Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published October 2018 | public
Journal Article

Controlling pre-movement sensorimotor rhythm can improve finger extension after stroke

Abstract

Objective. Brain–computer interface (BCI) technology is attracting increasing interest as a tool for enhancing recovery of motor function after stroke, yet the optimal way to apply this technology is unknown. Here, we studied the immediate and therapeutic effects of BCI-based training to control pre-movement sensorimotor rhythm (SMR) amplitude on robot-assisted finger extension in people with stroke. Approach. Eight people with moderate to severe hand impairment due to chronic stroke completed a four-week three-phase protocol during which they practiced finger extension with assistance from the FINGER robotic exoskeleton. In Phase 1, we identified spatiospectral SMR features for each person that correlated with the intent to extend the index and/or middle finger(s). In Phase 2, the participants learned to increase or decrease SMR features given visual feedback, without movement. In Phase 3, the participants were cued to increase or decrease their SMR features, and when successful, were then cued to immediately attempt to extend the finger(s) with robot assistance. Main results. Of the four participants that achieved SMR control in Phase 2, three initiated finger extensions with a reduced reaction time after decreasing (versus increasing) pre-movement SMR amplitude during Phase 3. Two also extended at least one of their fingers more forcefully after decreasing pre-movement SMR amplitude. Hand function, measured by the box and block test (BBT), improved by 7.3  ±  7.5 blocks versus 3.5  ±  3.1 blocks in those with and without SMR control, respectively. Higher BBT scores at baseline correlated with a larger change in BBT score. Significance. These results suggest that learning to control person-specific pre-movement SMR features associated with finger extension can improve finger extension ability after stroke for some individuals. These results merit further investigation in a rehabilitation context.

Additional Information

© 2018 IOP Publishing Ltd. Received 28 April 2018; Revised 20 July 2018; Accepted 31 July 2018; Accepted Manuscript online 31 July 2018. Published 23 August 2018.

Additional details

Created:
August 19, 2023
Modified:
October 18, 2023