of 17
Developmental Cell, Volume
59
Supplemental information
Lineage motifs as developmental modules
for control of cell type proportions
Martin Tran, Amjad Askary, and Michael B. Elowitz
Figure S1
Binary fate model
i
40
40
j
40
40
k
A
B
C
D
20
20
20
40
40
l
40
40
m
E
F
G
H
20
40
40
n
40
40
o
20
20
40
40
20
12.49% A
12.49% B
12.51% C
12.51% D
12.51% E
12.48% F
12.52% G
12.49% H
Cell type proportions
Pattern
1
0
1
1
0
0
1
0
1
1
0
2
z-score
A
B
A
B
C
D
A
B
C
D
E
F
G
H
Motif significance in simulations
Number of trees
50
500
5000
50000
A
C
E
B
D
F
z-score = 3
Doublet combinations (top 17 by |z-score|)
−100
0
100
200
300
400
z-score
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
G
H
A
B
C
D
E
F
B
B
G
G
E
E
A
A
D
D
C
C
F
F
H
H
E
G
A
E
B
D
D
H
B
C
Deviation from resamples
Quartet combinations (top 17 by |z-score|)
−60
−40
−20
0
20
40
z-score
***
***
***
***
***
***
***
***
***
***
***
***
***
***
***
***
***
A
B
C
D
E
F
G
H
C
C
G
H
A
A
E
F
A
A
G
H
B
B
E
F
B
B
G
H
A
B
H
H
D
D
G
H
C
D
G
G
C
C
E
F
A
B
G
G
C
D
F
F
A
B
E
F
C
D
G
H
C
D
E
F
A
B
G
H
Deviation from resamples
Observed count
Null z-score across 1000 resamples
Average null z-score
Octet combinations (top 17 by |z-score|)
−3
−2
−1
0
1
2
3
z-score
A
B
C
D
E
F
G
H
B
B
C
D
E
F
G
H
A
A
C
D
E
F
G
H
A
B
C
D
F
F
G
H
A
B
C
D
E
E
G
H
A
B
D
D
E
F
G
H
A
B
C
D
E
F
H
H
A
G
B
D
B
F
C
H
A
G
B
D
B
E
C
H
A
G
B
D
B
C
F
H
A
G
B
D
B
F
C
E
A
G
B
D
B
E
C
F
A
G
B
D
B
F
E
H
A
G
B
D
C
E
H
H
A
G
B
D
B
E
F
H
A
B
C
D
E
F
G
G
A
B
C
C
E
F
G
H
Deviation from resamples
Observed count
Null z-score across 1000 resamples
Average null z-score
F
i
g
u
r
e
S
1
:
L
i
n
e
a
g
e
m
o
t
i
f
s
r
e
f
l
e
c
t
s
e
q
u
e
n
t
i
a
l
p
r
o
g
e
n
i
t
o
r
s
t
a
t
e
s
i
n
a
b
i
n
a
r
y
f
a
t
e
m
o
d
e
l
.
R
e
l
a
t
e
d
t
o
F
i
g
u
r
e
3
.
A
.
L
i
n
e
a
g
e
t
r
e
e
s
w
e
r
e
s
i
m
u
l
a
t
e
d
u
s
i
n
g
a
b
i
n
a
r
y
f
a
t
e
m
o
d
e
l
o
f
d
e
v
e
l
o
p
m
e
n
t
.
B
.
C
e
l
l
t
y
p
e
p
r
o
p
o
r
t
i
o
n
s
i
n
5
0
0
s
i
m
u
l
a
t
e
d
l
i
n
e
a
g
e
t
r
e
e
s
.
C
.
D
e
v
i
a
t
i
o
n
s
c
o
r
e
f
o
r
d
o
u
b
l
e
t
p
a
t
t
e
r
n
s
.
N
u
l
l
z
-
s
c
o
r
e
s
w
e
r
e
c
a
l
c
u
l
a
t
e
d
b
y
c
o
m
p
a
r
i
n
g
a
r
a
n
d
o
m
r
e
s
a
m
p
l
e
d
a
t
a
s
e
t
t
o
t
h
e
r
e
s
t
o
f
t
h
e
r
e
s
a
m
p
l
e
d
a
t
a
s
e
t
s
.
1
0
d
a
t
a
s
e
t
s
c
o
n
t
a
i
n
i
n
g
5
0
0
0
0
s
i
m
u
l
a
t
e
d
t
r
e
e
s
e
a
c
h
w
e
r
e
u
s
e
d
,
w
i
t
h
t
h
e
s
t
a
n
d
a
r
d
d
e
v
i
a
t
i
o
n
a
c
r
o
s
s
t
h
e
d
a
t
a
s
e
t
s
p
l
o
t
t
e
d
a
s
e
r
r
o
r
b
a
r
s
(
*
*
,
*
*
*
=
a
d
j
u
s
t
e
d
p
-
v
a
l
u
e
<
0
.
0
0
5
o
r
<
0
.
0
0
0
5
r
e
s
p
e
c
t
i
v
e
l
y
)
.
D
.
D
e
v
i
a
t
i
o
n
s
c
o
r
e
f
o
r
q
u
a
r
t
e
t
p
a
t
t
e
r
n
s
.
E
.
D
e
v
i
a
t
i
o
n
s
c
o
r
e
f
o
r
o
c
t
e
t
p
a
t
t
e
r
n
s
.
F
.
D
e
v
i
a
t
i
o
n
s
c
o
r
e
f
o
r
s
e
l
e
c
t
p
a
t
t
e
r
n
s
t
h
a
t
r
e
f
l
e
c
t
s
e
q
u
e
n
t
i
a
l
d
i
f
f
e
r
e
n
t
i
a
t
i
o
n
o
f
c
e
l
l
f
a
t
e
s
u
s
i
n
g
d
a
t
a
s
e
t
s
o
f
v
a
r
y
i
n
g
s
i
z
e
.
S
h
a
d
i
n
g
i
n
d
i
c
a
t
e
s
9
5
%
c
o
n
f
i
d
e
n
c
e
i
n
t
e
r
v
a
l
a
c
r
o
s
s
1
0
d
a
t
a
s
e
t
s
f
o
r
e
a
c
h
p
o
i
n
t
.
Figure S2
0
2
4
6
branch length
2.5
5.0
7.5
10.0
12.5
B
B
C
C
D
E
F
E
F
H
G
H
0
2
4
6
branch length
5
10
15
A
A
C
D
D
C
D
A
A
C
D
C
C
C
D
0
2
branch length
2.5
5.0
7.5
E
F
G
H
G
H
H
H
0
2
4
6
branch length
2
4
6
8
10
taxa
G
H
H
H
A
B
B
A
A
A
0
2
4
6
8
10
12
14
branch length
5
10
15
20
25
B
B
C
D
D
D
D
C
C
C
D
D
C
C
C
C
B
C
D
D
D
D
F
F
F
F
F
F
0
2
4
6
8
10
branch length
2.5
5.0
7.5
10.0
12.5
15.0
17.5
20.0
taxa
A
A
B
C
D
D
D
D
E
E
E
F
F
D
F
F
F
F
F
F
A
C
D
E
B
F
G
H
0
2
4
6
8
10
branch length
2.5
5.0
7.5
10.0
12.5
15.0
17.5
20.0
taxa
A
A
B
C
D
D
D
D
E
E
E
F
F
D
F
F
F
F
F
F
1
0
1
1
0
2
Number of cells
0.0
0.2
0.4
0.6
0.8
1.0
Cumulative probability
Tree size
Binary fate model
Comp. prog. model
F
i
g
u
r
e
S
2
:
E
x
a
m
p
l
e
l
i
n
e
a
g
e
t
r
e
e
s
g
e
n
e
r
a
t
e
d
f
r
o
m
d
i
f
f
e
r
e
n
t
d
e
v
e
l
o
p
m
e
n
t
a
l
m
o
d
e
l
s
.
R
e
l
a
t
e
d
t
o
F
i
g
u
r
e
3
.
A
-
C
.
3
r
a
n
d
o
m
t
r
e
e
s
s
a
m
p
l
e
d
f
r
o
m
t
h
e
s
i
m
u
l
a
t
e
d
d
a
t
a
s
e
t
s
,
g
e
n
e
r
a
t
e
d
u
s
i
n
g
t
h
e
c
o
m
p
e
t
e
n
c
e
p
r
o
g
r
e
s
s
i
o
n
m
o
d
e
l
.
D
-
G
.
4
r
a
n
d
o
m
t
r
e
e
s
s
a
m
p
l
e
d
f
r
o
m
t
h
e
s
i
m
u
l
a
t
e
d
d
a
t
a
s
e
t
s
,
g
e
n
e
r
a
t
e
d
u
s
i
n
g
t
h
e
b
i
n
a
r
y
f
a
t
e
m
o
d
e
l
.
H
.
T
r
e
e
s
i
z
e
d
i
s
t
r
i
b
u
t
i
o
n
f
r
o
m
t
h
e
c
o
m
p
e
t
e
n
c
e
p
r
o
g
r
e
s
s
i
o
n
a
n
d
b
i
n
a
r
y
f
a
t
e
m
o
d
e
l
,
w
h
o
s
e
m
e
d
i
a
n
a
r
e
5
a
n
d
1
6
c
e
l
l
s
r
e
s
p
e
c
t
i
v
e
l
y
.
Figure S3
Example of asynchonous division & differentiation
Simulate grid of
progenitor cells
1
Simulate cell
division
3
*
**
B
A
A
A
A
A
B
A
A
A
B
A
B
A
B
A
A
B
B
A
A
B
B
B
A
B
A
B
B
A
B
Repeat steps 2-5
until all cells are
terminal fates
6
B
Extrinsic model (lateral inhibition)
20
A
B
P( )*
A
80 - P( )*
A
0
1
2
3
4
Count of B neighbors
0
1
2
3
4
Count of A neighbors
0
20
40
60
80
P( )* (%)
A
20
80
0
A
B
A
A
A
A
20
32
48
A
B
B
A
B
examples
Simulate
progenitor
in space
A
progenitor
neighbor
Differentiate progenitor using null or extrinsic model
20
40
40
A
B
Null model
Terminal fates
D
C
Randomly pick a
progenitor cell
2
*
Simulate first cell
differentiation
4
20
40
40
A
B
*
Both null &
extrinsic model
*
**
A
**
20
40
40
A
B
**
Null model
20
46
34
A
B
**
Extrinsic model
Simulate second cell
differentation
5
A
**
A
B
Terminal doublets
−2
0
2
4
z-score
A
A
A
B
B
B
Null model
Observed count
Null z-score across 100 resamples
Average null z-score
Terminal doublets
−4
−2
0
2
4
*
A
A
A
B
B
B
Extrinsic model
F
i
g
u
r
e
S
3
:
L
i
n
e
a
g
e
m
o
t
i
f
s
c
a
n
b
e
i
d
e
n
t
i
f
i
e
d
i
n
t
r
e
e
s
g
e
n
e
r
a
t
e
d
u
n
d
e
r
a
n
e
x
t
r
i
n
s
i
c
m
o
d
e
l
o
f
l
a
t
e
r
a
l
i
n
h
i
b
i
t
i
o
n
.
R
e
l
a
t
e
d
t
o
F
i
g
u
r
e
3
.
A
.
P
r
o
g
e
n
i
t
o
r
s
i
n
s
p
a
c
e
a
r
e
s
i
m
u
l
a
t
e
d
,
u
s
i
n
g
4
-
c
o
n
n
e
c
t
i
v
i
t
y
t
o
d
e
f
i
n
e
n
e
i
g
h
b
o
r
i
n
g
c
e
l
l
s
.
B
.
P
r
o
g
e
n
i
t
o
r
s
a
r
e
d
i
f
f
e
r
e
n
t
i
a
t
e
d
,
u
s
i
n
g
e
i
t
h
e
r
a
n
u
l
l
m
o
d
e
l
,
w
h
e
r
e
e
a
c
h
p
r
o
g
e
n
i
t
o
r
c
a
n
s
e
l
f
-
r
e
n
e
w
o
r
d
i
f
f
e
r
e
n
t
i
a
t
e
w
i
t
h
a
s
e
t
p
r
o
b
a
b
i
l
i
t
y
,
o
r
a
n
e
x
t
r
i
n
s
i
c
m
o
d
e
l
w
i
t
h
l
a
t
e
r
a
l
i
n
h
i
b
i
t
i
o
n
,
w
h
e
r
e
e
a
c
h
p
r
o
g
e
n
i
t
o
r
c
a
n
s
e
l
f
-
r
e
n
e
w
o
r
d
i
f
f
e
r
e
n
t
i
a
t
e
w
i
t
h
a
p
r
o
b
a
b
i
l
i
t
y
t
h
a
t
d
e
p
e
n
d
s
o
n
t
h
e
n
u
m
b
e
r
o
f
n
e
i
g
h
b
o
r
i
n
g
t
e
r
m
i
n
a
l
c
e
l
l
t
y
p
e
s
(
s
e
e
M
e
t
h
o
d
s
f
o
r
p
r
o
b
a
b
i
l
i
t
y
c
a
l
c
u
l
a
t
i
o
n
s
)
.
C
.
E
x
a
m
p
l
e
o
f
h
o
w
a
s
y
n
c
h
r
o
n
o
u
s
d
i
v
i
s
i
o
n
a
n
d
d
i
f
f
e
r
e
n
t
i
a
t
i
o
n
i
s
s
i
m
u
l
a
t
e
d
w
i
t
h
i
n
a
g
r
i
d
o
f
p
r
o
g
e
n
i
t
o
r
s
.
D
.
I
n
t
h
e
n
u
l
l
m
o
d
e
l
,
n
o
d
o
u
b
l
e
t
p
a
t
t
e
r
n
s
w
e
r
e
e
n
r
i
c
h
e
d
o
r
d
e
p
l
e
t
e
d
i
n
t
h
e
d
a
t
a
s
e
t
.
C
o
n
v
e
r
s
e
l
y
,
i
n
t
h
e
e
x
t
r
i
n
s
i
c
m
o
d
e
l
,
s
y
m
m
e
t
r
i
c
d
o
u
b
l
e
t
p
a
t
t
e
r
n
s
(
A
,
A
)
a
n
d
(
B
,
B
)
w
e
r
e
d
e
p
l
e
t
e
d
,
w
h
i
l
e
t
h
e
a
s
y
m
m
e
t
r
i
c
d
o
u
b
l
e
t
p
a
t
t
e
r
n
(
A
,
B
)
w
a
s
e
n
r
i
c
h
e
d
i
n
t
h
e
d
a
t
a
s
e
t
(
*
=
a
d
j
u
s
t
e
d
p
-
v
a
l
u
e
<
0
.
0
5
)
.
N
u
l
l
z
-
s
c
o
r
e
s
w
e
r
e
c
a
l
c
u
l
a
t
e
d
b
y
c
o
m
p
a
r
i
n
g
a
r
a
n
d
o
m
r
e
s
a
m
p
l
e
d
a
t
a
s
e
t
t
o
t
h
e
r
e
s
t
o
f
t
h
e
r
e
s
a
m
p
l
e
d
a
t
a
s
e
t
s
.
1
0
0
d
a
t
a
s
e
t
s
c
o
n
t
a
i
n
i
n
g
6
1
x
6
1
p
r
o
g
e
n
i
t
o
r
s
,
s
i
m
u
l
a
t
e
d
t
o
d
i
v
i
d
e
a
n
d
d
i
f
f
e
r
e
n
t
i
a
t
e
a
s
i
n
p
a
n
e
l
C
,
w
e
r
e
u
s
e
d
,
w
i
t
h
t
h
e
s
t
a
n
d
a
r
d
d
e
v
i
a
t
i
o
n
a
c
r
o
s
s
t
h
e
d
a
t
a
s
e
t
s
p
l
o
t
t
e
d
a
s
e
r
r
o
r
b
a
r
s
.