Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published August 20, 2019 | Published
Journal Article Open

Probing the Gas Content of Late-stage Protoplanetary Disks with N_2H^+

Abstract

The lifetime of gas in circumstellar disks is a fundamental quantity that informs our understanding of planet formation. Studying disk gas evolution requires measurements of disk masses around stars of various ages. Because H_2 gas is unobservable under most disk conditions, total disk masses are based on indirect tracers such as sub-mm dust and CO emission. The uncertainty in the relation between these tracers and the disk mass increases as the disk evolves. In a few well-studied disks, CO exhibits depletions of up to 100× below the assumed interstellar value. Thus, additional tracers are required to accurately determine the total gas mass. The relative lack of nitrogen found in solid solar system bodies may indicate that it persists in volatile form, making nitrogen-bearing species more robust tracers of gas in more evolved disks. Here we present Atacama Large Millimeter/submillimeter Array detections of N_2H^+ in two mature, ~5–11 Myr old disks in the Upper Scorpius OB Association. Such detections imply the presence of H_2-rich gas and sources of ionization, both required for N_2H^+ formation. The Upper Sco disks also show elevated N_2H^+/CO flux ratios when compared to previously observed disks with ≳10× higher CO fluxes. Based on line ratio predictions from a grid of thermochemical disk models, a significantly reduced CO/H_2 abundance of <10^(−6) for a gas-to-dust ratio of ≳100 is required to produce the observed N_2H^+ fluxes. These systems appear to maintain H_2 gas reservoirs and indicate that carbon- and nitrogen-bearing species follow distinct physical or chemical pathways as disks evolve.

Additional Information

© 2019 The American Astronomical Society. Received 2018 December 14; revised 2019 June 19; accepted 2019 June 23; published 2019 August 21. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under grant No. DGE-1144469 and funding from NSF grants AST-1514670 and AST-1344133 (INSPIRE) as well as NASA NNX16AB48G. J.C. acknowledges support from the National Aeronautics and Space Administration under grant No. 15XRP15_20140 issued through the Exoplanets Research Program. K.Z. acknowledges the support of NASA through Hubble Fellowship grant HST-HF2-51401.001-A. J.H. acknowledges support from the National Science Foundation Graduate Research Fellowship under grant No. DGE-1144152. This work makes use of the following ALMA data: ADS/JAO.ALMA#2015.1.01199.S, ADS/JAO.ALMA#2011.0.00526.S, ADS/JAO.ALMA#2015.1.00964.S, and ADS/JAO.ALMA#2013.1.00226.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. We thank NRAO for assistance with data reduction and the anonymous reviewer for critically reading the manuscript and providing insightful feedback. Software: APLpy (Robitaille & Bressert 2012), Astropy (Astropy Collaboration 2013, 2018), CASA (McMullin et al. 2007), Matplotlib (Hunter 2007).

Attached Files

Published - Anderson_2019_ApJ_881_127.pdf

Files

Anderson_2019_ApJ_881_127.pdf
Files (2.8 MB)
Name Size Download all
md5:a4aa88035b013fdb330e03ee7a2c1f76
2.8 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 18, 2023