Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 8, 2006 | Supplemental Material
Journal Article Open

Synthesis and structural analysis of 2-quinuclidonium tetrafluoroborate


The amide functional group is one of the most fundamental motifs found in chemistry and biology, and it has been studied extensively for the past century. Typical acyclic amides are planar. But the amide groups of bicyclic bridgehead lactams are highly twisted, and this distortion from planarity can dramatically affect the stability and reactivity of these amides; it also increases the basicity of the nitrogen so that it often behaves more like an amine than a typical planar amide. As a result, the structures and reactivity profiles of these 'anti-Bredt' amides differ significantly from those of planar amides. It is possible that this twisting phenomenon is not exclusive to cyclic systems—non-planarity may also be a critical biological design element that leads to amide ground-state destabilization and alters the reactivity, selectivity and mechanism of various protein and enzymatic processes (such as amide hydrolysis). The intriguing qualities of these twisted amides were first recognized in 1938 (ref. 11), wherein one of the simplest families was introduced—molecules containing the 1-azabicyclo[2.2.2]octan-2-one system. But the parent member of this group, 2-quinuclidone (molecule 1 in this paper), has not yet been unambiguously synthesized. Here, we report the chemical synthesis, isolation and full characterization of the HBF_4 salt of 1. Critical to the success of the synthesis and isolation was the decision to generate 1 by a route other than classical amide bond formation. We anticipate that these results will provide a greater understanding of the properties of amide bonds.

Additional Information

© 2006 Nature Publishing Group. Received 21 March 2006; Accepted 26 April 2006. We thank H. H. Wasserman, E. J. Corey, and N. J. Leonard for discussions. We thank Ono Pharmaceutical Co. Ltd (for a postdoctoral fellowship to K.T.), the Research Corporation, the Camille and Henry Dreyfus Foundation, Merck, Pfizer, Lilly, Amgen and Bristol-Myers Squibb for financial support. We also thank M. W. Day and L. M. Henling for their X-ray crystallographic expertise.

Attached Files

Supplemental Material - nature04842-s1.pdf

Supplemental Material - nature04842-s2.pdf


Files (1.4 MB)
Name Size Download all
1.4 MB Preview Download
34.9 kB Preview Download

Additional details

August 19, 2023
October 20, 2023