Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published August 2013 | Submitted + Published
Journal Article Open

The Cosmic Infrared Background Experiment (CIBER): A Sounding Rocket Payload to Study the Near Infrared Extragalactic Background Light

Abstract

The Cosmic Infrared Background Experiment (CIBER) is a suite of four instruments designed to study the near infrared (IR) background light from above the Earth's atmosphere. The instrument package comprises two imaging telescopes designed to characterize spatial anisotropy in the extragalactic IR background caused by cosmological structure during the epoch of reionization, a low resolution spectrometer to measure the absolute spectrum of the extragalactic IR background, and a narrow band spectrometer optimized to measure the absolute brightness of the Zodiacal light foreground. In this paper we describe the design and characterization of the CIBER payload. The detailed mechanical, cryogenic, and electrical design of the system are presented, including all system components common to the four instruments. We present the methods and equipment used to characterize the instruments before and after flight, and give a detailed description of CIBER's flight profile and configurations. CIBER is designed to be recoverable and has flown twice, with modifications to the payload having been informed by analysis of the first flight data. All four instruments performed to specifications during the second flight, and the scientific data from this flight are currently being analyzed.

Additional Information

© 2013 The American Astronomical Society. Received 2011 September 9; accepted 2011 November 20; published 2013 August 1. This work was supported by NASA APRA research grants NNX07AI54G, NNG05WC18G, NNX07AG43G, NNX07AJ24G, and NNX10AE12G. Initial support was provided by an award to J.B. from the Jet Propulsion Laboratory's Director's Research and Development Fund. Japanese participation in CIBER was supported by KAKENHI (20•34, 18204018, 19540250, 21340047 and 21111004) from Japan Society for the Promotion of Science (JSPS) and the Ministry of Education, Culture, Sports, Science and Technology (MEXT). Korean participation in CIBER was supported by the Pioneer Project from Korea Astronomy and Space science Institute (KASI). We would like to acknowledge the dedicated efforts of the sounding rocket staff at the NASA Wallops Flight Facility and the White Sands Missile Range. We also acknowledge the work of the Genesia Corporation for technical support of the CIBER optics, and M.C. Runyan and an anonymous referee for helpful comments on this manuscript. M.Z. acknowledges support from a NASA Postdoctoral Fellowship, A.C. acknowledges support from an NSF CAREER award, B.K. acknowledges support from a UCSD Hellman Faculty Fellowship, and K.T. acknowledges support from the JSPS Research Fellowship for Young Scientists.

Attached Files

Published - 0067-0049_207_2_31.pdf

Submitted - 1112.1424v1.pdf

Files

1112.1424v1.pdf
Files (4.0 MB)
Name Size Download all
md5:cf89b535d13ab9c6c2870a20d5fc6d64
1.8 MB Preview Download
md5:6bbc5107699b9fe00d46828215db40e1
2.2 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 24, 2023