Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 2019 | Supplemental Material
Journal Article Open

Compound-specific isotope analysis of amino acids as a new tool to uncover trophic chains in soil food webs

Abstract

Food webs in soil differ fundamentally from those aboveground; they are based on inputs from both living plants via root exudates, and from detritus, which is a complex mixture of fungi, bacteria, and dead plant remains. Trophic relationships are difficult to disentangle due to the cryptic lifestyle of soil animals and inevitable microbial contributions to their diet. Compound‐specific isotope analysis of amino acids (AAs) is increasingly used to explore complex food webs. The combined use of AA δ^(13)C and δ^(15)N values is a promising new approach to disentangle trophic relationships since it provides independent but complementary information on basal resources, as well as the trophic position of consumers. We conducted a controlled feeding study in which we reconstructed trophic chains from main basal resources (bacteria, fungi, plants) to primary consumers (springtails, oribatid mites) and predators (gamasid mites, spiders). We analyzed dual compound‐specific isotope AA values of both resources and consumers. By applying an approach termed "stable isotope (^(13)C) fingerprinting" we identified basal resources, and concomitantly calculated trophic positions using ^(15)N values of trophic and source AAs in consumers. In the ^(13)C fingerprinting analysis, consumers in general grouped close to their basal resources. However, higher than usual offsets in AA δ^(13)C between diet and consumers suggest either gut microbial supplementation or the utilization of specific resource fractions. Identification of trophic position crucially depends on correct estimates of the trophic discrimination factor (TDF_(Glu‐Phe)), which was close to the commonly applied value of 7.6‰ in primary consumers feeding on microbial resources, but considerably lower in arachnid predators (~2.4‰), presumably due to higher diet quality, excretion of guanine, and fluid feeding. While our feeding study demonstrates that dual compound‐specific AA analyses hold great promise in delineating trophic linkages among soil‐dwelling consumers and their resources, it also highlights that a "one‐size‐fits‐all" approach to TDF_(Glu‐Phe) does not apply to soil food webs.

Additional Information

© 2019 by the Ecological Society of America. Issue Online: 01 November 2019; Version of Record online: 09 July 2019; Accepted manuscript online: 12 June 2019; Manuscript accepted: 02 May 2019; Manuscript revised: 08 April 2019; Manuscript received: 07 December 2018.

Attached Files

Supplemental Material - ecm1384-sup-0001-appendixs1.pdf

Supplemental Material - ecm1384-sup-0002-appendixs2.pdf

Supplemental Material - ecm1384-sup-0003-appendixs3.pdf

Supplemental Material - ecm1384-sup-0004-appendixs4.pdf

Supplemental Material - ecm1384-sup-0005-appendixs5.pdf

Supplemental Material - ecm1384-sup-0006-datas1.zip

Supplemental Material - ecm1384-sup-0007-metadatas1.pdf

Files

ecm1384-sup-0002-appendixs2.pdf
Files (1.4 MB)
Name Size Download all
md5:779705f34afa7e8ccbd05c873cc6f0d8
242.5 kB Preview Download
md5:0b5aa1706f8c418d7527b10bd0564115
140.3 kB Preview Download
md5:83aa872f9732e0237779dc6b4a6d51fa
144.7 kB Preview Download
md5:616a03e7732babf83d0cd55c767c2e5e
203.6 kB Preview Download
md5:490be6777f04735e7d8ceff5d17bae64
136.0 kB Preview Download
md5:658ff1353a03c6c88fcede9fde246492
519.6 kB Preview Download
md5:77af88d7b0810e4730471ae1d987baed
1.9 kB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 18, 2023