Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 20, 2020 | Submitted + Published
Journal Article Open

ZTF20aajnksq (AT 2020blt): A Fast Optical Transient at z ≈ 2.9 with No Detected Gamma-Ray Burst Counterpart

Abstract

We present ZTF20aajnksq (AT 2020blt), a fast-fading (Δr = 2.3 mag in Δt = 1.3 days) red (g − r ≈ 0.6 mag) and luminous (M_(1626 Å) = −25.9 mag) optical transient at z = 2.9 discovered by the Zwicky Transient Facility (ZTF). AT 2020blt shares several features in common with afterglows to long-duration gamma-ray bursts (GRBs): (1) an optical light curve well-described by a broken power law with a break at t_j = 1 d (observer frame); (2) a luminous (L_(0.3–10 KeV) = 10⁴⁶ erg s⁻¹) X-ray counterpart; and (3) luminous (L_(10 GHz) = 4 × 10³¹ erg s⁻¹ Hz⁻¹) radio emission. However, no GRB was detected in the 0.74 days between the last ZTF nondetection (r > 21.36 mag) and the first ZTF detection (r = 19.60 mag), with an upper limit on the isotropic-equivalent gamma-ray energy release of E_(γ,iso) < 7 × 10⁵² erg. AT 2020blt is thus the third afterglow-like transient discovered without a detected GRB counterpart (after PTF11agg and ZTF19abvizsw) and the second (after ZTF19abvizsw) with a redshift measurement. We conclude that the properties of AT 2020blt are consistent with a classical (initial Lorentz factor Γ₀ ≳ 100) on-axis GRB that was missed by high-energy satellites. Furthermore, by estimating the rate of transients with light curves similar to that of AT 2020blt in ZTF high-cadence data, we agree with previous results that there is no evidence for an afterglow-like phenomenon that is significantly more common than classical GRBs, such as dirty fireballs. We conclude by discussing the status and future of fast-transient searches in wide-field high-cadence optical surveys.

Additional Information

© 2020 The American Astronomical Society. Received 2020 June 18; revised 2020 October 15; accepted 2020 October 17; published 2020 December 17. It is a pleasure to thank the anonymous referee for a thorough and thoughtful report that greatly improved the quality of the paper. A.Y.Q.H. would like to thank Udi Nakar for pointing out that dirty fireballs will have a longer rise time than clean fireballs, and Chris Bochenek and Vikram Ravi for useful discussions regarding scintillation of radio point sources. She would also like to thank Steve Schulze, Eran Ofek, and Avishay Gal-Yam, and David Kaplan for their detailed reading of the manuscript. A.Y.Q.H. and K.D. were supported by the GROWTH project funded by the National Science Foundation under PIRE grant No. 1545949. A.Y.Q.H. was also supported by the Miller Institute for Basic Research in Science at the University of California Berkeley. A. A. Miller is funded by the Large Synoptic Survey Telescope Corporation, the Brinson Foundation, and the Moore Foundation in support of the LSSTC Data Science Fellowship Program; he also receives support as a CIERA Fellow by the CIERA Postdoctoral Fellowship Program (Center for Interdisciplinary Exploration and Research in Astrophysics, Northwestern University). C.F. gratefully acknowledges support of his research by the Heising-Simons Foundation (#2018-0907). A. Goobar acknowledges support from the K & A Wallenberg Foundation, the Swedish Research Council (VR), and the GREAT research environment grant 2016-06012. Based on observations obtained with the Samuel Oschin Telescope 48-inch and the 60-inch Telescope at the Palomar Observatory as part of the Zwicky Transient Facility project. Z.T.F. is supported by the National Science Foundation under grant No. AST-1440341 and a collaboration including Caltech, IPAC, the Weizmann Institute for Science, the Oskar Klein Center at Stockholm University, the University of Maryland, the University of Washington, Deutsches Elektronen-Synchrotron and Humboldt University, Los Alamos National Laboratories, the TANGO Consortium of Taiwan, the University of Wisconsin at Milwaukee, and Lawrence Berkeley National Laboratories. Operations are conducted by COO, IPAC, and UW. SED Machine is based upon work supported by the National Science Foundation under grant No. 1106171. This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester. Based on observations obtained at the international Gemini Observatory, a program of NSFs OIR Lab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation, on behalf of the Gemini Observatory partnership: the National Science Foundation (United States), National Research Council (Canada), Agencia Nacional de Investigación y Desarrollo (Chile), Ministerio de Ciencia, Tecnología e Innovación (Argentina), Ministério da Ciência, Tecnologia, Inovações e Comunicações (Brazil), and Korea Astronomy and Space Science Institute (Republic of Korea). Gemini data were processed using the Gemini IRAF package and DRAGONS (Data Reduction for Astronomy from Gemini Observatory North and South). The Liverpool Telescope is operated on the island of La Palma by Liverpool John Moores University in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias with financial support from the UK Science and Technology Facilities Council. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. We acknowledge the use of public data from the Swift data archive. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Maunakea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. Facilities: Swift - Swift Gamma-Ray Burst Mission, EVLA - , VLA - , Liverpool:2 m - , PO:1.2 m - , PO:1.5 m, Keck:I (LRIS). - Software: CASA (McMullin et al. 2007), astropy (Astropy Collaboration et al. 2013, 2018), matplotlib (Hunter 2007), scipy (Virtanen et al. 2020), DRAGONS.

Attached Files

Published - Ho_2020_ApJ_905_98.pdf

Submitted - 2006.10761.pdf

Files

2006.10761.pdf
Files (2.0 MB)
Name Size Download all
md5:14d670e75441ee491bca3aa633f539fd
1.1 MB Preview Download
md5:e55dadf111bb51fa4863e5fd21b10dfe
936.9 kB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 20, 2023