Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published August 2013 | public
Journal Article

Entangled quantum electronic wavefunctions of the Mn_4CaO_5 cluster in photosystem II

An error occurred while generating the citation.

Abstract

It is a long-standing goal to understand the reaction mechanisms of catalytic metalloenzymes at an entangled many-electron level, but this is hampered by the exponential complexity of quantum mechanics. Here, by exploiting the special structure of physical quantum states and using the density matrix renormalization group, we compute near-exact many-electron wavefunctions of the Mn_4CaO_5 cluster of photosystem II, with more than 1 × 10^(18) quantum degrees of freedom. This is the first treatment of photosystem II beyond the single-electron picture of density functional theory. Our calculations support recent modifications to the structure determined by X-ray crystallography. We further identify multiple low-lying energy surfaces associated with the structural distortion seen using X-ray crystallography, highlighting multistate reactivity in the chemistry of the cluster. Direct determination of Mn spin-projections from our wavefunctions suggests that current candidates that have been recently distinguished using parameterized spin models should be reassessed. Through entanglement maps, we reveal rich information contained in the wavefunctions on bonding changes in the cycle.

Additional Information

© 2013 Macmillan Publishers Limited. Received 09 November 2012 | Accepted 03 May 2013 | Published online 09 June 2013. Y.K. and T.Y. were supported in part by a Grant-in-Aid for Scientific Research (C) (grant no. 25410030) and a Grant-in-Aid for Scientific Research (B) (grant no. 25288013), respectively, from MEXT, Japan. Y.K. and T.Y. acknowledge support from the Institute for Molecular Science and a grant of CPU time from the Research Center for Computational Science. G.K-L. Chan was supported by the US Department of Energy, Office of Science (DE-FG02-07ER46432).

Additional details

Created:
August 19, 2023
Modified:
October 24, 2023