Items where Person is "Iserles-A"
Number of items: 7. 2010Stuart, A. M. (2010) Inverse problems: A Bayesian perspective. Acta Numerica, 19 . pp. 451-559. ISSN 0962-4929. https://resolver.caltech.edu/CaltechAUTHORS:20161111-112136150 2009Bloch, Anthony M. and Brînzănescu, Vasile and Iserles, Arieh et al. (2009) A Class of Integrable Flows on the Space of Symmetric Matrices. Communications in Mathematical Physics, 290 (2). pp. 399-435. ISSN 0010-3616. https://resolver.caltech.edu/CaltechAUTHORS:20090810-113731412 2005Hereman, W. and Sanders, J. A. and Sayers, J. et al. (2005) Symbolic Computation of Polynomial Conserved Densities, Generalized Symmetries, and Recursion Operators for Nonlinear Differential-Difference Equations. In: Group Theory and Numerical Analysis. CRM Proceedings and Lecture Notes. No.39. American Mathematical Society , Providence, R.I., pp. 133-148. ISBN 0-8218-3565-3. https://resolver.caltech.edu/CaltechAUTHORS:20110818-101146521 Baldwin, D. and Hereman, W. and Sayers, J. (2005) Symbolic algorithms for the Painlevé test, special solutions, and recursion operators for nonlinear PDEs. In: Group Theory and Numerical Analysis. CRM Proceedings & Lectures Notes. No.39. American Mathematical Society , Providence, RI , pp. 17-32. ISBN 0-8218-3565-3. https://resolver.caltech.edu/CaltechAUTHORS:20110513-135907550 2001Sigurgeirsson, Hersir and Stuart, A. M. (2001) Statistics From Computations. In: Foundations of Computational Mathematics. London Mathematical Society lecture note series. No.284. Cambridge University Press , New York, NY, pp. 323-344. ISBN 978-0-521-00349-0. https://resolver.caltech.edu/CaltechAUTHORS:20170614-073434784 1992Iserles, A. and Stuart, A. M. (1992) Unified approach to spurious solutions introduced by time discretization Part II: BDF-like methods. IMA Journal of Numerical Analysis, 12 (4). pp. 487-502. ISSN 0272-4979. https://resolver.caltech.edu/CaltechAUTHORS:20170612-105155948 1991Iserles, A. and Peplow, A. T. and Stuart, A. M. (1991) A Unified Approach to Spurious Solutions Introduced by Time Discretisation. Part I: Basic Theory. SIAM Journal on Numerical Analysis, 28 (6). pp. 1723-1751. ISSN 0036-1429. https://resolver.caltech.edu/CaltechAUTHORS:20170612-164247464 |