random initial conditions (section III). The top-left panel shows the species dynamics (each color representing a

different random species). The top-right panel shows the resource dynamics (legend shown), while the bottom panels

show the dynamics of the total energy extracted by the ecosystem (left) and electron carrier potentials in all species

(right).
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FIG. S3. Our main result is robust even if ecosystems are only partial closed to matter. Histograms of the total

energy extracted Eeco
tot by ecosystems of machines with random abundances (gray; representing initial conditions of

ecosystem assembly), ecosystems of self-replicators with abundances self-organized by birth-death dynamics based on

maintenance energy (green), and machines with abundances chosen to maximize Eeco
tot (orange). Similar to Fig. 4b, but

simulated using one of the 3 resource cycles (O2 ↔ R2) open to matter (κ2 = 0.1, δ2 = 0.1). On average, ecosystems

still extract energy closer to optimal than those comprising machines with randomized abundances.
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FIG. S4. Ecosystem structure is more convergent when species are coarse-grained by metabolic types. Heatmaps

showing examples from 10 of the 1,000 randomly assembled ecosystems in Fig. 2, showing the combined abundances

of species when grouped by their “metabolic type”, i.e., by the subset of transformations they can perform with eiα ̸= 0.

Each row shows a metabolic type, while each column shows an example ecosystem.
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FIG. S5. Global redox “strategies” converge with increasing species diversity. (a) Schematic showing an example

of a global redox strategy for an entire ecosystem, which quantifies the fraction Eij of the total ecosystem energy flux

Eeco
tot that is obtained by coupling transformations i and j. We compute Eij as shown in the gray box, where ϕiα =

fiαNα is the contribution to the total flux in resource i by all individuals of species α. Notably,
∑

i ̸=j Eij = 1 is a matrix

that is normalized by definition. (b) Histograms of the pairwise Euclidean distance between the global redox strategies

Eij , as a function of number of species added S, for all ecosystems simulated in Fig. 2. The average distance (and its

variance) decreases with increasing diversity, suggesting that the strategies implemented across different ecosystems

become more similar (converge).
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FIG. S6. Once enough driving light energy is available, randomly assembled ecosystems rarely collapse. Scatter

plot showing the number of simulations with random initial conditions (section III) that we need to run before we arrive

at an ecosystem that can self-organize to capture nonzero energy, i.e., that does not collapse. We show the number of

attempts as a function of the light energy driving the ecosystems µhν , as explained in section I. Ecosystems cannot

self-organize below a minimum µhν as in Fig. 3. Once the driving energy is large enough, ecosystems can almost

always self-organize (the number of attempts become close to 1).

FIG. S7. Once there is sufficiently large light energy, the total amount of resources limit the energy extracted

by ecosystems. Scatter plot showing the total energy extracted Eeco
tot as a function of the total amount of resources∑

(Oi + Ri) supplied to closed ecosystems. Each point represents a randomly assembled ecosystem from a large

ensemble of species, as in Figs. 2 and 3, but assembled with different total resource amounts.
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FIG. S8. Our results about flux convergence are robust to the addition of more resource cycles. Line plot, similar

to Fig. 2e, but with R = 5 instead of 3. The plot shows how the volume of the species (green) and flux (red) spaces

scales with the number of species added, S, in assembled ecosystems. As in Fig. 2e, the flux space volume grows

much slower than species space volume, indicating convergence in the function (fluxes) of self-organized ecosystems.

FIG. S9. Self-organized redox potentials are more equally spaced than expected by chance. Histograms of the

variance in spacing between adjusted redox potentials for ecosystems at steady state (red), compared with the variance

in spacing when the potentials are randomized, i.e., spread uniformly in the same range. The observed potentials show

roughly 10-fold lower variance in spacing.
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