A LETTERS JOURNAL EXPLORING
THE FRONTIERS OF PHYsICS

September 2008

EPL, 83 (2008) 66006
doi: 10.1209/0295-5075/83/66006

www.epljournal.org

Fracture through cavitation in a metallic glass

E. BoucHaup!®  D. Borvin?, J.-L. PoucHou?, D. BoNamy!, B. PoON? and G. RAVICHANDRAN®

L' C.E.A.-Saclay, DSM/DRECAM/SPCSI - 91191 Gif-Sur-Yvette Cedex, France, EU
2 ONERA, DMMP - 29 Avenue de la Division Leclerc, 92322 Chatillon Cedex, France, EU
3 California Institute of Technology, Division of Engineering and Applied Science - Pasadena, CA 91125, USA

received 3 February 2008; accepted in final form 4 August 2008

published online 11 September 2008

PACS 62.20.mm — Fracture
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Abstract — The fracture surfaces of a Zr-based bulk metallic glass exhibit exotic multi-affine
isotropic scaling properties. The study of the mismatch between the two facing fracture surfaces as
a function of their distance shows that fracture occurs mostly through the growth and coalescence
of damage cavities. The fractal nature of these damage cavities is shown to control the roughness

of the fracture surfaces.
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Introduction. — Since the pioneering work of Mandel-
brot et al. [1], the statistical characterization of fracture
surfaces has been a very active field of research. The
fracture surfaces of various materials have shown surpris-
ing scaling properties (see for example [2—4] for reviews)
over a wide range of length scales. Fracture profiles of
materials as different as metallic alloys [5-10], silicate
glasses [11,12], quasi-crystals [13], rocks [14], mortar [15],
sea ice [16], and wood [17,18] have shown to be self-affine,
with a roughness exponent (~3/4 in spite of huge
differences in the fracture mechanisms. It was therefore
suggested [5,19] that ¢ might have a universal value, i.e.,
independent of the fracture mode and of the material.

More recently, it has been shown [11,13] that frac-
ture surfaces are anisotropic, i.e. when profiles along the
direction of crack propagation are considered, the rough-
ness exponent is equal to $~0.6. Bonamy et al. [12]
have shown that the set of exponents {¢ ~0.75,5~0.6}
define a universality class corresponding to length scales
smaller than the process zone size, where non linear elastic
processes take place. Above this process zone size, another
university class is observed [12,20,21] characterized by a
set of exponents {¢ ~ 0.4, 3~ 0.5} that can be understood
theoretically within the Linear Elastic Fracture Mechanics
framework.

A third regime arises at very small length scales, char-
acterized by a roughness index close to ¢ ~ 0.5, observed
in a metallic alloy and in a soda-lime silicate glass [8—10]
along a direction perpendicular to the direction of
crack propagation. This regime was suggested [22] to be
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characteristic of small damage cavities, i.e. of cavities
small enough that they grow through surface enlargement
rather than through front propagation.

In the present work, the morphology of the fracture
surfaces of a bulk Zr-based metallic glass is investigated.
We show that although these fracture surfaces are char-
acterized by a roughness index close to 0.55 at all scales
of observation, both in the directions perpendicular and
parallel to crack propagation, they are clearly multi-affine.
Through the mismatch between two opposite fracture
surfaces, we analyze the appearance and growth of damage
cavities. It is shown that their coalescence gives rise to
fracture. Their fractal nature —their fractal dimension is
close to 1.43— is shown to be what triggers the roughness
of the fracture surfaces.

Experiment. — The studied fracture surface is
obtained from a Zr-based bulk metallic glass (Vitreloy
1) [23] notched sample subjected to uniaxial tension.
Vitreloy 1 is one of these new bulk glass-forming metallic
alloys with COHlpOSitiOIl Zr41_2T113_80u12.5Ni10B622_5,
which exhibits high resistance with respect to crystalliza-
tion in its wide supercooled liquid region. Its mechanical
properties [24] —high strength to density ratio and high
yield stress— make it a very good candidate for structural
applications.

We use a dog-bone shape specimen 21.4 mm long in the
y tensile direction; Its basis has a surface of 3 x 4.8 mm?
within the zz fracture plane. The initial 0.5 mm notch lies
along the z-axis and its front is parallel to the z-axis.
Displacement of the grips is controlled at a strain rate of
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Fig. 1: Opposite fracture surfaces observed through stereo pairs
with SEM. Left: the two opposite fracture surfaces (up and
down) observed at magnification x100 (image size 804 pum);
Right: magnification %3000 (image size 26.8 um). z is the
direction of crack propagation, while the initial notch is parallel
to the z-direction. xzz thus define the fracture plane.

10~*s~L. Fracture occurs for a stress of 1.9GPa and a
strain of 2%.

The morphology of the fracture surfaces is studied from
digital elevation maps (DEM) obtained by 3D reconstruc-
tion from stereoscopic SEM images [25]. Two images of
the same surface are recorded for two different tilt angles
of the specimen, and treated by a specific software [25]
to compute the elevation map of the scanned surface. In
this experiment at all magnifications, Scanning Electron
Microscope (SEM) pictures have been acquired at 0° and
10° (tilt angles), in 256 grey levels and 1024 x 1024 pixels
size, on a Field Emission Gun SEM (FEG-SEM, ZEISS
Gemini).

Each surface is studied at three magnifications for which
DEMs are produced: x100, x300 and x3000. Figure 1
shows the two fracture surfaces at magnifications x100
and x3000. At low enough magnification (x100 —see
fig. 1— and x300) the surfaces are obviously anisotropic
in shape, with elongated leaf-like structures aligned along
the direction x of crack propagation.

Roughness analysis of the fracture surfaces. —
The roughness of the surfaces is estimated first along
directions parallel and perpendicular to crack propa-
gation, through the computation of the second-order
moments Ah(Az) and Ah(Az) of height differences
between points distant of Az (respectively, Az) along
(respectively, perpendicularly to) the direction z of crack
propagation. The results obtained for the six surfaces are
gathered in the log-log plot of fig. 2. Ah(Ax) (respectively,
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Fig. 2: Ah(Ax) on a log-log plot exhibits a power law behaviour
with exponent §=~0.55 from Az~ 0.06 um to Az ~ 800 pm,
i.e. over more than four decades of length scales. Inset: Ah(Az)
on a log-log plot exhibits a power law behaviour with exponent
(~0.54 from Az~ 0.3 um to Az ~ 300 um.

Ah(Az)) exhibits a power law increase with a roughness
exponent 3= 0.55 (respectively, ¢ =~ 0.54).

In a second step, we compute the statistical distribution
of height increments Ah between points separated by
a distance Az along the direction z of the crack front.
The resulting probability distribution function P(Ah) is
plotted in fig. 3a. If our profiles were perfectly mono-affine,
i.e. if all the moments of the heights distribution were
characterized by the same roughness exponent ¢~ 0.55,
the statistics of h increments at scale Az would involve
a unique relevant length Az¢. In this case, the rescaling
Ah — Ah/Az¢ and P — Az¢P would ensure a collapse of
all the curves onto a single master curve. Such a collapse
is clearly not observed in the present case (fig. 3b). Hence,
Az¢ is not the only relevant length at scale Az, which
reveals a clear multi-affine behaviour. Fracture surfaces in
metallic glass exhibit multi-affine scaling contrary to what
is commonly observed in other materials [26-28]. However,
we suspect that the tails of the distribution are mostly due
to high cliffs which are the signature of overhangs that our
technique cannot capture (see discussion below).

Cavity formation. — We use the Frasta method
[29,30] to reconstruct cavity formation during the fracture
process. This method is based on the observation that
for ductile materials, the mismatch between the opposite
fracture surfaces (see fig. 1 and fig. 4b) is due to the
formation of damage cavities ahead of the crack front.
These cavities leave their imprints on the fracture surfaces
which then do not perfectly fit one another.

For each pair of opposite fracture surfaces (magnifica-
tions x100, x300 and x3000), we first cross-correlate the
two surfaces in order to get the best possible matching.
Prior to the computation of the cross-correlation, an
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Fig. 3: Top: probability distribution function P of height
increments Ah for various values of Az. Bottom: PAz¢ as a
function of Ah/Az¢. There is no collapse of the curves.

average plane is substracted from each surface. Then,
for each magnification, the positions of the upper and
lower fracture surfaces are inverted, i.e. the upper surface
is virtually placed underneath the lower one, and then
“pulled” upwards so that the two surfaces start inter-
penetrating each other (see fig. 4). For each distance Ay
between the two surfaces (Ay =0 corresponding to the
same average plane for the two surfaces), we substract
one surface from the other, a cavity being defined as the
zone where the upper fracture surface is higher than the
lower one (see fig. 4).

For magnification x3000, the total number of cavities
per unit area is plotted as a funtion of distance Ay between
the two opposite surfaces in fig. 5. It shows a maximum for
a distance Ay ~ —0.7 to —0.4 pm which corresponds to a
cavity surface fraction of ~ 0.24. Figure 6 shows that: i) the
curve in fig. 5 is only weakly asymmetric with respect to
the maximum, since both curves shown here are plotted
as functions of the absolute value of ¥ = Ay + 0.6 (um);
ii) the surface fraction of cavities behaves as a power law

Fig. 4: (a) Cavities in grey levels for Ay = —0.6 ym. (b) Sketch
of the method: surface 1 is the lower fracture surface and
surface 2 is the upper one. Their relative positions are first
inverted (surface 1 is put on top of surface 2 as shown here),
and they are subsequently pulled toward each other. Whenever
surface 1 comes under surface 2, this is interpreted as a damage
cavity (dark filling in the sketch above).
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Fig. 5: Evolution of the number of cavities per unit area as a

function of distance Ay between the two fracture surfaces. The
maximum corresponds to a coverage of 23.85%.
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Fig. 6: Log-log plot showing the power law decrease of
the number of cavities per unit area as a function of
|Ay+0.6]. Inset: exponential decrease of the same quantity
o exp” |A¥FO61/0.75 for smaller values of Ay.

with exponent of —1.6 for distances such that |Y| is larger
than ~ 1 pm, while iii) (see inset) the surface fraction
decreases as exp_|%| closer to the maximum.
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Fig. 7: Cavity area vs. cavity perimeter. The best fit is a power
law with exponent 2/dr & 1.40; Hence dp &~ 1.43 is the fractal
dimension of the islands.

The morphology of the cavities is explored by studying
both their areas and their perimeters. The area and the
perimeter of each island corresponding to the intersection
of a given cavity with the zz-plane is recorded for several
values of Ay and for the three sets of opposite fracture
surfaces. Figure 7 shows a plot of areas vs. perimeters for
all these islands.

Finally, we compute the cumulative distribution func-
tions of areas and perimeters, P(A) and P(p), respectively.
Both are obtained by ranking the areas and the perime-
ters, respectively, in ascending orders. P(A) (respectively,
P(p)) is the rank plotted as a function of A (respec-
tively, p). Figure 8 and its inset show P(A) and P(p)
respectively, for magnification x3000, and a distance Ay =
—0.6 um between the opposite surfaces. Both P(A4) and
P(p) decrease as power laws with exponents —a 4 = —0.62
and —a, = —0.88.

Discussion. — We show in this paper that fracture of
the Vitreloy 1 metallic glass occurs mainly through cavity
formation and coalescence: Damage cavities are indeed
printed on the fracture surfaces, which, as a consequence,
do not match each other. We show that the number of
these cavities reaches a maximum for a given distance
|Ay| = 0.6 um between the two opposite fracture surfaces.
This corresponds to the critical point where damage
cavities start coalescing with each other, for a surface
fraction ~23.9% of cavities within the xzz-plane. This
critical point is characterized by a power law variation
of the number of cavities.

Damage cavities have a fractal surface. It is character-
ized by plotting the areas of their intersections with the
xz-plane as a function of their perimeters. Because only
the surface of damage cavities is fractal, these intersec-
tions have a fractal contour, but they are dense objects.
Hence, if [ is a linear dimension of such an island, its
area scales as A o< [2, while its perimeter scales as p o 47,
where dp is the fractal dimension of the island. As a conse-
quence, the relationship between area and perimeter is
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Fig. 8 Cumulative distribution function P(A). The best fit
is a power law with exponent —a4 &~ —0.62. Inset: cumulative
distribution functions P(p). The best fit is a power law with
exponent —ay, ~ —0.88.

non-trivial: A oc p?/4¥ . This is how we interpret the power
law increase shown in fig. 6, which gives: dp = 1.43. This
value is compatible with both roughness indices measured
on the fracture surfaces (see fig. 2), since: {( = [~ 0.57 =
2 — dp. This means that the fractal nature of damage cavi-
ties is what controls the roughness of the fracture surface,
which can be viewed as composed of the adjacent imprints
of such cavities.

The obtained value of dr is compatible with exponents
a4 and «p. As a matter of fact, the following relation

holds:
dP(A) dA — dP(p)
dA  dp

or: 2004 = apdp. We find: 2a4 ~1.24 and: dra, ~ 1.26.

Although our fracture surfaces are anisotropic to the
eye (see fig. 1), they are actually isotropic from the point
of view of roughness exponents. However, fig. 2 shows
that the bounds of the scaling domains are quite different
for the  and 2z directions: Ah(Az) scales as Az? for
0.06 um < Az < 800 um, while Ah(Az) scales as Az¢ for
0.3 um < Az < 300 pm.

Although these power laws extend over a large range of
length scales, the fracture surfaces do not exhibit a mono-
affine, but rather a clear multi-affine behaviour. The fact
that they are constituted by the coalescence of cavities
implies that overhangs could be present. These overhangs
cannot be captured with the present experimental method,
nor with methods such as profilometry, or, at smaller
length scales, Atomic Force Microscopy. With all these
methods, overhangs are seen as high “cliffs”, the presence
of which may be responsible for the observed multi-affinity.
New observations involving a cut of the samples within
planes parallel to xy or yz should be performed in order
to access the statistics of these overhangs.

On the other hand, the anisotropy of the damage cavi-
ties themselves still has to be studied. As a matter of fact,
it was observed in [22] that in aluminium alloys, while
“small” damage cavities were isotropic with a roughness
index close to 0.5, “larger” cavities were anisotropic, with

dp
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a roughness index ( ~ 0.8 in the direction perpendicular
to crack propagation. In ductile materials, small damage
cavities enlarge through surface growth, while large
cavities, which are closer to penny-shaped cracks enlarge
because their front propagates. The difference in growth
mechanisms might be at the origin of the difference in
morphology. In the present case, surface growth of cavities
might be responsible for the observed isotropic roughness
with exponent ~ 0.55, in contrast with what is observed
for the propagation of a crack front which generates an
anisotropic fracture surface with exponents g~ 0.6 and
¢ ~0.75.

It has also been suggested [31] that the anisotropy
of fracture surfaces was not intrinsic, but due to the
introduction of a precrack in the specimens. Our fracture
surfaces are actually isotropic despite the presence of an
initial notch. Of course, since our images were taken far
from the edges of the specimen, we may have missed the
transient behaviour where, very close to the notch, the
surface has to be anisotropic.

Further experiments with longer and sharper notches
will be performed on Vitreloy 1 to check whether
the isotropy is a property of our material, or if it is
linked to the isotropy of loading, with no imposed
initial stress concentration. Conversely, experiments on
cylindrical specimens of steel will be made, since it
has been shown that on this material, fracture surfaces
obtained from precracked Compact Tension specimens
are anisotropic [32].

It was also suggested that in metallic glasses, the rise
of temperature at the crack tip is such that the material
melts locally [33]. This should modify the morphology of
the observed cavities. A better understanding of a possible
melting should arise from a comparison with metallic
fracture surfaces.

As a matter of fact, a roughness index close to the
one reported here (i.e. =0.55) was observed on metallic
fracture surfaces [8-10] at small length scales/low crack
velocities. It was shown that the crossover length
separating this regime from the ¢ ~ 0.75 regime at higher
length scales was inversely proportional to the average
crack velocity V. If one assumes that the extension
velocity of the damage cavity closer to the main crack
is independent of V, it is easily shown that the cavity
size at coalescence scales as 1/V. In this picture, for low
enough values of V| one might be able to observe the
¢’ ~0.55 isotropic regime at very small length scales,
the anisotropic “0.75/0.6” regime within the process
zone, and the (slightly) anisotropic “0.4/0.5” regime at
larger length scales [32], where the material can be well
described by linear elasticity [12].

* ok ok
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