Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published September 2009 | Published
Journal Article Open

Spitzer Space Telescope Observations of the Nucleus of Comet 103P/Hartley 2

Abstract

We have used the Spitzer Space Telescope InfraRed Spectrograph (IRS) 22-μm peakup array to observe thermal emission from the nucleus and trail of comet 103P/Hartley 2, the target of NASA's Deep Impact Extended Investigation (DIXI). The comet was observed on UT 2008 August 12 and 13, while 5.5 AU from the Sun. We obtained two 200 frame sets of photometric imaging over a 2.7 hr period. To within the errors of the measurement, we find no detection of any temporal variation between the two images. The comet showed extended emission beyond a point source in the form of a faint trail directed along the comet's antivelocity vector. After modeling and removing the trail emission, a NEATM model for the nuclear emission with beaming parameter of 0.95 ± 0.20 indicates a small effective radius for the nucleus of 0.57 ± 0.08 km and low geometric albedo 0.028 ± 0.009 (1σ). With this nucleus size and a water production rate of 3 × 10^(28) molecules s^(-1) at perihelion, we estimate that ~100% of the surface area is actively emitting volatile material at perihelion. Reports of emission activity out to ~5 AU support our finding of a highly active nuclear surface. Compared to Deep Impact's first target, comet 9P/Tempel 1, Hartley 2's nucleus is one-fifth as wide (and about one-hundredth the mass) while producing a similar amount of outgassing at perihelion with about 13 times the active surface fraction. Unlike Tempel 1, comet Hartley 2 should be highly susceptible to jet driven spin-up torques, and so could be rotating at a much higher frequency. Since the amplitude of nongravitational forces are surprisingly similar for both comets, close to the ensemble average for ecliptic comets, we conclude that comet Hartley 2 must have a much more isotropic pattern of time-averaged outgassing from its nuclear surface. Barring a catastrophic breakup or major fragmentation event, the comet should be able to survive up to another 100 apparitions (~700 yr) at its current rate of mass loss.

Additional Information

© 2009 Astronomical Society of the Pacific. Received 2009 May 11; accepted 2009 June 24; published 2009 August 20. This work is based on observations taken with the Spitzer Space Telescope, which is operated by JPL/Caltech under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. This research made use of Tiny Tim/Spitzer, developed by J. E. Krist for the Spitzer Space Center. The authors would like to thank D. K. Yeomans for valuable discussions concerning the effects of nongravitational forces on comets, and H. A. Weaver, for results from the latest optical observations of comet Hartley 2.

Attached Files

Published - Lisse2009p5855Publ_Astron_Soc_Pac.pdf

Files

Lisse2009p5855Publ_Astron_Soc_Pac.pdf
Files (306.0 kB)
Name Size Download all
md5:592349b14a5afba5ac95c53de3778505
306.0 kB Preview Download

Additional details

Created:
August 18, 2023
Modified:
October 19, 2023