Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published October 10, 2020 | Accepted Version + Published
Journal Article Open

Helium-rich Superluminous Supernovae from the Zwicky Transient Facility

Abstract

Helium is expected to be present in the massive ejecta of some hydrogen-poor superluminous supernovae (SLSN-I). However, until now only one event has been identified with He features in its photospheric spectra (PTF10hgi). We present the discovery of a new He-rich SLSN-I, ZTF19aawfbtg (SN2019hge), at z = 0.0866. This event has more than 10 optical spectra at phases from −41 to +103 days relative to the peak, most of which match well with that of PTF10hgi. Confirmation comes from a near-IR spectrum taken at +34 days, revealing He I features with P-Cygni profiles at 1.083 and 2.058 μm. Using the optical spectra of PTF10hgi and SN2019hge as templates, we examined 70 other SLSNe-I discovered by Zwicky Transient Facility in the first two years of operation and found five additional SLSNe-I with distinct He-features. The excitation of He I atoms in normal core-collapse supernovae requires nonthermal radiation, as proposed by previous studies. These He-rich events cannot be explained by the traditional ⁵⁶Ni mixing model because of their blue spectra, high peak luminosities, and long rise timescales. Magnetar models offer a possible solution since pulsar winds naturally generate high-energy particles, potential sources of nonthermal excitation. An alternative model is the interaction between the ejecta and dense H-poor circumstellar material, which may be supported by observed undulations in the light curves. These six SLSNe-Ib have relatively low-peak luminosities (rest frame M_g = −20.06 ± 0.16).

Additional Information

© 2020 The American Astronomical Society. Received 2020 June 23; revised 2020 August 19; accepted 2020 August 23; published 2020 October 7. Based on observations obtained with the Samuel Oschin Telescope 48 inch and the 60 inch Telescope at the Palomar Observatory as part of the Zwicky Transient Facility project. ZTF is supported by the National Science Foundation under grant No. AST-1440341 and a collaboration including Caltech, IPAC, the Weizmann Institute for Science, the Oskar Klein Center at Stockholm University, the University of Maryland, the University of Washington, Deutsches Elektronen-Synchrotron and Humboldt University, Los Alamos National Laboratories, the TANGO Consortium of Taiwan, the University of Wisconsin at Milwaukee, and Lawrence Berkeley National Laboratories. Operations are conducted by COO, IPAC, and UW. The Liverpool Telescope is operated on the island of La Palma by Liverpool John Moores University in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias with financial support from the UK Science and Technology Facilities Council. SED Machine is based upon work supported by the National Science Foundation under grant No. 1106171. The ZTF forced-photometry service was funded under the Heising-Simons Foundation grant #12540303 (PI: Graham). This work uses the GROWTH Followup Marshal (Kasliwal et al. 2019) and was supported by the GROWTH project funded by the National Science Foundation under grant No. 1545949. A.A.M. is funded by the Large Synoptic Survey Telescope Corporation, the Brinson Foundation, and the Moore Foundation in support of the LSSTC Data Science Fellowship Program; he also receives support as a CIERA Fellow by the CIERA Postdoctoral Fellowship Program (Center for Interdisciplinary Exploration and Research in Astrophysics, Northwestern University). R.L. is supported by a Marie Skłodowska-Curie Individual Fellowship within the Horizon 2020 European Union (EU) Framework Programme for Research and Innovation (H2020-MSCA-IF-2017-794467).

Attached Files

Published - Yan_2020_ApJL_902_L8.pdf

Accepted Version - 2006.13758.pdf

Files

2006.13758.pdf
Files (4.0 MB)
Name Size Download all
md5:8ddd0eb0bfdb6a1c8e494fcd5502dcc0
1.2 MB Preview Download
md5:49b6a75f6313f521234e05a8befbd3b6
2.8 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 20, 2023