Magnetic reconnection from a multiscale instability cascade
- Creators
- Moser, Auna L.
- Bellan, Paul M.
Abstract
Magnetic reconnection, the process whereby magnetic field lines break and then reconnect to form a different topology, underlies critical dynamics of magnetically confined plasmas in both nature and the laboratory. Magnetic reconnection involves localized diffusion of the magnetic field across plasma, yet observed reconnection rates are typically much higher than can be accounted for using classical electrical resistivity. It is generally proposed that the field diffusion underlying fast reconnection results instead from some combination of non-magnetohydrodynamic processes that become important on the 'microscopic' scale of the ion Larmor radius or the ion skin depth. A recent laboratory experiment demonstrated a transition from slow to fast magnetic reconnection when a current channel narrowed to a microscopic scale, but did not address how a macroscopic magnetohydrodynamic system accesses the microscale. Recent theoretical models and numerical simulations suggest that a macroscopic, two-dimensional magnetohydrodynamic current sheet might do this through a sequence of repetitive tearing and thinning into two-dimensional magnetized plasma structures having successively finer scales. Here we report observations demonstrating a cascade of instabilities from a distinct, macroscopic-scale magnetohydrodynamic instability to a distinct, microscopic-scale (ion skin depth) instability associated with fast magnetic reconnection. These observations resolve the full three-dimensional dynamics and give insight into the frequently impulsive nature of reconnection in space and laboratory plasmas.
Additional Information
© 2012 Macmillan Publishers Limited. Received 27 July 2011; accepted 3 January 2012. Published online 15 February 2012. This work supported by the US DOE, NSF and AFOSR. Author Contributions: A.L.M. performed the experiments and analysed data. A.L.M. and P.M.B. discussed and interpreted the results and wrote the manuscript.Attached Files
Supplemental Material - nature10827-s1.pdf
Supplemental Material - nature10827-s2.mov
Supplemental Material - nature10827-s3.mov
Files
Name | Size | Download all |
---|---|---|
md5:4b79b4dc35eb82caa8517e4691012247
|
1.2 MB | Download |
md5:5879f10cccaf434f81ca719f57b5c407
|
591.1 kB | Download |
md5:bb709db4d6c463ab61c4ec95a5eb88f1
|
3.3 MB | Preview Download |
Additional details
- Eprint ID
- 29480
- Resolver ID
- CaltechAUTHORS:20120227-090257685
- Department of Energy (DOE)
- NSF
- Air Force Office of Scientific Research (AFOSR)
- Created
-
2012-02-29Created from EPrint's datestamp field
- Updated
-
2021-11-09Created from EPrint's last_modified field