Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 2015 | Published
Book Section - Chapter Open

Vector field processing on triangle meshes

Abstract

While scalar fields on surfaces have been staples of geometry processing, the use of tangent vector fields has steadily grown in geometry processing over the last two decades: they are crucial to encoding directions and sizing on surfaces as commonly required in tasks such as texture synthesis, non-photorealistic rendering, digital grooming, and meshing. There are, however, a variety of discrete representations of tangent vector fields on triangle meshes, and each approach offers different tradeoffs among simplicity, efficiency, and accuracy depending on the targeted application. This course reviews the three main families of discretizations used to design computational tools for vector field processing on triangle meshes: face-based, edge-based, and vertex-based representations. In the process of reviewing the computational tools offered by these representations, we go over a large body of recent developments in vector field processing in the area of discrete differential geometry. We also discuss the theoretical and practical limitations of each type of discretization, and cover increasingly-common extensions such as n-direction and n-vector fields. While the course will focus on explaining the key approaches to practical encoding (including data structures) and manipulation (including discrete operators) of finite-dimensional vector fields, important differential geometric notions will also be covered: as often in Discrete Differential Geometry, the discrete picture will be used to illustrate deep continuous concepts such as covariant derivatives, metric connections, or Bochner Laplacians.

Additional Information

© 2015 is held by the owner/author(s).

Attached Files

Published - a17-degoes.pdf

Files

a17-degoes.pdf
Files (17.5 MB)
Name Size Download all
md5:ed458fcf844b3e9936398f3c3c799260
17.5 MB Preview Download

Additional details

Created:
August 20, 2023
Modified:
October 25, 2023