Studying Extragalactic Background Fluctuations with the Cosmic Infrared Background ExpeRiment 2 (CIBER-2)
Abstract
Fluctuations in the extragalactic background light trace emission from the history of galaxy formation, including the emission from the earliest sources from the epoch of reionization. A number of recent near-infrared measure- ments show excess spatial power at large angular scales inconsistent with models of z < 5 emission from galaxies. These measurements have been interpreted as arising from either redshifted stellar and quasar emission from the epoch of reionization, or the combined intra-halo light from stars thrown out of galaxies during merging activity at lower redshifts. Though astrophysically distinct, both interpretations arise from faint, low surface brightness source populations that are difficult to detect except by statistical approaches using careful observations with suitable instruments. The key to determining the source of these background anisotropies will be wide-field imaging measurements spanning multiple bands from the optical to the near-infrared. The Cosmic Infrared Background ExpeRiment 2 (CIBER-2) will measure spatial anisotropies in the extra- galactic infrared background caused by cosmological structure using six broad spectral bands. The experiment uses three 2048 x 2048 Hawaii-2RG near-infrared arrays in three cameras coupled to a single 28.5 cm telescope housed in a reusable sounding rocket-borne payload. A small portion of each array will also be combined with a linear-variable filter to make absolute measurements of the spectrum of the extragalactic background with high spatial resolution for deep subtraction of Galactic starlight. The large field of view and multiple spectral bands make CIBER-2 unique in its sensitivity to fluctuations predicted by models of lower limits on the luminosity of the first stars and galaxies and in its ability to distinguish between primordial and foreground anisotropies. In this paper the scientific motivation for CIBER-2 and details of its first flight instrumentation will be discussed, including detailed designs of the mechanical, cryogenic, and electrical systems. Plans for the future will also be presented.
Additional Information
© 2014 SPIE. This work was supported by NASA APRA research grants NNX07AI54G, NNG05WC18G, NNX07AG43G, NNX07AJ24G, and NNX10AE12G. Japanese participation in CIBER was supported by KAKENHI (2034, 18204018, 19540250, 21340047 and 21111004) from Japan Society for the Promotion of Science (JSPS) and the Ministry of Education, Culture, Sports, Science and Technology (MEXT). Korean participation in CIBER was supported by the Pioneer Project from Korea Astronomy and Space Science Institute (KASI). M.Z. and P.K. acknowledge support from NASA Postdoctoral Program Fellowships, A.C. acknowledges support from an NSF CAREER award AST-0645427 and NSF AST-1313319, and K.T. acknowledges support from the JSPS Research Fellowship for Young Scientists.Attached Files
Published - Lanz_2014p91433N.pdf
Files
Name | Size | Download all |
---|---|---|
md5:91a9f9aeb9128d8b60c1ca0f72e0a73e
|
657.8 kB | Preview Download |
Additional details
- Eprint ID
- 58375
- Resolver ID
- CaltechAUTHORS:20150619-095059646
- NASA
- NNX07AI54G
- NASA
- NNG05WC18G
- NASA
- NNX07AG43G
- NASA
- NNX07AJ24G
- NASA
- NNX10AE12G
- Japan Society for the Promotion of Science (JSPS)
- KAKENHI 2034
- Japan Society for the Promotion of Science (JSPS)
- KAKENHI 18204018
- Japan Society for the Promotion of Science (JSPS)
- KAKENHI 19540250
- Japan Society for the Promotion of Science (JSPS)
- KAKENHI 21340047
- Japan Society for the Promotion of Science (JSPS)
- KAKENHI 21111004
- Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- Korea Astronomy and Space Science Institute (KASI)
- NASA Postdoctoral Program
- NSF
- AST-0645427
- NSF
- AST-1313319
- Created
-
2015-06-19Created from EPrint's datestamp field
- Updated
-
2021-11-10Created from EPrint's last_modified field
- Series Name
- Proceedings of SPIE
- Series Volume or Issue Number
- 9143