Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 2006 | Published + Supplemental Material
Journal Article Open

Design, fabrication and characterization of monolithic embedded parylene microchannels in silicon substrate


This paper presents a novel channel fabrication technology of bulk-micromachined monolithic embedded polymer channels in silicon substrate. The fabrication process favorably obviates the need for sacrifical materials in surface-micromachined channels and wafer-bonding in conventional bulk-micromachined channels. Single-layer-deposited parylene C (poly-para-xylylene C) is selected as a structural material in the microfabricated channels/columns to conduct life science research. High pressure capacity can be obtained in these channels by the assistance of silicon substrate support to meet the needs of high-pressure loading conditions in microfluidic applications. The fabrication technology is completely compatible with further lithographic CMOS/MEMS processes, which enables the fabricated embedded structures to be totally integrated with on-chip micro/nano-sensors/actuators/structures for miniaturized lab-on-a-chip systems. An exemplary process was described to show the feasibility of combining bulk micromachining and surface micromachining techniques in process integration. Embedded channels in versatile cross-section profile designs have been fabricated and characterized to demonstrate their capabilities for various applications. A quasi-hemi-circular-shaped embedded parylene channel has been fabricated and verified to withstand inner pressure loadings higher than 1000 psi without failure for micro-high performance liquid chromatography (µHPLC) analysis. Fabrication of a high-aspect-ratio (internal channel height/internal channel width, greater than 20) quasi-rectangular-shaped embedded parylene channel has also been presented and characterized. Its implementation in a single-mask spiral parylene column longer than 1.1 m in a 3.3 mm × 3.3 mm square size on a chip has been demonstrated for prospective micro-gas chromatography (µGC) and high-density, high-efficiency separations. This proposed monolithic embedded channel technology can be extensively implemented to fabricate microchannels/columns in high-pressure microfludics and high-performance/high-throughput chip-based micro total analysis systems (µTAS).

Additional Information

© Royal Society of Chemistry 2006. Received 9th January 2006, Accepted 21st March 2006. First published as an Advance Article on the web 30th March 2006. Electronic supplementary information (ESI) available: Colour figures. See DOI: 10.1039/b600224b This work was supported in part by the Engineering Research Centers Program of the National Science Foundation under NSF Award Number EEC-0310723 and EEC-9402726. The authors would like to especially thank Mr Damien Rodger for his valuable comments as well as Mr Trevor Roper for his fabrication assistance.

Attached Files

Published - CHEloac06.pdf

Supplemental Material - CHEloac06fig1.pdf

Supplemental Material - CHEloac06fig2.pdf

Supplemental Material - CHEloac06fig3.pdf


Files (1.6 MB)
Name Size Download all
569.3 kB Preview Download
445.7 kB Preview Download
44.2 kB Preview Download
499.9 kB Preview Download

Additional details

August 22, 2023
October 16, 2023