The Coupling of Topology and Inflation in Noncommutative Cosmology
- Creators
-
Marcolli, Matilde
-
Pierpaoli, Elena
- Teh, Kevin
Abstract
We show that, in a model of modified gravity based on the spectral action functional, there is a nontrivial coupling between cosmic topology and inflation, in the sense that the shape of the possible slow-roll inflation potentials obtained in the model from the nonperturbative form of the spectral action is sensitive not only to the geometry (flat or positively curved) of the universe, but also to the different possible non-simply connected topologies. We show this by explicitly computing the nonperturbative spectral action for some candidate flat cosmic topologies given by Bieberbach manifolds and showing that the resulting inflation potential differs from that of the flat torus by a multiplicative factor, similarly to what happens in the case of the spectral action of the spherical forms in relation to the case of the 3-sphere. We then show that, while the slow-roll parameters differ between the spherical and flat manifolds but do not distinguish different topologies within each class, the power spectra detect the different scalings of the slow-roll potential and therefore distinguish between the various topologies, both in the spherical and in the flat case.
Additional Information
© 2011 Springer-Verlag. Received: 9 December 2010. Accepted: 26 April 2011. Published online: 4 October 2011. Communicated by A. Connes.Attached Files
Submitted - 1012.0780.pdf
Files
Name | Size | Download all |
---|---|---|
md5:7602277194dc44ca7c754200259b6c42
|
717.3 kB | Preview Download |
Additional details
- Eprint ID
- 29131
- Resolver ID
- CaltechAUTHORS:20120203-142242831
- Created
-
2012-02-03Created from EPrint's datestamp field
- Updated
-
2021-11-09Created from EPrint's last_modified field
- Caltech groups
- TAPIR