Optimizing large parameter sets in variational quantum Monte Carlo
Abstract
We present a technique for optimizing hundreds of thousands of variational parameters in variational quantum Monte Carlo. By introducing iterative Krylov subspace solvers and by multiplying by the Hamiltonian and overlap matrices as they are sampled, we remove the need to construct and store these matrices and thus bypass the most expensive steps of the stochastic reconfiguration and linear method optimization techniques. We demonstrate the effectiveness of this approach by using stochastic reconfiguration to optimize a correlator product state wave function with a Pfaffian reference for four example systems. In two examples on the two dimensional Fermionic Hubbard model, we study 16 and 64 site lattices, recovering energies accurate to 1% in the smaller lattice and predicting particle-hole phase separation in the larger. In two examples involving an ab initio Hamiltonian, we investigate the potential energy curve of a symmetrically dissociated 4 × 4 hydrogen lattice as well as the singlet-triplet gap in free base porphin. In the hydrogen system we recover 98% or more of the correlation energy at all geometries, while for porphin we compute the gap in a 24 orbital active space to within 0.02 eV of the exact result. The number of variational parameters in these examples ranges from 4 × 10³ to 5 × 10⁵.
Additional Information
© 2012 American Physical Society. Received 17 August 2011; revised manuscript received 21 November 2011; published 5 January 2012. This work was supported by NSF Grants No. CHE-1004603 and No. DMR-0908653 and by the Miller Institute for Basic Research in Science.Attached Files
Published - PhysRevB.85.045103.pdf
Accepted Version - 1108.0900.pdf
Files
Name | Size | Download all |
---|---|---|
md5:6706ad347657fde94287bab540bd78cd
|
322.5 kB | Preview Download |
md5:993730a571b39fd179b3ad6ce819ce61
|
314.7 kB | Preview Download |
Additional details
- Eprint ID
- 73603
- Resolver ID
- CaltechAUTHORS:20170120-161948930
- NSF
- CHE-1004603
- NSF
- DMR-0908653
- Miller Institute for Basic Research in Science
- Created
-
2017-01-21Created from EPrint's datestamp field
- Updated
-
2021-11-11Created from EPrint's last_modified field