Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published January 22, 2018 | Published
Book Section - Chapter Open

High-contrast spectroscopy testbed for segmented telescopes

Abstract

The High Contrast Spectroscopy Testbed for Segmented Telescopes (HCST) at Caltech is aimed at filling gaps in technology for future exoplanet imagers and providing the U.S. community with an academic facility to test components and techniques for high contrast imaging with future segmented ground-based telescope (TMT, E-ELT) and space-based telescopes (HabEx, LUVOIR). The HCST will be able to simulate segmented telescope geometries up to 1021 hexagonal segments and time-varying external wavefront disturbances. It also contains a wavefront corrector module based on two deformable mirrors followed by a classical 3-plane single-stage corona- graph (entrance apodizer, focal-plane mask, Lyot stop) and a science instrument. The back-end instrument will consist of an imaging detector and a high-resolution spectrograph, which is a unique feature of the HCST. The spectrograph instrument will utilize spectral information to characterize simulated planets at the photon-noise limit, measure the chromaticity of new optimized coronagraph and wavefront control concepts, and test the overall scientific functions of high-resolution spectrographs on future segmented telescopes.

Additional Information

© 2018 Society of Photo-Optical Instrumentation Engineers (SPIE). The authors would like to acknowledge the financial support of the Heising-Simons foundation. G. Ruane is supported by an NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST-1602444. This work was also supported by the Exoplanet Exploration Program (ExEP), Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. Finally, we would like to thank Rowan Swain for proofreading the manuscript.

Attached Files

Published - 104000X.pdf

Files

104000X.pdf
Files (994.3 kB)
Name Size Download all
md5:7b91bc9b7cbd7936143120ab46b196f3
994.3 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
January 14, 2024