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Supplemental Material: ”Error Suppression for Arbitrary-Size Black Box Quantum
Operations”

I. NOISE MODEL

We assume we are given an apparatus that is meant to carry out the unitary U but instead carries out a CPTP
channel U(·), with R+1 Kraus operators {K0,K1, ...,KR}, where K0 is the Kraus operator closest to U . Now, in our
setup we append ancillas to this apparatus. Let IA be the collective identity operation on all parts of the system that
aren’t part of the apparatus. Then, assuming the ancillas are noiseless, a reasonable way to extend the noise model
to the rest of the system is to use Kraus operators

K
(s)
i = IA ⊗Ki, i = 0, 1, 2, ..., R. (S1)

This assumption is justified when the cross-talk between the apparatus and the rest of the system is small. Subse-
quently, we will suppress the IA and (S) superscript, writing Ki to be understood in the above sense.

II. SMALL PARAMETER CASE

FIG. S1: General circuit for gate-based EF that makes some number T calls to an apparatus that implements the noisy
process U as follows: (1) Prepare the intended input state |ψ⟩ in one register, and the null state |ϕ⟩ in another. We refer to

the former as the memory register and the latter as the active register. (2) Prepare log T ancillas in the control register in the
equal superposition state |++...+⟩. (3) For each branch |i⟩ in the computational basis (i.e. |0...00⟩, |0...01⟩, and so forth),
swap the state |ψ⟩ into the active register. We then run the active register through our apparatus, given by noisy process E ,
before swapping the registers back for the same branch. Do this for every branch of the superposition. (4) Finally, perform
log T parallel measurements on the control register in the X basis, and post-select for every measurement being +1. This

corresponds to projecting the control register back onto the equal superposition state |++...+⟩.

We begin by deriving the scaling behaviour of gate-based EF in the primary case of interest – that is, we are given
an apparatus that is already pretty good, and everything else in the circuit is noiseless. Formally, we say that there
exists a Kraus operator K0 that is ε-close to the ideal unitary U , such that we can write K0 = U − εξ for some small
ε and some suitably normalized operator ξ with ∥ξ∥ = 1. Given such a form for K0, it follows that Ki ∼ O(

√
ε) for

i ̸= 0. We will also assume that 1−F0 ∼ O(ε), where F0 is the native fidelity of the apparatus prior to error fitration.
Note that this assumption is not compatible with K0 = V where V is some coherent unitary error, as we will see in
Sec. II C, where we consider those cases separately.

A. T = 2 case

We will first work out the T = 2, log T = 1 case. We index all the relevant density matrices and fidelities with log T .
The unnormalized output of Fig. S1 when log T = 1 is the density matrix

ρ̃(1) =
1

2
U(|ψ⟩⟨ψ|) + 1

2

R∑
i=0,j=0

Ki|ψ⟩⟨ψ|K†
jTr

(
ρϕK

†
iKj

)
, (S2)

where we note that F0 = ⟨ψ|U†U(|ψ⟩⟨ψ|)U |ψ⟩. The conclusions of this section are independent of the state |ϕ⟩, so we
can choose any |ϕ⟩.
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The probability of success is given by the trace of this density matrix,

P (1)
s =

1

2
+

1

2

R∑
i=0,j=0

⟨ψ|K†
jKi|ψ⟩Tr

(
ρϕK

†
iKj

)
. (S3)

Recall our assumption that K0 = U − εξ. By the arguments in the previous section, the terms in the sum where
i, j ̸= 0 are O(ε2). As such, when computing the fidelity we only have to keep terms where either i, j = 0. We first
show that the probability of success is close to 1:

P (1)
s = Trρ̃(1) =

1

2
+

1

2
⟨ψ|K†

0K0|ψ⟩Tr(ρϕK†
0K0) +

1

2

∑
i̸=0

(
⟨ψ|K†

0Ki|ψ⟩Tr(ρϕK†
iK0) + h.c.

)
+O(ε2)

= 1− 1

2
ε
(
⟨ψ|ξ†U |ψ⟩+ ⟨ψ|U†ξ|ψ⟩+Tr(ρϕξ

†U) + Tr(ρϕU
†ξ)

)
+

1

2

∑
i ̸=0

(
⟨ψ|U†Ki|ψ⟩Tr(ρϕK†

i U) + h.c.
)
+O(ε2)

which is ε-close to 1. Similarly, working out the inner product with the ideal state,

⟨ψ|U†ρ̃(2)U |ψ⟩ = 1

2
F0 +

1

2
⟨ψ|U†K0|ψ⟩⟨ψ|K†

0U |ψ⟩Tr
(
ρϕK

†
0K0

)
+

1

2

R∑
i=1

(
⟨ψ|U†Ki|ψ⟩⟨ψ|K†

0U |ψ⟩Tr
(
ρϕK

†
iK0

)
+ ⟨ψ|U†K0|ψ⟩⟨ψ|K†

i U |ψ⟩Tr
(
ρϕK

†
0Ki

))
+O(ε2)

=
1

2
F0 +

1

2
− 1

2
ε
(
⟨ψ|U†ξ|ψ⟩+ ⟨ψ|ξ†U |ψ⟩+Tr

(
ρϕξ

†U
)
+Tr

(
ρϕU

†ξ
))

+
1

2

R∑
i=1

(
⟨ψ|U†Ki|ψ⟩Tr

(
ρϕK

†
i U

)
+ h.c.

)
+O(ε2)

Dividing and expanding the denominator in ε, we see that all the remaining O(ε) terms cancel out, and we are left
with

(1− F )1 = 1− ⟨ψ|U†ρ̃(2)U |ψ⟩
Trρ̃(2)

(S4)

=
1

2
(1− F )0 +O(ε2), (S5)

i.e. the infidelity is halved with a single ancilla qubit.

B. General T case

Consider a particular trajectory for a state |ψ⟩ that goes through the circuit with log T ancilla qubits. At each
call of the apparatus it gets a different Kraus operator applied to it, which we write Ki1 ,Ki2 , . . . ,KiT . Whether this
operator is applied to the state |ψ⟩ or |ϕ⟩ depends on the branch of the ancilla. For the |t⟩ branch of the ancilla, Kit

is applied to |ψ⟩ whereas the rest are applied to |ϕ⟩. We can write this as,

|t⟩|ψ⟩|ϕ⟩ 7→ |t⟩Kit |ψ⟩KiTKiT−1
. . .Kit+1Kit−1 · · ·Ki1 |ϕ⟩. (S6)

for t = 0, 1, 2, ..., T − 1, with |t⟩ corresponding to the binary representation of t. We can think of i as a vector with T
components ij ∈ {0, 1, ..., R}. The entire vector i indexes one possible outcome of the circuit.

For ease of notation we will define,

Kit = KiTKiT−1
. . .Kit+1

Kit−1
· · ·Ki1 (S7)

To get the full density matrix, we must sum over all possible vectors i ∈ {0, 1, ..., R}⊗T . This gives the density
matrix after the T applications of the black box as,

∑
i

[
1√
T

T∑
t=1

|t⟩Kit |ψ⟩Kit |ϕ⟩
][

1√
T

T∑
t=1

|t⟩Kit |ψ⟩Kit |ϕ⟩
]†
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After measuring the control register, post-selecting on |+⟩⊗ log T and tracing out the active register,

ρ̃(log T ) =
1

T 2

∑
i

T∑
t=1

T∑
q=1

Kit |ψ⟩⟨ψ|K†
iq
TrρϕK

†
iqKit

First we consider the terms where t = q. These give

1

T 2

T∑
t=1

∑
i

Kit |ψ⟩⟨ψ|K†
it
TrρϕK

†
itKit

where the sum over i can be refactored into

∑
i

Kit |ψ⟩⟨ψ|K†
it
TrρϕK

†
itKit =

R∑
j1=0

Kj1 |ψ⟩⟨ψ|K†
j1

R∑
jT=0

. . .

R∑
j2=0

TrρϕK
†
j2T

. . .K†
i2
Ki2 . . .Ki2T

=

R∑
j1=0

Kj1 |ψ⟩⟨ψ|K†
j1

= U(|ψ⟩⟨ψ|),

where we have used completeness property of the Kraus channel. Hence the density matrix can be rewritten

ρ̃(log T ) =
1

T
U(|ψ⟩⟨ψ|) + 1

T 2

∑
i

T∑
t=1

∑
q ̸=t

(
Kit |ψ⟩⟨ψ|K†

iq
TrρϕK

†
iqKit

)

1. General Success Probability

The success probability is given by

P (log T )
s = Trρ̃(T ) =

1

T
+

1

T 2

∑
i

T∑
t=1

∑
q ̸=t

(
⟨ψ|K†

iq
Kit |ψ⟩TrρϕK

†
iqKit

)
(S8)

In the general case, we can still get some idea of how the probability of success scales with T . Generically we expect
the probability to go down with each error and the number of errors to scale with T , so we can immediately write
down

P
(T )
S ∼ 1−O(T )ε (S9)

Working through the above expressions more carefully, one finds that the exact scaling at small ε can be rigorously
lower bounded by

P
(T )
S ≥ 1− Tε. (S10)

As long as T ≪ 1
ε , we will have P

(T )
S is ε-close to 1, we can proceed to calculate the infidelity. In fact, much tighter

bounds can be given for P
(T )
S under some conditions on the action of the Kraus operators Ki on the state |ϕ⟩.

2. Success probability under special favourable conditions

Now, suppose at least one of the following three conditions hold:

1. The Kraus operators are all mutually commuting, i.e. [Ki,Kj ] = 0 for all i, j = 0, 1, ..., R.

2. |ϕ⟩ is stationary under the channel, i.e., Ki|ϕ⟩ ∝ |ϕ⟩ for all i = 0, 1, ..., R.

3. The circuit has a noise bias, and furthermore is bias preserving, such that we can choose some |ϕ⟩ to be immune
to the dominant error (e.g. if the circuit only has phase flips, we can choose |ϕ⟩ = |0⟩).
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Under any of these conditions, we will find that

1

T 2

∑
i

T∑
t=1

T∑
q>t

(
⟨ψ|K†

iq
Kit |ψ⟩TrρϕK

†
iqKit + h.c.

)
=
T − 1

T

∑
i,j

⟨ψ|K†
iKj |ψ⟩⟨ϕ|K†

jKi|ϕ⟩

To make further progress, we note that not all trajectories containing Kraus operators where i ̸= 0 or j ̸= 0 are
necessarily rejected by the protocol. Hence assuming that all such trajectories are rejected will give us a lower bound
on the success probability, given by

P
(log T )
S ≥ 1

T
+
T − 1

T
⟨ψ|K†

0K0|ψ⟩⟨ϕ|K†
0K0|ϕ⟩

≥ 1− 4ε+
4ε

T
≥ 1− 4ε

3. General fidelity scaling

Having established that in the small parameter case, we can get 1 − Ps ∼ O(ε) either under the conditions of the
previous section, or when T is not too large, we can now proceed to compute the fidelity associated with having log T
control qubits.

In terms of ρ̃(log T ), P log T
S ,

(1− F )log T =
P log T
S − ⟨Uψ|ρ̃(log T )|Uψ⟩

P log T
S

, (S11)

where we can expand,

⟨Uψ|ρ̃(log T )|Uψ⟩ = 1

T
(1− F )0 +

1

T 2

∑
i

T∑
t=1

∑
q ̸=t

(
⟨ψ|U†Kit |ψ⟩⟨ψ|K†

iq
U |ψ⟩TrρϕK

†
iqKit

)
Since we are calculating quantities only to O(ε), in the numerator we only need to keep compute terms for which

either all the applied Kraus operators are K0, or all the applied Kraus operators but one are K0 (we can loosen this
assumption when dealing with the bounded probability case).

First, we can combine the two terms in the numerator by factoring out the ϕ associated terms:

P log T
S − ⟨Uψ|ρ̃(log T )|Uψ⟩

=
1

T
(1− F )0 +

1

T 2

∑
i

T∑
t=1

∑
q ̸=t

(
⟨ψ|K†

iq
Kit |ψ⟩ − ⟨ψ|U†Kit |ψ⟩⟨ψ|K†

iq
U |ψ⟩

)
TrρϕK

†
iqKit

Consider the terms in the brackets. For the terms in the sum where all Kraus operators applied are K0, we have

⟨ψ|K†
0K0|ψ⟩ − ⟨ψ|U†K0|ψ⟩⟨ψ|K†

0U |ψ⟩
= 1− ε⟨ψ|U†ξ|ψ⟩ − ε⟨ψ|ξ†U |ψ⟩ − 1 + ε⟨ψ|U†ξ|ψ⟩+ ε⟨ψ|ξ†U |ψ⟩+O(ε2)

= O(ε2),

so these terms don’t contribute.
For the terms where iq = 0 and it ̸= 0, we have

⟨ψ|K†
0Kit |ψ⟩ − ⟨ψ|U†Kit |ψ⟩⟨ψ|K†

0U |ψ⟩
= ⟨ψ|U†Kit |ψ⟩ − ⟨ψ|U†Kit |ψ⟩+O(ε3/2)

= O(ε3/2).
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Now, we can neglect the O(ε3/2) term, since multiplying by the remaining ϕ-associated factor O(ε1/2), it will be
O(ε2). A similar cancellation occurs for the terms where iq ̸= 0 and it = 0. We are left with

P log T
S − ⟨Uψ|ρ̃(log T )|Uψ⟩ = 1

T
(1− F )0 +O(ε2)

Finally, since (1− F )0 ∼ O(ε) and P log T
S ∼ 1−O(ε),

(1− F )log T =
P log T
S − ⟨Uψ|ρ̃(log T )|Uψ⟩

P log T
S

=
1
T (1− F )0

1−O(ε)
+O(ε2)

=
1

T
(1− F )0 +O(ε2),

(S12)

which gives Eqn. [3] of the main text.

C. Unitary errors

This calculation comes with one significant caveat. The way we have written K0 = U − εξ looks extremely general,
and one is tempted to conclude that this error suppression works for any such Kraus channel. However, we note
that the behaviour for unitary error channels, where K0 = V is a pure unitary is exceptional and must be considered
separately. To see why that is the case, suppose V = U − εξ is unitary. Then

V V † = (U − εξ)(U† − εξ†)

= 1− ε(Uξ† + ξU†) +O(ε2).

In other words, for V to be unitary to first order we require Uξ†+ ξU† = 0. Now, the base fidelity of such a channel
is,

(1− F )0 = 1− ⟨ψ|U†V |ψ⟩⟨ψ|V †U |ψ⟩
= ε(Uξ† + ξU†) +O(ε2)

= O(ε2).

Since (1 − F )0 ∼ O(ε2), the calculation of the previous section tells us nothing about the error suppression of such
unitary error channels.

In fact, coherent unitary errors cannot be suppressed by gate-based EF. Suppose U(·) = V (·)V †. It is not difficult
to see that the outcome of gate-based EF for any number of ancillas is always ρlog T = V |ψ⟩⟨ψ|V †, hence Flog T = F0.
We conclude that gate-based EF works to suppress stochastic errors only, leaving unitary errors alone. Fortunately,
this still encompasses the vast majority of error channels commonly considered.

III. GUARANTEEING FIDELITY ENHANCEMENT WITH A SINGLE CONTROL QUBIT

We claim that error filtration can enhance fidelity with a single qubit as long as the base fidelity F0 of the apparatus
for the input state |ψ⟩ satisfies F1 >

1
2 . This can be done by setting |ϕ⟩ = |ψ⟩. The final state ρ1 with a single control

qubit is

ρ1 =
1

2
ρ0 +

1

2
ρ20

where ρ0 = U(|ψ⟩⟨ψ|).
The expression for the fidelity is

F1 =
⟨Uψ|ρ1|Uψ⟩

Trρ1
=
F0 + ⟨Uψ|ρ20|Uψ⟩

1 + Trρ20
. (S13)
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The condition F1 > F0 then reduces to

⟨Uψ|ρ20|Uψ⟩ − F0Trρ
2
0 (S14)

To evaluate this, let us write

ρ0 = F0|Uψ⟩⟨Uψ|+ (1− F0)σ, (S15)

where σ is a density matrix satisfying ⟨Uψ|σ|Uψ⟩ = 0. The relevant quantities become

⟨Uψ|ρ20|Uψ⟩ = F 2
0 + (1− F0)

2⟨Uψ|σ2|Uψ⟩ (S16)

Trρ20 = F0 + (1− F0)
2Trσ2 (S17)

Then,

⟨Uψ|ρ20|Uψ⟩ − F0Trρ
2
0 = (1− F0)

[
F 2
0 + (1− F0)

2
(
⟨Uψ|σ2|Uψ⟩ − F0Trσ

2
)]

≥ (1− F0)F0(2F0 − 1) > 0,
(S18)

where we have used ⟨Uψ|σ2|Uψ⟩ ≥ 0,Trσ2 ≤ 1. The above condition is satisfied whenever F0 > 1/2, with F0 = F1

for a coherent channel. Hence, a channel improvement is guaranteed as long as the initial fidelity is greater than 1/2,
representing a minimal condition for which gate-based EF yields some improvement.

IV. ERROR FLOOR FOR BOUNDED FAILURE PROBABILITY

As noted above the expressions do not lend themselves to easy simplification of an arbitrary |ϕ⟩, and we are unable
to make strong statements about the behaviour of the gate-based EF circuit when T ≫ 1/ε in the general case.
However, in the case of channels which admit a |ϕ⟩ for which we can write Ki|ϕ⟩ ∝ |ϕ⟩, not only is the probability of
failure bounded (following conditions 2. and 3. from the previous section), one can show that the state approaches a
well-defined limit as T → ∞. We will show this implies that the O(ε2) terms do not blow up as T → ∞, and represent
an error floor to the scheme.

A. Relation to vacuum extension

The assumption we make for this section is closely related to the concept of a vacuum extension, introduced and
defined Sec. (2c) of [1]. The vacuum extension provides a consistent way to define a superposition of channels. As
[1] points out, the original error filtration scheme [2] is such an example of a superposition of channels. Hence, one
might take the point of view of error filtration as the operationalization of the superposition of channels to suppress
errors. In gate-based EF, as demonstrated in our main results, we have loosened this demand, and do not require our
scheme to strictly carry out a superposition of channels in order to succeed.

We note that any vacuum extension will yield the favourable probability scaling in gate-based EF. Furthermore,
there are various physical systems in which a vacuum extension arises naturally, most notably in optical systems,
where the vacuum extension of a system tends to be the actual electromagnetic vacuum. For instance, one might
encode qubits with polarized light |0(1)⟩ = |H(V )⟩. Since most apparatuses act trivially on the electromagnetic
vacuum, i.e. no input state, one can then define the vacuum extension to a channel using the actual electromagnetic
vacuum.

For our purposes of the calculations in this section, we will not make full use of a rigorous definition of the vacuum
extension. Instead, it will be sufficient for us to define a state |ϕ⟩ such that,

Ki|ϕ⟩ =
√
q
(i)
ϕ |ϕ⟩, (S19)

where q
(i)
ϕ can be interpreted as the probability of the Kraus operator Ki occurring given |ϕ⟩ as an input state to the

apparatus. For convenience, We will refer to any state |ϕ⟩ with these properties relative to our channel of interest as
a pseudo-vacuum state.
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B. Mixed unitary error channels

1. Two unitaries

We first consider the simplest possible model where K0 =
√
1− pU and K1 =

√
pV , where U, V are unitary

operators. We assume the existence of a psuedo-vacuum state |ϕ⟩ relative to this channel,

K0|ϕ⟩ =
√
1− p|ϕ⟩, K1|ϕ⟩ =

√
p|ϕ⟩. (S20)

Now suppose we are given an input state |ψ⟩. To be as restrictive as possible, we can pick the minimum fidelity
state |ψ⟩ in the input space, but this will not matter for our calculation. We can express the action of V on |ψ⟩ as:

V |ψ⟩ = eiν cos θ|Uψ⟩+ sin θ|Uψ⊥⟩. (S21)

with ν chosen so that θ ∈ [0, π/2]. Note that we have to keep this phase around because it affects the outcome of
gate-based EF when T > 1. |Uψ⊥⟩ is simply the part of the state that is orthogonal to |Uψ⟩.
The fidelity for this state is

F0 = 1− p+ p cos2 θ = 1− p sin2 θ. (S22)

Now we want to evaluate F∞, which is the fidelity approached by gate-based EF as T → ∞. As T → ∞, the output
density matrix turns out to approach a pure state:

|ψ∞⟩ ∝ (1− p)U |ψ⟩+ pV |ψ⟩ (S23)

= (1− p+ peiν cos θ)|Uψ⟩+ p sin θ|Uψ⊥⟩. (S24)

To see why this is the case, consider the density matrix for arbitrary T . Consider a single error configuration, where
for the some set of branches I0 where |I0| = m, the black box carries out K0 and in the rest of the T −m branches it
carries out K1. Prior to measuring the control register, this corresponds to the state

1√
T

∑
t∈I0

|t⟩K0|ψ⟩Km−1
0 KT−m

1 |ϕ⟩+ 1√
T

∑
t/∈I0

|t⟩K1|ψ⟩Km
0 K

T−m−1
1 |ϕ⟩ (S25)

=
1√
T
(1− p)m/2p(T−m)/2

∑
t∈I0

|i⟩U |ψ⟩+
∑
t/∈I0

|i⟩V |ψ⟩

 |ϕ⟩. (S26)

Tracing out the vacuum register and measuring the control register, we are left with

1√
2T

(1− p)m/2p(T−m)/2 (mU |ψ⟩+ (T −m)V |ψ⟩) (S27)

We see that since the action on the pseudo-vacuum state is trivial, this state only depends on the number of
times K0,K1 are applied in this particular error configuration. Thus all error configurations with the same m,T −m
distribution of Kraus operators coherently combine in the final density matrix, giving a T choose m enhancement to
this state, such that the final (unnormalized) density matrix is

ρT =

T∑
m=1

1

2T

(
T

m

)
(1− p)mpT−m (mU |ψ⟩+ (T −m)V |ψ⟩) (mU |ψ⟩+ (T −m)V |ψ⟩)† (S28)

Now, we know from the binomial distribution that as T → ∞ that when viewed as a function ofm,
(
T
m

)
(1−p)mpT−m

is sharply peaked around m = (1− p)T . Thus for T → ∞,

ρ∞ ≃ ((1− p)U |ψ⟩+ pV |ψ⟩) ((1− p)U |ψ⟩+ pV |ψ⟩)† (S29)

which is the pure state |ψ∞⟩. This provides a rigorous sense in which we are converting a mixture of states U |ψ⟩, V |ψ⟩
into a superposition. The trace and fidelity of this state are

Trρ∞ = (1− p+ peiν cos θ)2 + p2 sin2 θ, (S30)

⟨Uψ|ρ∞|Uψ⟩ = (1− p+ peiν cos θ)2, (S31)

F∞ =
(1− p+ peiν cos θ)2

(1− p+ peiν cos θ)2 + p2 sin2 θ
. (S32)
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We are interested in two questions. First, when does this represent an improvement on the base fidelity – in other
words, when is F0 < F∞? Second, in the small parameter case, what does this mean for the O(ε2) terms?
First, if ν is known, then we can simply write down F0 < F∞ in terms of p, ν as

1− p+ p cos2 θ <
(1− p+ peiν cos θ)2

(1− p+ peiν cos θ)2 + p2 sin2 θ
. (S33)

Note that expression, unlike the single qubit control case, does not furnish a condition on F0, since F0 contains no
information about ν. It will be useful for us to pare down this requirement even more to a condition stated only in
terms of p, since p, 1− p are easily determined.

It is instructive to consider the two extremal values ν = 0, π. ν = 0 corresponds to constructive interference in
the final state and ν = π corresponds to destructive inteference. The ν = 0 case showcases how phase coherence can
amplify the effects of error filtration. However, we will make the pessimistic assumption that ν = π in order to obtain
a minimal and single-variable success condition, since

F (|ψ∞⟩) > F ((1− p− p cos θ)|Uψ⟩+ p sin θ|Uψ⊥⟩) ≡ F ′
∞, (S34)

where F (·) refers to the fidelity of the state (·). With this, the pessimistic success condition is

1− p+ p cos2 θ = F1 < F ′
∞ =

(1− p− p cos θ)2

(1− p− p cos θ)2 + p2 sin2 θ
. (S35)

To simplify, we write cos θ in terms of F1 and solve for p. Subject to the constraints 0 ≤ p ≤ 1, 1− p ≤ F1 < 1, this
yields

p <
1

4
, or (S36)

1

4
< p <

1

2
and 1− p < F <

1

4p
. (S37)

The first condition is easy to interpret. The inequality p < 1
4 asserts that the probability of V is sufficiently small

that the final state resembles |Uψ⟩ despite possible destructive interference due to ν. The second condition provides
for the possibility that the interference can be quite possibly be quite large, given both a destructive phase and a
larger probability of V . However, the upper bound on F in that case serves to bound the size of cos θ and thus the
size of the destructive interference.

In terms of F1, this establishes two regions of success, although F1 alone cannot yield a sufficient condition over
this entire range. As we will see shortly, the first condition generalizes more readily to more complicated channels.

Finally, let us consider where the small parameter regime fits in this picture. Let 2p = ε ≪ 1 so that K0 is of the
form U − εA+O(ε2). Then we can expand F∞ as

F∞ =
1− ε(1 + eiν cos θ) + 1

4ε
2(1 + eiν cos θ)2

1− ε(1 + eiν cos θ) + 1
4ε

2[(1 + eiν cos θ)2 + sin2 θ]

= 1− 1

4
sin2 θε2 +O(ε2).

(S38)

This reaffirms the small parameter scaling we derived earlier, as FT→∞ → 1−O(ε2). Furthermore, the coefficient of
ε2 as T → ∞ approaches a T independent limit and does not blow up. Hence, we can interpret it as an error floor to
gate-based EF under the assumptions in this section.

2. Many unitaries, with K0 perfect

Now we consider the case of a mixed unitary error channel with K0 ∝ U and multiple unitary errors possible, so
that

K0 =
√
1− pU, Ki ̸=0 =

√
pλiVi, (S39)

where
∑
i λi = 1. We write the action of V on |ψ⟩ as

Vi|ψ⟩ = eiνi cos θi|Uψ⟩+ sin θi|Uψ⊥
i ⟩. (S40)
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Again, we choose ν such that θ ∈ [0, π/2]. The base fidelity is

F0 = 1− p+ p
∑
i

λi cos
2 θi. (S41)

Following the same argument as the two unitary case, we find

|ψ∞⟩ = (1− p)U |ψ⟩+ p
∑
i

λiVi|ψ⟩ = (1− p+ p
∑
i

λie
iνi cos θi)|Uψ⟩+ p

∑
i

λi sin θi|Uψ⊥
i ⟩ (S42)

To derive a minimal success condition in the same spirit as before, we note that the fidelity is minimized when
νi = −π for all i. This corresponds to constructive interference between all the |Uψ⊥

i ⟩, which is greatest when they
are all parallel, i.e. |Uψ⊥

i ⟩ = |Uψ⊥⟩ for all i. Let

|ψ′
∞⟩ = (1− p− p

∑
i

λi cos θi)|Uψ⟩+ p
∑
i

λi sin θi|Uψ⊥⟩. (S43)

Then

F (|ψ∞⟩) > F (|ψ′
∞⟩) ≡ F ′

∞, (S44)

and it will be sufficient for us to say F1 < F ′
∞. We calculate F ′

∞:

F ′
∞ =

(1− p− p
∑
i λi cos θi)

2

(1− p− p
∑
i λi cos θi)

2 + p2 (
∑
i λi sin θi)

2 . (S45)

The F0 < F∞ condition now reads:

1− p+ p
∑
i

λi cos
2 θi <

(1− p− p
∑
i λi cos θi)

2

(1− p− p
∑
i λi cos θi)

2 + p2 (
∑
i λi sin θi)

2 . (S46)

So far the above still contains p, θi, λi. We’d like to reduce it to just p. To do so, we will wrestle it into the form
we’ve already solved for the two unitary channel. To do so, we note the trivial bound

F1 = 1− p+ p
∑
i

λi cos
2 θi < F ′

1 = 1− p+ p cos2 θmax (S47)

where cos θmax is the maximum possible value cos θi can take. F∞ is similarly lower bounded by

F ((1− p− p
∑
i

λi cos θi)|Uψ⟩+ p
∑
i

λi sin θi|Uψ⊥⟩) > F ((1− p− p cos θmax)|Uψ⟩+ p sin θmax|Uψ⊥⟩) (S48)

where sin θmax is the minimum possible value of sin θi. Then our condition will be fulfilled if we have

1− p+ p cos2 θmax <
(1− p− p cos θmax)

(1− p− p cos θmax)2 + p2 sin2 θmax
(S49)

which reduces to the two unitary case. Hence, applying the results of the previous section,

p <
1

4
(S50)

is a minimal single parameter success condition.

3. Many unitaries, with K0 imperfect

Our next generalization is to allow K0’s action on |ψ⟩ to have a perpendicular component |Uψ⊥⟩, such that

K0|ψ⟩ =
√
1− p cos θ0|Uψ⟩+

√
1− p sin θ0|Uψ⊥⟩. (S51)
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We assume that cos θ0 > 1/2, otherwise one can hardly call the apparatus something that attempts to carry out the
operation U . In particular, cos θ0 < 1/2 would imply F1 < 1/2, a situation which we will try to avoid entirely.
The action of Ki ̸=0 on |ψ⟩ is defined as before. Again, we will deal with the two operator case first, for which

F0 = (1− p) cos2 θ0 + p cos2 θ1. (S52)

To derive a condition on U , we will bound the limiting fidelity F
(K)
∞ associated with U with the limiting fidelity

F
(L)
∞ associated with a different channel L. Consider such a Kraus channel L with three operators L0, L

′
0, L1, whose

action on |ψ⟩ are defined by

L0|ψ⟩ =
√
(1− p) cos θ0|Uψ⟩ (S53)

L′
0|ψ⟩ =

√
(1− p) sin θ0|Uψ⊥

0 ⟩ (S54)

L1|ψ⟩ = K1|ψ⟩ (S55)

where L0, L
′
0 are proportionate to unitaries, so that their action on the pseudo-vacuum extension is, by assumption,

L0|ϕ⟩ =
√

(1− p) cos θ0, (S56)

L′
0|ϕ⟩ =

√
(1− p) sin θ0, (S57)

L1|ϕ⟩ = K1|ϕ⟩. (S58)

First let’s check if this channel is physical. We have

Tr (L0|ψ⟩⟨ψ|L0) = (1− p) cos2 θ0 (S59)

Tr (L′
0|ψ⟩⟨ψ|L′

0) = (1− p) sin2 θ0 (S60)

Tr (L1|ψ⟩⟨ψ|L1) = p (S61)

which add up to 1. Hence, by defining the action of Li on the rest of the Hilbert space appropriately, we can construct
a valid Kraus channel with these properties.

The fidelity of L on |ψ⟩ is

F
(L)
0 = (1− p) cos2 θ0 + p cos2 θ1 = F1 (S62)

The T → ∞ limits for U ,L before measurement of the control register are given by the pure unnormalized states,

|ψ(K)
∞ ⟩ =

[
(1− p) cos θ0 + peiν1 cos θ1

]
|Uψ⟩+ (1− p) sin θ0|Uψ⊥

0 ⟩+ p sin θ1|Uψ⊥
1 ⟩

|ψ(L)
∞ ⟩ =

[
(1− p) cos2 θ0 + peiν1 cos θ1

]
|Uψ⟩+ (1− p) sin2 θ0|Uψ⊥

0 ⟩+ p sin θ1|Uψ⊥
1 ⟩

(S63)

We observe that if −π/2 < ν < π/2 implies that

F (|ψ(K)
∞ ⟩) > F (|ψ(L)

∞ ⟩) (S64)

since cos θ0 − cos2 θ0 > sin θ0 − sin2 θ0 > 0, so |ψ(L)
∞ ⟩ has a relatively larger component in |Uψ⟩. If π/2 < ν < 3π/2,

then we just have to ensure (1− p) cos θ0 > p cos θ1 for the same thing to be true, which can be ensured by 1− p > p.
Thus we only have to show that the condition holds for the channel specified by Kraus operators Li. We have done

this already, and re-using the minimal condition we found earlier with (1− p) 7→ (1− p) cos2 θ0, we have the condition

(1− p) cos2 θ0 >
3

4
, (S65)

which straightforwardly generalizes to as Kraus operators Ki̸=0 as we want.

C. Channels with non-unitary Kraus operators

Finally, we deal with the most general case, where Ki can be non-unitary and K0 can be imperfect. In that case
the probability of Ki is state dependent. The key insight here is to realize that as T → ∞, the Kraus operators have
well-defined probability given by

q
(i)
ϕ ≡ ⟨ϕ|K†

iKi|ϕ⟩, (S66)
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because at each time step, we feed the apparatus T − 1 copies of |ϕ⟩ and only a single copy of |ψ⟩. Note that Ki is
effectively unitary on |ϕ⟩.
To generalize our previous results, we simply have to replace 1− p with q

(0)
ϕ and pλi with q

(i)
ϕ in the expression for

F∞. If q
(0)
ϕ = 1 − p as with the unitary case, then q

(0)
ϕ > 3/4 will suffice. Since K0|ψ⟩ has the largest component of

|Uψ⟩, if q(0)ϕ > 1− p can only increase F∞. Thus our condition becomes

q
(0)
ϕ > q

(0)
ψ >

3

4 cos2 θ0
. (S67)

V. ISOMORPHISM WITH ERROR FILTRATION FOR QUANTUM COMMUNICATION

In the event we have a psuedo-vacuum state |ϕ⟩ available to us (see Sec. IVA), our scheme is explicitly isomorphic
to the original error filtration proposal in the ideal case [2, 3]. We will characterize this in the T = 2 case, with the
more general T following straight-forwardly. For simplicity, suppose our ideal unitary is the identity, as is the case
for a quantum communication task. Let the state we want to transmit be

|ψ⟩ = α|0⟩+ β|1⟩. (S68)

The effect of multiplexing in error filtration is to encode this in a W-state [3]. For T = 2, this becomes

αâ†0 + βâ†1 7→ 1√
2
α
(
â†0 + b̂†0

)
+

1√
2
β
(
â†1 + b̂†1

)
, (S69)

where âi, b̂i refer to some kind of encoding in a photonic mode.
Explicitly writing this out in the fock basis, we have

1√
2
α|1, 0, 0, 0⟩+ 1√

2
β|0, 1, 0, 0⟩+ 1√

2
α|0, 0, 1, 0⟩+ 1√

2
β|0, 0, 0, 1⟩ (S70)

In gate-based EF, we pair the state |ψ⟩ with |+⟩ and attach |ϕ⟩ states, which looks like

1√
2
|0⟩ (α|0⟩+ β|1⟩) |ϕ⟩+ 1√

2
|1⟩ (α|0⟩+ β|1⟩) |ϕ⟩ (S71)

7→ 1√
2
α|00⟩|ϕ⟩+ 1√

2
α|10⟩|ϕ⟩+ 1√

2
β|01⟩|ϕ⟩+ 1√

2
β|11⟩|ϕ⟩ (S72)

Written in this way one can clearly see the one-to-one correspondence of kets in either scheme. Due to the principle
of superposition, we can deal with each ket individually. If the error operators only act trivially on the state |ϕ⟩ (in
gate-based EF) and the vacuum (in EF for quantum communication), then we can carefully map the effective error
on each ket in gate-based EF to an error on each ket in error filtration.

More formally it was observed in Eqn. (3.1) of [1], there exists a unitary operation that connects a spatially separated
quantum superposition of paths into a quantum superposition of paths over an additional register:

U(|0⟩ ⊗ |ψ⟩) = |ψ⟩ ⊗ |Ω⟩ (S73)

U(|1⟩ ⊗ |ψ⟩) = |Ω⟩ ⊗ |ψ⟩. (S74)

By appending the state |ϕ⟩, one can embed this in an isomorphism U ′ that maps gate-based EF states to error
filtration states.

VI. ANCILLA ERRORS

A. Effect of ancilla errors

Finally, we work out the effect of ancilla errors. We will consider X and Z type errors, or bit flips and phase flips,
on the control register and their effects on the fidelity and success probability of gate-based EF.
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(1) (2) (3)

FIG. S2: Gate-based EF with T = 2, with potential control fault locations highlighted in red.

1. Bit flip errors

A bit flip error on the ancilla can potentially ruin the whole query. To see why this happens, we consider the T = 2
case, for which the circuit is depicted in Fig. S2. We consider the 3 potential fault locations highlighted in red. For
simplicity, suppose the bit flip errors occur in a run where the black box happens to apply the perfect unitary U each
time. We will show that a bit flip in any of these indicated fault locations in general leads to the failure of the query.

1. A bit flip in location (1) leads to the state (before measurement and tracing out the active register)

|+⟩ ⊗ U |ϕ⟩ ⊗ U |ψ⟩ (S75)

such that the final state is U |ϕ⟩, which in general is unrelated to the state we want. Since the control register is
in the |+⟩ state, an error in this location is maximally bad, as the final measurement will post-select U |ϕ⟩ with
unit probability.

2. A bit flip in location (2) leads to a double query of each of the participating states:

1√
2
|0⟩|ψ⟩U2|ϕ⟩+ 1√

2
|1⟩U2|ψ⟩|ϕ⟩, (S76)

which does not contain our desired state U |ψ⟩ at all.
3. A bit flip in location (3) leads to the same final state as (1).

To estimate the effect of such errors on the final scheme, suppose the black box takes a time τU to run, and the
error rate of each control ancilla is εbf . We assume that τU is much longer than the idle time of the control ancilla
between the controlled-SWAPs on different branches, as well before and after the first and final queries.

For larger values of T , we can assume any such error of the type described by fault locations (1), (3) have a 0
contribution to the fidelity, and do not affect the post-selection probability. To first order in εC we expect the final
infidelity to account for this as

(1− F )log T ≃ 1

T
(1− F )0 + τUεbfT log T. (S77)
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Due to the disastrous potential of bit flip errors, we emphasize that gate-based EF should only be applied when
the error hierarchy in the main text is respected with regard to bit flip errors on the control register. The above
expression allows us to concretely estimate the error hierarchy required to handle bit flip errors. For gate-based EF
to yield an overall error suppression, we require

1

T
(1− F )0 + τUεbfT log T < (1− F )0 (S78)

We can expressing the error hierarchy as a ratio between τUεbf and (1− F )0, we have

τUεbf
(1− F )0

<
T − 1

T 2 log T
≃ 1

T log T
. (S79)

This tells us that minimally, for T = 2, we need the error rate on ancilla qubits to be less than 1/2 the base infidelity
of the apparatus. Furthermore, this indicates that for a set-up with ancilla errors, there is an optimal T beyond which
gate-based EF no longer yields any advantage. This optimal T is depicted for the case of QRAM in [FIG].

2. Phase flip errors

Since phase flip errors on the control register commute with any controlled-SWAP operation, a phase flip error on
fault location (1), (2) or (3) will have the same effect. Let εpf be the phase flip error rate on each control qubit. The
presence of a phase flip error anywhere can be commuted to the end of the circuit, where the Hadamard transforms
it into a bit flip error, upon which such an error causes the output of the circuit to be rejected.

This means that to first order in ε, εpf , phase flips do not affect the fidelity at all. Since phase flip errors are
detected, we expect there to be a decrease in success probability, to first order given by

∆Ppf ≃ τUεpfT log T (S80)

In conclusion, the effect of phase flip and bit flip errors are well-characterized. Knowing the quantities τU , εbf , εpf , F0

then allows one to see whether the error hierarchy is respected and make a decision as to whether to carry out gate-
based EF, as well as to what extent T .

3. Memory errors

A final category of ancilla error to consider are memory errors. These are most likely to happen to the memory
register while the active register is querying the apparatus. Any error during this time is deleterious to the final query,
as it will result in an error on |ψ⟩ or U |ψ⟩ in the T − 1 inactive branches of the query. Such errors contribute in the
same way to the fidelity and error hierarchy as bit flips.

B. Numerical expansion of error suppressed QRAM with ancilla errors

Unfortunately, to perform a full simulation of both the gate-based EF applied to QRAM with errors in both ancilla
and QRAM qubits is extremely computationally taxing. Instead, to observe the qualitative performance of gate-based
EF under ancilla errors, it will suffice to perform a first order expansion of the infidelity and failure probabilities.

To do so, we assume the infidelity and failure probabilities have the form

(1− F )log2 T ≃ (1−Nlocε
′)(1− F )

(0)
log2 T

+ ε′
∑

η∈err. loc.

(1− F )
(1),η
log2 T

, (S81)

Plog2 T,fail ≃ (1−Nlocε
′)P

(0)
log2 T,fail

+ ε′
∑

η∈err. loc.

P
(1),η
log2 T,fail

, (S82)

where Nloc is the number of ancilla error locations in the circuit, ε′ is the probability of error per ancilla error location.
The superscript (0) indicates the bare infidelity and probability of failure without ancilla errors, as calculated in the
main text. The superscript (1), η requires a little more explanation. η indexes ancilla error locations in the circuit,
and the superscript (1), η refers to the infidelity/probability of failure given an error in location η but nowhere else.



14

0 1 2 3 4
Control ancillas log2 T

0.05

0.10

(1
−
F

) l
og

2
T

(a)
anc. X errors

0 1 2 3 4
Control ancillas log2 T

0.0

0.1

0.2

1
−
P

(S
)

lo
g

2
T

(b)
anc. X errors

0 1 2 3 4
Control ancillas log2 T

0.00

0.05

0.10

(1
−
F

) l
og

2
T

(c)
anc. Z errors

bit flip dephasing depolarizing

0 1 2 3 4
Control ancillas log2 T

0.0

0.1

0.2

0.3

1
−
P

(S
)

lo
g

2
T

(d)
anc. Z errors

FIG. S3: Gate-based EF applied to QRAM with ancilla errors, for QRAM depth logN = 2. (a, b) Numerically estimated
infidelity and probability of failure against number of control ancillas subject to X errors at a rate ε′ = 0.001. QRAM errors

occur at rate 0.01 per qubit per time step. (c, d) Same as (a, b) but for control ancilla subject to Z errors.

As such, the above expressions account for the first order expansion in ancilla errors, by discarding the possibility of

errors occurring in both ancilla and QRAM at the same time. (1− F )
(1),η
log2 T

, P
(1),η
fail are then calculate numerically.

In this manner, expanding with X,Z errors in the ancillas yields the plots in Fig. S3. Note the qualitative features
of these plots – (1) Ancilla X errors eventually overcome the error suppression from gate-based EF, and we have
an optimal T for which the overall infidelity is lowest. (2) Probability of failure still appears to plateau with ancilla
X errors. (3) Ancilla Z errors do not to first order affect the infidelity scaling. However, this comes at the cost of
increased failure probabilities.

To illustrate the idea that there is an optimal T for a given cSWAP and QRAM error rate, we plot infidelity against
both ancilla bit flip rate (since only X errors affect infidelity) and the number of control ancillas in Fig. S4a. In
Fig. S4b, we make a qualitative version plot of the “EF advantage”, where a data point is depicted as green if adding
one control ancilla improves the overall fidelity for a given ancilla bit flip rate. We observe that for each error rate,
there is an optimal working point for T , given by the right-most green entry.
Using the perturbative expression, we can gain some insight into two questions. Given ancilla bit flip errors: (1)

When does gate-based EF give an advantage with a single control qubit? (2) What is the maximum T for which we
still expect gate-based EF to yield better fidelities than the original black box operation?

For (1), we require that (1− F )2 > (1− F )0. In this case, Nloc ∼ O(1), and we write this as a constant C = Nloc,

and (1 − F )
(0)
2 ≃ (1 − F )0/2. Conservatively, we can bound (1 − F )

(1),η
log2 T

< 1. Substituting these expressions into

Eq. (S81), we require

(1− F )0 > (1− Cε′)
1

2
(1− F )0 + Cε′. (S83)

Solving for ε′, we find that we require an ancilla bitflip rate

ε′ <
1

2C
(1− F )0 +O((1− F )0)

2, (S84)

which demonstrates that we only need ε′ to be less than the infidelity of the black box up to a constant factor.
For (2), we require that (1 − F )log2 T > (1 − F )0. In this case, the only difference from the above is that we have
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Nloc ∼ O(T log2 T ). Performing the same calculation, we find that we require

ε′ <
1

O(T log2 T )
(1− F )0 +O((1− F )0)

2 +O

(
1

T

)
. (S85)

Note that the above gives the condition for which having control ancillas still gives an improvement on the original
black box fidelity. However, we only need to satisfy Eq. (S84) for gate-based EF to give some advantage.
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FIG. S4: (a) Infidelity for a depth 2 QRAM with gate-based EF against number of control ancillas (horizontal axis) and
ancilla bitflip rate (vertical axis). (b) Plot of “EF advantage” for the same data. The entry is green if adding the ancilla

increases the fidelity for the given error rate, and red otherwise.

C. Mitigating bit flip errors with a flag qubit

|0⟩
|0⟩

|ψ⟩

|ϕ⟩
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Active 𝒰 𝒰

H H

= 0

= 0
ρψ

FIG. S5: Gate-based EF with a single control qubit (T = 2) and a flag qubit to detect bit flip errors in the ancilla.

In the preceding discussion, we showed that bit flip errors on the control qubit can be problematic for gate-based
EF. Fortunately, the “control” part of the cSWAP acting on the ancilla commutes with the Z operator. Hence, we
can use a single flag qubit to detect bit flip errors in the ancilla [4]. In Fig. S5, the first hadamard and cNOT encode
the flag and control in the ZZ = +1 subspace. The final cNOT allows us to measure the parity of the flag and
control qubit. If the parity is odd, the flag measurement will yield |1⟩, and we will know that a bit flip error must
have occurred on either the flag or control qubit. In that case, we can discard the outcome and restart the procedure.
This reduces the impact of bit flip errors on the fidelity quadratically (since two bit flip errors must occur for the
bit flips to be undetectable), at the cost of a decreased probability of success. The flag qubit assisted scheme above
generalizes easily to log T control qubits, by similarly appending a flag to each control qubit. This provides a way to
mitigate the effect of bit flip errors on the ancilla with relatively low overhead.
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VII. OPTICAL IMPLEMENTATIONS OF THE CONTROL REGISTER

In this section, we point out several optical schemes for implementing the cSWAP operation crucial for gate-based
EF. First, we note that the control register essentially acts as an addressing register in either a QRAM or Quantum
Read-Only Memory (QROM) [5], with the memory register acting as the data to be queried, hence proposals (such as
provided in the original BB-QRAM proposal [6]) for such quantum memories may be adapted to carry out the cSWAPs
required for gate-based EF. Furthermore, several proposals for optical implementation of the cSWAP operations
required for QRAM have been put forth since [6], which show that it is possible with multiple different encodings. For
instance, [7] proposes an implementation using frequency-encoded optical qubits, and [8] proposes an implementation
using fock state encoded qubits.

Finally, for concreteness, we highlight here an additional scheme by which one can carry out an optical cSWAP.
The cSWAP operation can be decomposed into a fifty-fifty beam-splitter operation on the active and memory register,
followed by a controlled-Z between the control and active register, followed by the inverse beam-splitter operation
on the active and memory register (see Fig. 13b of [9]). To achieve such an operation, we use optical polarization
qubits for the active and memory registers, where the |0⟩, |1⟩ logical states are encoded in the horizontal and vertical
polarization states |H⟩, |V ⟩. The beam-splitter operations can then be carried out using linear optics. Finally, to get
a controlled-Z operation, we can use the first half of the Duan-Kimble scheme [10] by encoding the control qubit in a
three-level atom, which will allow us to carry out a controlled-Z between the control qubit and the polarization-encoded
memory register.
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