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Efficient suppression of errors without full error correction is crucial for applications with noisy
intermediate-scale quantum devices. Error mitigation allows us to suppress errors in extracting expectation
values without the need for any error correction code, but its applications are limited to estimating
expectation values, and cannot provide us with high-fidelity quantum operations acting on arbitrary
quantum states. To address this challenge, we propose to use error filtration (EF) for gate-based quantum
computation, as a practical error suppression scheme without resorting to full quantum error correction.
The result is a general-purpose error suppression protocol where the resources required to suppress errors
scale independently of the size of the quantum operation, and does not require any logical encoding of the
operation. The protocol provides error suppression whenever an error hierarchy is respected—that is, when
the ancillary controlled-SWAP operations are less noisy than the operation to be corrected. We further
analyze the application of EF to quantum random access memory, where EF offers hardware-efficient error
suppression.
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Introduction.—One major obstacle to performing mean-
ingful computation on quantum devices is the presence of
noise. Canonically, we expect that the theory of fault-
tolerant quantum error correction (FTQEC) codes will
enable us to scale quantum computers once we have
enough qubits and physical error rates fall below a
particular threshold [1–3]. However, being in the noisy
intermediate-scale quantum (NISQ) era or early fault-
tolerance era means that we are limited in the number
and base quality of qubits available [4], which prevents us
from performing full fault-tolerant quantum computing.
Recent work related to suppressing errors on NISQ devices
has focused on error mitigation [5]—for instance, zero
noise extrapolation [6,7], quasiprobability decomposition,
and probabilistic error cancellation [7–11], learning-based
methods such as Clifford data regression [12,13] deep
learning noise prediction [14], and virtual distillation
[15–17]. Such methods allow the user to suppress errors
in extracting expectation values with minimal hardware
overhead. The success of such methods in the near term
motivates the desire to suppress errors in quantum gates
beyond expectation values.
One approach to achieve more robust quantum gates is to

use error detection techniques. In the near term, one may
not want to use the full formalism of quantum error
correction (QEC). One promising alternative approach to
detect errors without full QEC is error filtration (EF), which

was first introduced as a means to stabilize quantum
communication [18]. EF does not seek to mitigate errors
in expectation values but rather to protect quantum infor-
mation during noisy communication. In essence, EF multi-
plexes a single message, and then attempts to detect and
discard the parts of this message in which errors have
occurred. Up to postselection, one is able to communicate a
message over multiple similarly noisy channels with lower
error rates than a single noisy channel. Given a single-
channel error that goes as ε, EF is able to suppress errors in
the fidelity of the communicated message to ε=T, where T
is the number of channels in the multiplexing which
corresponds to the effective dimension of the ancilla
Hilbert space. Because of its ease of implementation, a
successful proof-of-principle experiment was quickly car-
ried out [19]. Recent interest in EF has seen a revival in the
context of a more general class of schemes communicating
over a quantum superposition of trajectories. Such schemes
boast a range of exotic and remarkable results, such as
perfect quantum communication over zero-capacity chan-
nels [20–22]. Separately, [23] also formalized aspects of EF
and derived explicit EF fidelities for loss and dephasing
channels. However, until now, EF has mostly been studied
in the context of suppressing errors in communication,
which is restricted to identity operations [24]. Also relevant
shortly is the development of biased noise qubits and bias-
preserving gates which suffer from an exponentially
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smaller likelihood of bit flips than phase flips [25–27]. In
QEC, the use of biased-noise architectures gives rise to
much higher fault-tolerant thresholds for QEC codes
[28,29]. In the context of this work, they boost the
performance of a protocol that might otherwise be infea-
sible in the near future.
In this Letter, we extend EF to the context of gate-based

quantum computation (gate-based EF), and show that this
provides a low-overhead means to suppress errors for a
large class of quantum operations. The result is a general-
purpose error detection protocol where the resources
required to suppress errors scale independently of the size
of the quantum operation. This has the appealing conse-
quence of allowing us to leverage any small number of
additional qubits available in a noisy device to suppress
errors in large, complex quantum operations. To establish
these results, we provide a general quantum circuit design
(Fig. 2) that can filter out errors by employing the noisy
operations as black boxes. We stress that EF deals with
quantum operations, and provides a means to move beyond
suppressing expectation values without the full formalism
of QEC.
Gate-based EF with one control qubit.—Suppose we are

given a black box that imperfectly carries out some ideal
unitary U. We model this as a completely positive and
trace-preserving map U comprising Kraus operatorsKi; i ¼
0; 1;…; R [30], where we define K0 to be the Kraus
operator whose normalized action most resembles U. We
assume that queries to this black box are already fairly
close to the ideal unitary U. We can formalize this
notion by assuming that kK0 −Uk ≤ ε ≪ 1. Then we
can write K0 ¼ U − εξ for some suitably normalized
operator ξ with kξk ¼ 1. The infidelity goes as ð1 − FÞ0 ≡
hUψ jUðψÞjUψi ∼OðεÞ for nonunitary errors, while
ð1 − FÞ0 ∼Oðε2Þ for unitary errors [31]. Without any
further information, or prying the box apart and subjecting
every qubit to QEC, how can we suppress the OðεÞ
nonunitary error? We argue that one effective way to do
so, leveraging a small number of high quality biased-noise
qubits, is gate-based EF.
We begin by introducing gate-based EF with only one

control qubit. This provides a gentle introduction to gate-
based EF in its simplest possible incarnation and demon-
strates that with minimal overhead, gate-based EF is able to
help us achieve nontrivial error suppression in the near
term. One can think about multiplexing in the original EF
protocol as quantum communication over a superposition
of trajectories [20]. Inspired by this structure, we want to
create a superposition of T queries to U. Figure 1 depicts
the minimal implementation of gate-based EF with T ¼ 2.
To create a superposition of calls to the black box, we need
three ingredients. The first is entanglement with a single
qubit control register that maintains the superposition
between calls to U, the second is a memory register,
initialized with the desired input state jψi, to store the

results of these calls, and the third is an active register,
initialized in some (for now) arbitrary state jϕi, for null
calls to U, which is discarded at the end of the protocol. We
prepare the control register in the equal superposition state
jþi. Conditioned first on the control register being j0i
and then j1i, we query U twice with the input state jψi.
Subsequently, we take a measurement on the control
register and postselect on obtaining jþi. Finally, we trace
out the active register, and are left with the final state ρ1.
To evaluate the scheme, we use the infidelity

ð1 − FÞ1 ≡ 1 −
hUψ jρ1jUψi

Trρ1
; ð1Þ

where jUψi ¼ Ujψi is the ideal state we are trying to
achieve. While the above infidelity appears state dependent,
ð1 − FÞ1 as a function of ð1 − FÞ0 turns out to be inde-
pendent of jψi, jϕi.
First, suppose all the errors in the circuit come from the

black box implementation of U. Because of postselection,

ρ1 is not normalized, with PðSÞ
1 ≡ Trρ1 giving the success

probability. A straightforward calculation gives the un-
normalized state

ρ1 ¼
1

2
Uðjψihψ jÞþ1

2

XR

i¼0;j¼0

Kijψihψ jK†
jTr

�
ρϕK

†
i Kj

�
; ð2Þ

and success probability,

Pð1Þ
s ¼ 1

2
þ 1

2

XR

i¼0;j¼0

hψ jK†
jKijψiTr

�
ρϕK

†
i Kj

�
: ð3Þ

Recall our assumption that K0 ¼ U − εξ, which implies
that the terms in the sum where i, j ≠ 0 areOðε2Þ. As such,
when computing the fidelity we only have to keep
terms where either i, j ¼ 0. For clarity of presentation,
we now assume the simplest possible model fulfilling our

FIG. 1. Gate-based EF with a single control qubit. This circuit
makes two calls to an apparatus that implements the noisy process
U as follows: (1) prepare the control register in the equal
superposition state jþi ¼ Hj0i, the intended input state jψi in
the memory register, and any easy-to-prepare state jϕi in the
active register. (2) Conditioned on the state of the control register
being in j0i (j1i), the circuit first applies U to jψi (jϕi), then to
jϕi (jψi). (3) After a final Hadamard transform, the circuit
postselects the result conditioned on obtaining the outcome j0i.
The active register is discarded. This results in the suppression of
the infidelity of the apparatus by half [see Eq. (6)].
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assumptions, with K0 ¼
ffiffiffiffiffiffiffiffiffiffi
1 − ε

p
U;K1 ¼

ffiffiffi
ε

p
V, and V ≠ U

some arbitrary erroneous unitary. We deal with the general
case in [31], for which the main result below [Eq. (6)] has
exactly the same form. Specializing to this error model, the
explicit probability of success is close to 1:

1 − PðSÞ
1 ≃ ε

�
1 − Re

�hψ jU†VjψiTrðρϕV†UÞ�� ≤ 2ε; ð4Þ

where we have discarded Oðε2Þ terms, and the final
inequality comes from unitarity of U, V. The inner product
with the ideal state is

hψ jU†ρ1Ujψi

≃
1

2
F0 þ

1

2
− ε

�
1 − Re

�hψ jU†VjψiTrðρϕV†UÞ��: ð5Þ

Inserting Eqs. (4) and (5) into Eq. (1), the infidelity is
readily obtained. Up to OðεÞ, the V, ϕ dependent terms
cancel out, we have

ð1 − FÞ1 ¼
1

2
ð1 − FÞ0 þOðε2Þ; ð6Þ

i.e., the infidelity is halved with a single ancilla qubit.
Equation (6) is our first key result, and demonstrates the
ability of gate-based EF to suppress errors with minimal
overhead comprising a single control qubit and an addi-
tional memory register. We highlight that the scaling of
ð1 − FÞ1 with ð1 − FÞ0 is independent of the erroneous
unitary V or the active register state jϕi. This latter point
suggests that we may initialize the active register in any
state, e.g., a thermal state, that is easiest to prepare in the
lab. Finally, note that as long as F0 > 1=2, gate-based EF
can still provide error suppression even if ε ∼Oð1Þ [31].
The effects of ancilla noise.—In the near term, we will

not have perfectly noiseless ancillae. What happens to the
results, Eqs. (4) and (6)? We expect the primary mechanism
of introducing additional errors to be the controlled-SWAP

(cSWAP) gate. One mitigating factor is the recent discovery
of biased-noise cat codes allow us to construct a bias-
preserving Toffoli gate [25–27], from which we can
construct cSWAP operations in a bias-preserving manner.
Recent experimental work [39,40] has demonstrated biases
of up to 109 can be achieved with cat qubits, and theoretical
work [41] demonstrates that such extreme biases can be
achieved with modest excitation numbers and low domi-
nant error rates. We thus focus on ancillary phase flip
errors, the effects of which are twofold. First, a phase flip
error on the control register commutes with the cSWAP

operation. Hence, it can be propagated to the end of the
circuit, where it is detected by the measurement—i.e.,
phase flip errors decrease the success probability of the
scheme without affecting the fidelity. Assuming this
event occurs with some probability pz over the course

of the circuit, we can modify Eq. (4) by substituting

PðSÞ
1 → PðSÞ

1 − pz.
On the other hand, errors on the memory register are

more problematic, since they interact with the input state
jψi in an uncontrolled way. Let pm be the effective
probability of a memory register error during the protocol.
Since most near term devices are dominated by gate errors
[42], we can assume that these errors come from the cSWAP,
so that pm ∼ pz. The worst case assumption that this error
completely ruins the query and cannot be detected by post-
selection modifies Eq. (6) by ð1 − FÞ1 → ð1 − FÞ1 þ pm.
This reveals the ideal operation of gate-based EF to require
an error hierarchy. Equation (6) holds when pm ≪ ε ≪ 1.
However, as long as pm < ð1 − FÞ0 ∼ ε, gate-based EF will
still suppress errors if the cSWAP operations are less noisy
than U [31].
Gate-based EF with T control qubits.—Having intro-

duced the base case of gate-based EF applicable to near-
term devices, we now generalize the notion of gate-based
EF to a situation with logT control qubits [43]. While the
logT ¼ 1 case examined earlier is immediately applicable,
we envision the general case to be useful when better
ancilla qubits become available. To motivate this, one can
imagine having a small number of high quality or error-
corrected qubits, which do not suffice for full QEC of the
apparatus U. However, applying these qubits as ancillae in
gate-based EF, one can still achieve considerable error
suppression for U.
The generalization is depicted in Fig. 2. The two

modifications to the base case circuit are appending
of additional qubits to the control register, and the usage
of many cSWAPs. In this case, we have T applications of
U to jψi conditioned on the control qubits being
in j00…00i; j00…01i;…; j11…11i.
When the ancillae are much less noisy than the appa-

ratus, Eq. (6) generalizes to

ð1 − FÞlogT ≃
1

T
ð1 − FÞ0 þOðε2Þ; ð7Þ

independent of jψi, jϕi. This is a key result of our work,
and the full derivation is contained in [31].
To understand the scaling of the success probability with

T, we can make the worst-case assumption that the
occurrence of an error Ki>0 on any step causes us to reject
the output. This yields the lower bound

PðSÞ
logT ≥ 1 − TεþOðε2Þ: ð8Þ

When T ≪ 1=ε, the scheme will still work with high
probability, and Eq. (8) allows one to trade off between
error suppression and success probability.
Surprisingly, we can often do better than Eq. (8). Under

certain favorable conditions, the success probability can be
lower bounded by a constant,

PHYSICAL REVIEW LETTERS 131, 190601 (2023)

190601-3



PðSÞ
logT ≥ 1 − 4εþ ε

T
; ð9Þ

which approaches a constant PðSÞ
logT → 1 − 4ε as T

increases. These conditions are detailed in [31], but we
note a particularly relevant case: if the apparatus U has
biased (Z) noise, one can achieve this bounded success
probability by initializing the active register in the Z ¼ þ1
eigenstate j00…0i.
Finally, as long as ancilla errors remain smaller than

the apparatus errors, one can still find an optimal point
for T where the error suppression of gate-based EF is
maximum [31].
Application to QRAM.—To illustrate the practical utility

of our scheme, we consider its application to quantum
random access memory (QRAM) [44,45]. Error-correcting
QRAM has an extremely large hardware overhead. The
base hardware overhead of QRAM is already tremendous
—in order to prepare a state on logN address bits, QRAM
requires OðNÞ physical qubits. In data processing appli-
cations, relevant values of N could easily reach N ∼
106–109 individually encoded qubits. This problem of
hardware overhead is compounded by QRAM being a
non-Clifford operation, requiring special techniques
[46,47] to implement fault tolerantly [30]. The detailed
analysis of [48] corroborates this intuition by demonstrat-
ing that a fault-tolerant surface code implementation of
QRAM for a memory of size N ∼ 106–109 would require
some 1010–1013 physical qubits.
In contrast to QEC, the resource overhead of gate-based

EF scales independently of the size of the desired quantum
operation. Additionally, QRAM satisfies the two conditions
for the optimal application of gate-based EF. First, the error
hierarchy is enforced since N is generally very large,
ensuring many more errors occur in the apparatus than
the ancillae. Second, one can implement QRAM with
biased noise, satisfying the conditions for an upper-
bounded failure probability [31]. This ensures that it
remains feasible to embed a QRAM with gate-based EF
into a quantum algorithm as an oracle. Thus, gate-based EF
can suppress QRAM errors in a hardware-efficient manner.

For a more complete review of QRAM and the numerical
techniques used to simulate it, see [32].
To showcase our scheme’s hardware efficiency, we

numerically simulate its application to QRAM circuits
comprising up to 2n ¼ 8 qubits with up to T ¼ 4 ancilla
qubits in Fig. 3 without ancilla errors. Absent ancilla errors,
we see an excellent agreement with the 1=T scaling. With
ancilla errors [31], we find that there is some T for which
gate-based EF is optimal. We simulate the physical
qubits of the QRAM with a 0.01 depolarizing error rate
per time step, which gives a base infidelity that goes as
O½0.01ðlogNÞ2� [32]. In this regime, we find that our
scheme can reduce the query infidelity by over an order of
magnitude using only 4þ logN additional qubits. For
QRAM, we have shown that one can begin to suppress
errors, albeit to a smaller extent than QEC, with only

FIG. 3. Gate-based EF applied to QRAM subject to depolariz-
ing errors. (a) Plot of logð1 − FlogTÞ as a function of log T, where
FlogT denotes QRAM query fidelity obtained after gate-based EF
with logT control qubits. The dashed lines indicate linear fits.
This demonstrates good agreement with the expected 1=T
suppression for low apparatus error, with the deviation of the
estimated slope from −1 explained by the Oðε2Þ terms for higher

apparatus error rates. (b) Plot of failure probabilities 1 − PðSÞ
logT as

a function of logT. The simulated failure probability for depth
1,2 QRAMs quickly plateau. All failure probability plots show
sublinear scaling, as expected.

FIG. 2. General circuit for gate-based EF that makes some number T calls to an apparatus that implements the noisy process U. This
generalizes the circuit in Fig. 1 by allowing for logT control qubits, thus making T calls to U conditioned on each branch jii of the
control register in the computational basis (i.e., j0…00i; j0…01i;…).

PHYSICAL REVIEW LETTERS 131, 190601 (2023)

190601-4



logT þ logN additional qubits. Our scheme thus provides
a compelling alternative to QEC in the NISQ and pre-
FTQEC eras.
Hardware efficiency.—In this section, we discuss hard-

ware overhead. First, to obtain a 1=2 suppression, we must
append a memory register and an ancilla qubit. The size of
the memory register depends on the size of the input to U.
We stress that this is not the same as the size of U. Besides
QRAM, many useful quantum operations are possible only
with an (often exponentially) large number of ancillae—
fast state preparation on n qubits in OðnÞ time requires
Oð2n=nÞ ancillae [49,50]. Since each qubit of the memory
register must be swapped with the active register, this
linearly increases the number of cSWAP operations. By
swapping each qubit in sequentially, we can avoid adding
to qubit overhead. To go from a 1=2 to a 1=T suppression,
one appends logT qubits to the control register only—
additional error suppression has a hardware overhead that
scales largely independently of U.
A further hardware benefit is that error suppression from

gate-based EF is largely agnostic to U. This sidesteps any
complications of having to construct logical versions of U,
since the physical implementation will do. In particular,
error suppression via gate-based EF is independent of either
the complexity of operating the black box or knowledge of
the ideal unitary to be carried out. QRAM aside, state
preparation also requires Ωð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n log n
p Þ T gates [51]. This

non-Cliffordness compounds the hardware overhead of
QEC, but does not affect gate-based EF.
Discussion.—In this work, we proposed and analyzed

the circuit implementation of error filtration on a qubit
quantum computer in two levels. In [31], we show that
gate-based EF is isomorphic to the original error filtration
setup in the noiseless case. However, our analysis considers
more general error models than the loss and dephasing
models considered in [18,23]. We emphasize the hardware-
efficiency of gate-based EF, which allows one to use a small
number of qubits with resources scaling independently of
the quantum operation considered to suppress errors up to a
quadratic error floor. We further emphasize that in contrast
to usual error mitigation schemes, gate-based EF sup-
presses errors in quantum gates, which extends the reach of
error mitigation to problems involving state preparation and
sampling. As a comparison, one class of schemes that
performs error suppression for unitary operations is the
extended flag gadget scheme [52,53]. However, such
schemes have limited capability in suppressing errors in
non-Clifford circuits. Conversely, our scheme is entirely
agnostic to the structure of the desired quantum process—
in particular, QRAM is non-Clifford. Gate-based EF
extends the reach of low-overhead error suppression
methods, which is an important step toward bridging the
NISQ and fault-tolerance eras.
While we have characterized gate-based EF by refe-

rence to NISQ-era error mitigation schemes, we note that

many-controlled SWAP gates may not be easy to imple-
ment on NISQ devices. As such, one might regard gate-
based EF as a scheme most suited for a post-NISQ era but
before achieving FTQEC. However, this does not com-
pletely rule out the application of gate-based EF during the
present NISQ era in the T ¼ 2 case. In the micro-
wave regime, a high fidelity ð> 0.95Þ cSWAP has recently
been reported in [33]. Alternatively, optical implementa-
tions may also be suitable for gate-based EF (see, e.g.,
[34,54,55] as well as Supplemental Material [31] for further
discussion).
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